Publication

Sie verwenden einen Browser, in dem JavaScript deaktiviert ist. Dadurch wird verhindert, dass Sie die volle Funktionalität dieser Webseite nutzen können. Zur Navigation müssen Sie daher die Sitemap nutzen.

You are currently using a browser with deactivated JavaScript. There you can't use all the features of this website. In order to navigate the site, please use the Sitemap .

Simulation environment for link energy estimation in networks-on-chip with virtual channels

Authors:
Joseph, J. M. ,  Bamberg, L. ,  Hajjar, I. ,  Schmidt, R. ,  Pionteck, T. ,  García-Ortiz, A.
Journal:
Integration
Volume:
68
Page(s):
147-156
Date:
2019
DOI:
10.1016/j.vlsi.2019.05.005
Language:
English

Abstract

Network-on-chip (NoC) is the most promising design paradigm for the interconnect architecture of a multiprocessor system-on-chip (MPSoC). On the downside, a NoC has a significant impact on the overall energy consumption of the system. NoC simulators are highly relevant for design space exploration even at an early stage. Since links in NoC consume up to 50% of the energy, a realistic energy consumption of links in NoC simulators is important. This work presents a simulation environment which implements a technique to precisely estimate the data dependent link energy consumption in NoCs with virtual channels for the first time. Our model works at a high level of abstraction, making it feasible to estimate the energy requirements at an early design stage. Additionally, it enables the fast evaluation and early exploration of low-power coding techniques. The presented model is applicable for 2D and 3D NoCs. A case study for an image processing application shows that the current link model leads to an underestimate of the link energy consumption by up to a factor of four. In contrast, the technique presented in this paper estimates the energy quantities precisely with an error below 1% compared to results obtained by precise, but computational extensive, bit-level simulation.

Download

BibTeX