Institute for Communication Technologies and Embedded Systems

On the Error Probability of Linearly-Modulated Signals of Rayleigh Frequency-Flat Fading Channels

Authors:
Aghamohammadi, A. ,  Meyr, H.
Journal:
IEEE Transactions on Communications
Volume:
COM-38
Page(s):
1966-1970
number:
11
Date:
Nov. 1990
DOI:
10.1109/26.380195
Language:
English
Abstract:
The method used in Aghamohammadi and Meyr (1990) for finding the error probability of linearly modulated signals on Rayleigh frequency-flat fading channels has been applied to the more general case of Ricean fading. A signal received on a fading channel is subject to a multiplicative distortion (MD) and to the usual additive noise. Following a compensation of the MD, the signal provided to the detector may be thought to include only a single additive distortion term ("final noise"), which comprises the effects of the original additive noise, the MD, and the error in MD compensation. An exact expression for the probability density function of the final noise is derived. This allows calculation of error probability for arbitrary types of linear modulations. Results for many cases of interest are presented. Furthermore, as special cases of Ricean fading, error probability for Rayleigh fading and non-fading channels are obtained which either match the results or complete the approximate derivations formerly known from the literature.
Download:
BibTeX