Publication
Sie verwenden einen Browser, in dem JavaScript deaktiviert ist. Dadurch wird verhindert, dass Sie die volle Funktionalität dieser Webseite nutzen können. Zur Navigation müssen Sie daher die Sitemap nutzen.
You are currently using a browser with deactivated JavaScript. There you can't use all the features of this website. In order to navigate the site, please use the Sitemap .
Likelihood-Based Adaptive Learning in Stochastic State-Based Models
- Authors:
- Vieting, P. , de Lamare, R. C. , Martin, L. , Dartmann, G. , Schmeink, A.
- Journal:
- IEEE Signal Processing Letters
- Volume:
- 26
- Page(s):
- 1031-1035
- number:
- 7
- Date:
- Jul. 2019
- ISSN:
- 1558-2361
- DOI:
- 10.1109/LSP.2019.2917495
- hsb:
- RWTH-2019-04729
- Language:
- English
Abstract
This letter presents an adaptive learning framework for estimating structural parameters in stochastic state-based models (SSMs). SSMs are a useful modeling tool in systems biology and medicine. While models in these disciplines are traditionally hand-crafted, an automated generation based on experimental data becomes a topic of research interest. In particular, our goal is to classify measured processes using the generated models. An innovative likelihood-based adaptive learning approach capable of learning the structural parameters, i.e., the arc weights of SSMs from data and exploiting the reliability of detected inputs is presented in this letter. Its convergence behavior is analyzed and an expression for the error at steady state is derived. Simulations assess the performance of the proposed and existing algorithms for a gene regulatory network.Download
BibTeX