DSP & MULTIMEDIA TECHNOLOGY Magazine, vol. 4, no. 5, July/August, 1995, pp. 27 — 45

COMPILERS FOR DIGITAL SIGNAL PROCESSORS
The Hard Way From Marketing- to Production-Tool

Vojin Ziwojnovié

Aachen University of Technology
Aachen, Germany

I. Introduction

High-level language compilers for DSP processors are
one of the rare products of the DSP industry for which
a controversy regarding their use and usefulness exists.
Although DSP compilers are available for almost all
fixed- and floating-point DSP processors found on the
market, their present role in the software design process
1s far less significant than expected by users, compiler
designers, and sales personnel. Contrary to standard
programming practice and despite all efforts, assembly
programming remains an inevitable part of the DSP
software design process. As a consequence, a provoca-
tive question can be asked: Are state-of-the-art DSP
compilers marketing or production tools? Facts presen-
ted in this paper should help the reader in forming his
own conclusion about this question. We present below
an overview of DSP compiler technology, their charac-
teristics, and their role in DSP code development.

This paper should help the reader to form a complete

picture of the main features of DSP compilers and perhaps

help in predicting future developments in the highly in-
teresting field of DSP applications. The paper is orga-
nized as follows. Following the introduction, Section
IT discusses the low efficiency of state-of-the-art DSP
compilers and its consequence for development of mul-
timedia applications. Section III briefly reviews the hi-
story of DSP compilers. Section IV discusses the role of
DSP compilers in DSP code development. An overview
of DSP processor architectures is presented in Section
V. This section discusses the influence of DSP processor
architecture on compiler design and compiler efficiency.
Section VI gives an overview of high-level programming
languages for programming DSP processors. Language
extensions and compilation flags of DSP compilers are
discussed in Section VII. Section VIII discusses the role
of fixed-point arithmetic in fixed-point DSP compilers.
Compiler optimization issues are reviewed in Section
IX. Section X presents some results from a quantitative
evaluation of DSP compilers. Finally, Section XI dis-
cusses future developments in the DSP compiler field.

II. DSP Compilers, Processors, and
Multimedia Applications

DSP compilers are software tools which enable pro-
gramming of DSP processors in a high-level language
(HLL). Instead of using cumbersome and time-comsuming
assembly language, the programmer expresses the com-
putation in a language which is more easily understood
and used. As a consequence, the programmer’s pro-
ductivity is higher, and the code is easily portable to
various platforms and can be reused for other purposes.
All these factors shorten the time to market of the final
product. As in standard, general-purpose processing,
there is a strong motivation for using high-level pro-
gramming languages and compilers for programming
DSP processors.

DSP processors are special-purpose processors. They
were introduced in the early eighties to enable cost-
efficient real-time implementations of DSP algorithms.
As successors to microcontrollers, they inherited many
microcontroller characteristics - on-chip memory and
I/0, small size, and low cost. However, DSP processors
gained a number of additional, highly specific architec-
tural features which increased their processing power.
At the same time, these features made them highly
unsuitable as compiler targets and hardly controllable
from standard programming languages. As a conse-
quence, most state-of-the-art DSP compilers show se-
rious deficiencies in efficient utilization of the target
architecture.

Recent efforts in DSP processor design try to make
the processor architecture more compiler friendly. Alt-
hough risky for its position on the market - chip price
and power consumption will probably rise - this could
be a step in the right direction. However, even the exi-
sting, architecture-related efficiency problems of DSP
compilers are solvable. Despite the differences in the
design goals between general-purpose and digital signal
processing, and between respective processor architec-
tures, the problems of DSP compiler design could be

successfully solved by using and extending the existing
know-how of compiler and programming language spe-
cialists. The reason why this has not been done yet
lies in the financial investments necessary to support
compiler design teams attacking the problem. Such
specialized teams are expensive, and the DSP proces-
sor and compiler manufacturers could not recoup their
development cost by selling the compilers. As a con-
sequence, the DSP industry has largely decided to use
existing compilers for general-purpose computers and
to adapt them modestly (and more or less successtully)
to DSP processors. Such an approach guarantees a
compiler which fulfills the main goal of every compiler
- to generate correct code. Also, for DSP architectures
which are similar to general-purpose architectures and
for code fragments that are not signal-processing inten-
sive, the results can be satisfactory. However, for most
DSP processors and applications, the generated code is
far from optimum and cannot be used in the final pro-
duct without additional, hand-crafted modifications.

New factors are influencing developments in the DSP
compiler market. The DSP market is no longer a small
niche of the overall computer market. Especially in
multimedia and mobile communications, the market for
DSP processors is constantly growing. Orders to the
DSP chip industry have grown from quantities of tens
of thousands to millions, or even tens of millions. The
number of new companies that are using DSP techno-
logy is also constantly increasing. Such developments
could be highly beneficial for the DSP compiler market.

Another new development has to be taken seriously by
the producers of DSP processors if they want to exploit
the multimedia market. Although they are more expen-
sive and less powerful for DSP applications, general-
purpose processing (GPP) processors could take over
the market opportunities of the DSP processor indu-
stry because of better compilers.

In a letter dated January 12, 1995, Microsoft announ-
ced the withdrawal of its Resource Management Inter-
face (RMI) specification. The RMI was an attempt to
enable the producers of multimedia boards and equip-
ment to easily interface to Microsoft’s new operating
systems. In the letter to potential independent software
and hardware vendors and OEMs Microsoft explained
the reason for their withdrawal from RMI:

Independent software vendors are looking for
solutions enabling them to write device dri-
vers and DSP algorithms only once, regard-
less of the DSP instruction set. Exploiting
the features and capabilities of each DSP-
based platform is by nature a device-dependent
operation, and existing resource management
architectures, including the Microsoft RMI,

will not provide this level of independence.

It is obvious that this would not be a problem with
high quality DSP compilers and that this decision enor-
mously favors the native processors - GPP processors -
as DSP engines. A huge GPP processor producer has
already started an initiative under the name Native Sig-
nal Processing (NSP) in order to introduce GPP pro-
cessors as basic components for multimedia processing.
The others will follow in short order.

III. Short History of DSP Compilers

Although the first DSP processors appeared in the early
eighties, the first commercial DSP compilers became
availablein 1988. This delay stemmed from the compiler-
unfriendly architectural characteristics of the first DSP
processors, such as a small number of registers and li-
mited addressing capabilities.

One of the first commercially available DSP compilers
was the C compiler for the AT&T DSP32 floating-point
processor. AT&T re-targeted the UNIX portable C
compiler to the DSP32 [1]. At the same time TI relea-
sed their C compiler for the TMS320C25. This was also
based on an existing C compiler for general-purpose
processors. This compiler became the basis for the de-
velopment of their fixed-point C compiler and a later
C compiler for their floating-point processors.

Motorola and Analog Devices [2] started with their own
C compiler solutions for the DSP56000 and ADSP-2100
fixed-point families, respectively. However, both com-
panies later decided to switch to the GNU C compiler
— gcc — from the Free Software Foundation [3] as the
basis for their new fixed- and floating-point compilers.

Since that time the GNU C compiler has been used
by numerous companies wishing to develop a bug-free
DSP compiler without large investments in compiler
design. The gcc compiler by the Free Software Foun-
dation is available free of charge under the terms of the
GNU Public License (GPL). This license requires that
companies incorporating GPL code into their products
must make available the source code for the products
at no charge. Attempts to use the standard gcc re-
targeting procedure mostly failed. To obtain accepta-
ble efficiency of the code, complex changes to the gcc
have been necessary. Also, additional assembly level
optimizers have often been added as a post-compiling
procedure (e.g., in compilers for the DSP56000 by Mo-
torola).

In 1989 an effort was started to standardize DSP-oriented
extensions of the ANSI C language [4,5,6]. Although
a lot of very useful extensions have been proposed by

the Numerical C Extensions Group (NCEG), the diffe-
rent interests of the NCEG members coming from the
DSP and general numerical processing fields have made
agreeing on a common standard impossible.

The growing DSP market has become attractive for
companies with experience in compilers for general-
purpose processors. In 1990 Tartan released the first
Ada DSP compiler which targeted TI’s TMS320C30
processor [7]. In 1993 the same company released the
first C4++ compiler specifically designed for DSP pro-
cessors [8].

Intermetrics released their C compiler for the Motorola
DSP96000 floating-point DSP processor family in 1990,
the NEC 77240 processor in 1992 [9] and the Mwave
processor in 1993. Intermetrics’ newest design is the C
compiler for the NEC 77016 fixed-point family [10,11].

IV. Role of DSP Compilers in DSP Code
Development

Devices with embedded DSP functionality obtain their
processing capabilities through use of programmable
and/or hardwired processing elements. If the predomi-
nant processing power comes from programmable in-
tegrated circuits we speak about DSP processor-based
designs.

The main advantages of DSP processors over ASIC so-
lutions are lower development costs, shorter develop-
ment time, and a high degree of flexibility in the design.
Development of devices with embedded DSP processors
can be divided into two main tasks: code development
and processor/hardware integration. In this paper we
are interested in the former.

IV.1. Assembly-Based Design

The classical, assembly-based approach to DSP code
development is to convert the algorithm directly into
the processor’s assembly code (Fig. 1). The main pro-
blem with this approach is that programming, debug-
ging, and functional verification all take place at the
assembly level. The resulting productivity is mostly
low, and the design sometimes becomes a real night-
mare. Although most complaints are about program-
ming in assembly language, experience shows that the
main problem is actually in assembly-level debugging
and functional verification. Even though experienced
DSP programmers learn every new assembly langu-
age and obtain the necessary programming skill very
quickly, fixing coding bugs - especially conceptual bugs
- in assembly can cost huge amounts of time.

problem specification

l

algorithm

l

production-quality

debugging ~— assembly code

<~— profiling

verification l integration

final product

Figure 1: Classical Approach to DSP Code Design.

A well-known and proven approach to improving code
design 1s to program in a high-level language and use
the compiler as the translator to assembly code. High-
level language programming offers a number of advan-
tages over assembly programming. The most important
are:

e programming comfort - the high expressive power
of the high-level language makes programming
more comfortable and thus more productive;

e testing and debugging - high-level description of
the program enables efficient testing and debug-

ging;

e re-usability - the same code can be reused in other
applications;

e portability - the same code can be ported to other
targets supporting the same language; and

e maintainability - less effort is necessary if changes
or extensions of the code have to be made.

All these advantages are valid for DSP code develop-
ment, too. Unfortunately, the relatively low efficiency
of state-of-the-art DSP compilersis a serious limitation.
The overhead in execution time and memory utilization
introduced by the compiler is very often unacceptably
high (see Section X). In general, the code generated by
the DSP compiler cannot be used directly in the final
product, and the compile-link-run procedure cannot be
applied. Exceptions are situations in which the DSP
processor subsystem of the device is not cost-sensitive
or in which the processing speed is not critical or can
be scaled by faster processors or additional processing
units, as in rapid prototyping. In these cases the rela-
tive inefficiency of DSP compilers can be tolerated. In
the remainder of this section we concentrate on imple-
mentations where this is not the case.

IV.2. Heterogeneity of DSP Programs

Programs found in typical DSP applications are not ho-
mogeneous. In addition to their functionality, different
fragments of the program have different run-time and
compile-time characteristics. For example, in the pro-
gram of a V.32 modem, the instructions implementing
the filtering operation are executed more frequently
than the instructions doing startup synchronization.
Such behavior is known as locality of reference. The
well known general rule of thumb is that 90% of the
execution time is spent in 10% of the code [12].

Another form of heterogeneity is introduced by the type
of the code. We shall distinguish two code types: DSP-
type and GPP-type code. DSP-type code is made up of
instructions which implement DSP-specific algorithms
(e.g., FIR or FFT). Features of the DSP processor,
like multiply-add instructions or bit-reversed addres-
sing, are speclally tailored to speed up this type of code.

GPP-type code is found in general-purpose applications
where string manipulations and general numeric com-
putations dominate. In DSP applications, GPP-type
code is found in the form of glue logic between DSP-
type code fragments and is characterized by heavy use
of general arithmetic and control statements of the lan-
guage, like for, if-then-else, and switch. Thisis the
reason why GPP-type code is often also referred to as
control-type code.

Existing DSP compilers handle GPP-type code in a
much more efficient manner than DSP-type code. Al-

most all available DSP compilers are made by re-targeting

and modifying existing GPP compilers which are tailo-
red according to the general-purpose code model. Also,
if the underlying architecture is a GPP processor, the
compiler has a much easier task of generating efficient
code. Fig. 2 shows the compilation problem in de-
pendence on the code and architecture type. If the
code is of DSP type and the architecture is tailored
to DSP-type applications, current compilers have diffi-
culty generating efficient code. In cases where the code
is of GPP type or the architecture is more similar to
the GPP processor architectures, the problem becomes
easier. The reason for such behavior lies in the model
mismatch. The standard languages, like C, and the re-
lated compiler technology are developed to match the
general-purpose application and architecture model. If
the model is not appropriate, only suboptimal results
can be obtained.

Execution frequency is related to code-type characteri-
stics. The time-critical parts of the code are very often
of DSP type, so most of the execution time is spent
in the code which is hard to compile efficiently. This
forces reliance on the manual recoding process.

GPP code switch@DSP

fe) switch@GPP
o —

DSP FFT@GPP
/

DSP code ©

DSP arch.

B had

GPP arch.

[] easy

Figure 2: Compilation Pro-
blem in the Code-Architecture Space. (switch@DSP
means switch code running on a DSP processor)

IV.3. High-Level Language-Based Design

As of today, the design principle of using DSP compilers
relies on the use of the heterogeneity of typical DSP
code. A DSP compiler-based design flow is presented
on Fig. 3. Its main characteristic is the introduction

problem specification

v
algorithm «—— functional
L simulation

test data .
****************** HLL code <— debugging

compilation l design validation
assembly code

recoding of i
critical sections

production-quality

assembly code profiling

——————— - verification l integration

final product

Figure 3: HLL-Based Approach to DSP Code Design.

of HLL programming and use of the DSP compiler.
The intention is to move the validation (debugging and
functional verification) from the assembly level to the
HLL level in order to make the design less error prone
and thereby faster.

The role of the HLL program is twofold. First, the HLL
code serves as a bit-accurate prototype in which debug-
ging and functional verification is much more comforta-

ble than on the assembly code. Working on a high-level
description hides the unnecessary details of the imple-
mentation and enables the user to fully concentrate on
the functional behavior of the program. Also, by fee-
ding the HLL program with user-defined test input se-
quences, the signal at predefined internal points can be
determined. Even if the input and corresponding ou-
tput verification sequences are provided a priori, as in
the case of standardized algorithms (e.g., CCITT-ITU
standardization), they determine only the input and
output of the program and not the internal signals. In
this way no details about the sources of incorrect be-
havior are available. Using the bit-accurate HLL code,
the designer can generate all internal signals as the res-
ponse to the test input. These signals are highly useful
for the verification of the final assembly code.

Second, the HLL program is used as the input to the
DSP compiler, which then generates the assembly pro-
gram. For the most part, the generated code is of un-
satisfactory run-time efficiency, both in execution time
and program/data memory utilization. The procedure
which has proved to be the most efficient is to locate
the time-critical parts by profiling and recode them ma-
nually or use fast library routines. An example for this
procedure is presented in [13].

Recoding is the most cumbersome and error-prone part
of the HLL-based design process. Modifying the time-
critical parts in the HLL program by using functions or
assembly in-lining is advantageous. Also, the memory
map of the HLL program should be laid out with the
final memory configuration in mind.

In general the designer should try to keep the corre-
spondence between the HLL and the assembly program
as close as possible. Changes during recoding of the
assembly program should be mirrored in the HLL pro-
gram. Although it is simpler to put aside the HLL
program and concentrate only on the assembly code,
the additional work in synchronizing the two programs
will be paid back quickly. During debugging and verifi-
cation of the recoded assembly code all the advantages
become clear. For example, if the variables in the HLL
and assembly program represent the same signal, and
the program is fed with the same input data, the va-
lues of the variables can be compared during run-time.
In this way bugs can be detected and located quickly
(Fig. 4). Also, by maintaining the correspondence bet-
ween the HLL and assembly code future maintenance
1s much easier and the code is more reusable.

V. DSP Architectures and Compilers

The architectures of state-of-the-art DSP processors
are tailored to be highly efficient on DSP-type pro-

HLL program assembly program

int x; .word _X;

;7N compare| " Lo
; mv r0,{S$ X

\\/g\ao‘iir/\ 7///

correct

Figure 4: Comparative Debugging.

grams. For example, almost all DSP processors are
able to compute an FIR filter with a speed of one in-
struction per filter tap. It is obvious that more than
one operation per instruction has to be executed. In
the case of a FIR filter, six operations (one multiplica-
tion, one addition, two memory moves, and two pointer
updates) have to be accomplished within one instruc-
tion cycle. Additionally, looping has to be executed
without any additional instructions.

To reach this goal and at the same time keep the price
and power consumption of the chip low, DSP proces-
sor architectures developed a number of characteristics
that make them very unfriendly to standard compilers.
These characteristics and their influence on DSP com-
piler design are explained in more detail below.

small number of general-purpose registers

The first fixed-point processors had a small number of
general-purpose registers. For those architectures it
was almost impossible to apply standard compilation
techniques. The compiler was not able to allocate regi-
sters to variables since all the registers had to be used
as temporary variables during expression evaluation.

Later on, the number of general-purpose registers grew
in every new architecture appearing on the market, the-
reby making the compiler’s register allocation task ea-
sier and register spilling (freeing a register by saving
its content in memory) less frequent. Modern floating-
point processors offer enough general-purpose registers
to enable efficient code generation.

heterogeneous register set

Registers of a fixed-point DSP processor are very of-
ten of different lengths and therefore cannot deliver
the same accuracy during arithmetic operations. For
example, some DSP processors have only one or two
registers of full length - accumulators. Full accuracy
can be guaranteed only if all intermediate values of a
computation are stored in one of these registers.

DSP compilers work with data types which are of con-

stant width during the lifetime of a variable. If this
width is the width of the accumulators, the computa-
tion becomes very slow because additional memory ac-
cesses are necessary (e.g., if Long type is used). On the
other hand, if the data type is the width of the data
memory, the computation is inaccurate. Only some
compilers permit explicit control over the accumulators
[10].

non-orthogonal instruction set

An instruction set is said to be orthogonal if the ope-
ration, operand type, and addressing mode of the in-
structions are mutually independent [14]. For example,
if an instruction has two register operands, it should
be possible to execute the same operation on any com-
bination of general-purpose registers of the processor
register file.

This is mostly not the case for DSP processors. DSP
processors are actually half-way between accumulator
and general-purpose register architectures. Instructions
have a predetermined subset of registers which can be
used as valid operands. For example, the multiply-
accumulate instruction in most DSP processors expects
the two multiplicands to be located in different, memory-
space dependent register banks. Obviously, the non-
orthogonality of the instruction set introduces differen-
ces among registers and makes the register set hetero-
geneous.

In the case of non-orthogonal instruction sets, the in-
struction scheduling and register allocation optimiza-
tions have to work with a reduced effective number
of registers. This decreases efficiency because many
register-to-register moves are necessary to meet the re-
quirements of the instructions.

multiple function units

In DSP processors multiple data and address processing
units can operate in parallel and can be used by a single
instruction. In this way DSP processor architectures
are similar to VLIW architectures [14].

To use the whole processing potential of the proces-
sor, DSP compilers have to detect operations which
can be done in parallel and schedule them adequately
at compile-time. Current compilers can detect simple
combinations of arithmetic operations that can be done
in one instruction (e.g. multiply-add with shift). Par-
allel operations in address processing units seem to be
a more complex problem.

multiple data memory spaces

The Harvard architecture of DSP processors is charac-
terized by different memory spaces for the program and
data. The extended Harvard architecture is additio-

nally characterized by multiple data memory spaces -
combined program/data and data-only memory spaces.
Full speed can be obtained only if the data is properly
distributed among different memory spaces.

Current DSP compilers are not able to make any de-
cisions about the allocation of data, as well as pro-
gram/data and data spaces. Architectural descriptions,
which are the source of knowledge about the processor’s
architecture, do not contain this type of information.
As a consequence, the generated code is suboptimal.
Only some newer DSP compilers offer language exten-
sions or pragmas for user-directed allocation of multiple
memory spaces.

heterogeneous memory space

DSP processor data and program memory can be on-
chip or off-chip. Off-chip memory usually cannot be
accessed at the same speed as on-chip memory - addi-
tional wait states have to be inserted. Also, access to
multiple data spaces in some processors cannot be done
in a single instruction if the memory is off-chip. Proper
memory allocation can significantly increase processing
speed in these situations.

The standard approach during code generation is to
postpone the decision about final memory mapping of
variables until the linking process. However, to opti-
mally deal with heterogeneous memories the compiler
itself should be able do the memory mapping. State-
of-the-art DSP compilers are missing this capability.

pipelined architecture

To speed up computation, most modern DSPs use pi-
pelined architectures. Pipelining means that the pro-
cessor works on different portions of different instruc-
tions simultaneously. For example, while the proces-
sor is executing instruction N, it might be fetching the
operands of instruction N+1, and fetching the opcode
for instruction N+2. Pipelining allows faster processor
clock rates but can have side effects that the program-
mer must avoid. Pipeline effects visible to the DSP
programmer on many DSPs are delayed branches, pi-
peline flushes, and delayed register updates.

Pipelining effects increase the complexity of the compi-
ler’s instruction scheduler. Some compilers, like the gcc
provide an internal mechanism for dealing with pipe-
lining effects, but still cannot deliver optimum results.
More aggressive optimizations in new DSP compilers
should improve the use of pipelining and thereby speed
execution.

modulo and bit-reversed addressing

Non-linear addressing modes permit non-sequential ac-
cess to data memory locations. Modulo addressing and

bit-reversed addressing are typical non-linear addres-
sing modes found in DSP processors and are used for
circular buffers and FFT computation, respectively.

Without explicit information from the high-level langu-
age, the compiler is unable to detect addressing which
can be done more efficiently directly by the address ge-
nerator. The main limitation comes from the language
side.

hardware (zero-overhead) loops

Hardware support for looping is provided in most DSP
processors. The loop is executed with little or no time
spent managing the iterators.

Most DSP compilers can use hardware looping very ef-
ficiently.

no support for software stack operations

Most DSP processors have a simple and relatively small
hardware stack that is accessed implicitly by interrupts
and subroutine call/return instructions. The hardware
stack cannot be used by compilers for argument passing
or allocation of automatic variables.

DSP compilers have to build the program stack in soft-
ware, which requires additional instructions and regi-
sters.

Summarizing this section we can conclude that there
are two ways to overcome the architecture-dependent
problems of DSP compilers. One way is to improve
the interaction between the user and the compiler by
using DSP-oriented high-level languages, language ex-
tensions, and directives which are better suited for the
problem at hand. The other way is to improve the opti-
mization capabilities of the compiler. These issues will
be treated in the next sections.

VI. High-Level Languages for DSP
Programming

Compared to compilers for general-purpose computers,
DSP compilers are available for relatively few high-level
languages.

At this writing, C is the most common high-level lan-
guage for programming DSP processors. It is simple
to use, it permits hardware-close programming, and
perhaps most important, it is widespread among users.
Existing DSP C compilers support the ANSI C lan-
guage standard [15], and some also support the older

K&R standard.

The C language is not the ideal language for program-
ming DSP-type applications. For example, digital fil-

ters exhibit a specific behavior which can be best de-
scribed by a data-flow model and block-diagram (gra-
phical) languages. The main disadvantage of block-
diagram languages is that they behave very poorly on
control-type code.

Some feel that C++ is the DSP language of the fu-
ture. Its main strength is the high modeling efficiency
which can be easily adapted to user’s needs. There is
a widespread opinion that the C++ language is not as
efficient as pure C. Surely there are some C++-specific
constructs which produce a large overhead compared
to C; however, the user can always switch back to pure
C if this is advantageous [8].

The Ada programming language offers some very inte-
resting features for the DSP programmer, especially if
the target is a fixed-point processor. Ada is a more po-
werful language than C. It is a strongly typed language
with a rich set of types, subtypes, and type attributes.
It even supports concurrent processing. Additionally,
for applications in the military field there is sometimes
no alternative. However, Ada’s main disadvantage is
its complexity (e.g., twice as many keywords as C) and
low modeling efficiency for hardware-related program-
ming (e.g., no instructions for bit manipulation).

Applicative languages, like Silage [16], Signal [17], or
Data-Flow Language (DFL, a language based on Si-
lage) also have a number of advantages over functio-
nal languages like C or Ada. In applicative languages
instruction precedence is defined by pure data prece-
dence, thus making it easy to implement a data-flow
graph model of the computation. Despite this (and
other) advantages, applicative languages have not fo-
und acceptance among the DSP programmer commu-
nity.

Although existing languages are not optimal for DSP
programming, new languages for DSP programming
will probably not be developed. Introducing language
extensions for existing high-level languages seems to
be a more reasonable step toward improving the design
process.

VII. Language Extensions and Compilation
Directives

The role of programming language standards is to spe-
cify a common platform for software development of
a set of common applications on a set of platforms
with common characteristics. For example, the ANSI
C standard was developed with a particular applica-
tion and hardware model in mind. If the application
or hardware model do not match the standard model,
only suboptimal results can be obtained.

In the case of using the C language to program DSP
processors, the application and hardware model do not
match. The best examples of this mismatch are the ab-
sence of support for fixed-point arithmetic and the as-
sumption of a homogeneous memory architecture. Fixed-
point DSP applications need specialized arithmetic which
1s not covered by existing C data types and arithmetic
rules. Also, the standard approach used in C compilers
incorporates a single homogeneous memory bank. As
mentioned in previous sections, memory in the typical
DSP processor is highly heterogeneous.

One way to overcome this model mismatch is to intro-
duce extensions to the language. This necessity was
recognized quite early. The role of language extensions
is twofold. First, extensions improve the expressive po-
wer of a language. This has a direct impact on the
modeling efficiency and thereby on the productivity of
the programmer. Second, extensions improve the run-
time efficiency of the compiler.

Standardization of C extensions necessary for numeri-
cal computing started in 1988 as a subcommittee of
the ANSI C X3J11 standard committee, known also
as the Numerical C Extensions Group (NCEG). The
main intention of the NCEG was to standardize math
libraries and suggest changes to the C language [6].
The committee was formed by members from compa-
nies interested in general numerical processing and di-
gital signal processing. Unfortunately, no Numerical C
standard has been issued to date. Although numerical
processing and digital signal processing have a simi-
lar application model, the differences in the hardware
model between general numerical processing and digi-
tal signal processing is too large. It is easy to justify
the necessity for language extensions, but it is not at
all easy to standardize them. Numerical C extensions
can be found in the Analog Devices’ floating-point C
compilers (see [5,6]).

Despite the lack of an NCEG standard, many C com-
pilers support language extensions to varying degrees.
For example, almost every DSP C compiler supports
some target-specific features. Even in the ANSI C
standard using the pragma keyword implementation-
dependent action can be performed. Also, all the GNU-
based compilers support at least the gcc extensions.

The extensions to the ANSI C language standard that
are supported in DSP compilers can be divided into
three groups:

VII.1. General Extensions

General extensions are extensions which enable more
efficient programming in C without the restriction on a
specific type of application or architecture. The follo-

wing extensions are part of the GNU compiler [3] and
therefore are in all of its DSP-targeted derivates:

e in-line assembly;
In-line assembly permits intermixing C and as-
sembly instructions in the same source code. It is
used to exploit processor features which are un-
reachable through C, like reading status flags or
setting some specific non-memory-mapped regi-
sters.

e variable-length arrays;
Variable-length arrays permit run-time specifica-
tion of the array length.

e in-lining;
In-lining eliminates the context switching overhead
introduced by the function call. The core of the
function is inserted at the position of the call.
In-lining represents a typical tradeoff between fa-
ster/larger and slower/smaller code.

VII.2. Numerical Extensions

Numerical extensions are tailored to meet the needs
of applications dominated by numerical computations.
Although their main goal is to simplify programming,
l.e., raise the expressive power of the language, they
also enable more efficient code generation for DSP pro-
cessors. Some examples are:

e iterators;
Iterators help in specifying operations which are
performed repeatedly on a large amount of data.
For example, A[I]1=0; stands for for (i=0;i<N;i++)
A[i]=0;, where I is an iterator. This extension
is part of the Numerical C proposal and can be
found in the compiler described in [6].

e complex data type;
The complex data type is used to specify pairs of
variables describing the real and the imaginary
part of the value. This extension can be found in
[18].

e fractional data type;
The fractional data type specifies fixed-point num-
bers with values between -1 and 1, and is hig-
hly useful for programming fixed-point proces-
sors. This extension is implemented in [19] and
reported in [10].

VII.3. DSP-Oriented Extensions

DSP-oriented extensions are introduced to improve com-
piler efficiency in use of specific architectural features

of DSP processors.

e multiple-memory spaces;

Multiple memory spaces is one of the main cha-
racteristics of DSP architectures. To take advan-
tage of this feature variables have to be properly
distributed between the memory spaces. There-
fore, memory space qualifiers (that is, keywords
that tell the compiler to use a particular memory
space) for variables are necessary.

e bit-reversed and circular addressing;
Another specific feature of DSPs is non-linear ad-
dressing modes, like modulo or bit-reversed ad-
dressing. To be controllable from the C code, the
compiler has to provide appropriate language ex-
tensions or compiler directives.

In addition to language statements, most compilers use
compilation directives and flags for control of the com-
pilation process. The standard process in which the
program is fed to the compiler and the compiler de-
livers the output is unsuitable for DSP code design.
Enabling a closer interaction between programmer and
compiler using an ¢nteractive compilation tool would be
highly advantageous.

VIII. DSP Compilers and Fixed-Point
Arithmetic

In this section we concentrate on one of the language
extensions which is of great importance if the target is
a fixed-point DSP processor - support for fixed-point
arithmetic.

VIII.1. Fixed-Point vs. Floating-Point
Processing

Fixed-point DSP processors have a number of advanta-
ges over floating-point processors. Most important are
lower costs and lower power consumption of the hard-
ware, as well as higher computation accuracy for the
same word length. The price paid lies in decreased dy-
namic range and extra programming effort that must
be expended to implement manual scaling.

To avoid nonlinear effects introduced by overflow, un-
derflow, saturation, and wrapping during computation,
control of each variable’s range has to be done by ap-
propriate scaling of the operands. In the floating-point
case the exponent of a variable is part of the run-time
representation and is computed and updated automati-
cally by the floating-point ALU, but in the fixed-point

case the exponent of each variable is implicit and deter-
mined by the programmer off-line using the predicted
dynamic range of the variable. Therefore the scaling
of fixed-point operands has to be done explicitly by
the programmer. This is generally a tedious and error-
prone process.

VIII.2. Fractional vs. Integer Arithmetic

Fixed-point representation of a number using N = = +
y binary numbers is denoted by Qz.y, where x and
y determine the number of bits to the left and right
of the decimal point. The most common fixed-point
representations are integer (y = 0) and fractional (z =
1). If the numbers are represented in two’s complement,
the fractional representation covers the numbers from
[-1,1).

The fact that multiplication of two fractional numbers
produces again a [—1, 1) result and no overflow can oc-
cur (except for -1*-1), is recognized by the program-
mers of DSP processors as advantageous for scaling.
This is one of the reasons why most state-of-the-art
fixed-point DSP processors support fractional arithme-
tic and only a few additionally support integer arith-
metic. We present below the main differences between
fractional and integer arithmetic and show that frac-
tional computation can be even more accurate.

Integer and fractional two’s complement number repre-
sentations on DSP processors differ in the multiplica-
tion operation. Fractional and integer multiplication
of two N-bit numbers both yield a (2N — 1)-bit re-
sult (assuming that the cases of -1*-1 (fractional) or
MININT*MININT (integer) are excluded). If the re-
sult has to be represented by 2N bits, the fractional
result is right-side and the integer left-side extended.
Therefore, fractional multiplication of two N-bit two’s
complement numbers stored as a 2N-bit result is equi-
valent to the integer multiplication with a subsequent
one-bit left shift.

Where integer arithmetic uses the additional bit for
possible range extension in subsequent operations, frac-
tional arithmetic enables more accurate computation.
For example, if z=a*b+c;, with a,b,c and z fractional
numbers is computed, a more accurate result is obtai-
ned than where the same variables are integers scaled
to represent the same values. The difference is a conse-
quence of the fact that after the fractional multiplica-
tion an implicit scaling happens via a left shift. So, the
subsequent addition can be done with an additional bit
of accuracy. Fig. 5 illustrates this fact.

Another very important difference between fractional
and integer representations becomes apparent during
word-length reduction, e.g., saving a double-word accu-

a*b

.

a*b

= s z = 7///////

L

integer arithmetic fractional arithmetic

Figure 5: Accuracy of the z=a*b+c Calculation.

mulator into a single-word memory location. To keep
the implicit exponent of the number unchanged, in the
fractional case the upper and in the integer case the lo-
wer word is extracted. This difference plays an impor-
tant role if fractional computation has to be emulated
by integer arithmetic.

VIII.3. Fractional Arithmetic and the C
Language

Fixed-point arithmetic is an important part of real-time
programming languages (see [20]). For the same po-
wer consumption and price the fixed-point arithmetic
1s always faster than the floating-point. The standard
C language supports only Qx.0 fixed-point data types
and arithmetic. If fractional arithmetic has to be im-
plemented in C it has to be emulated using the provided
integer types and operations. This is generally a time-
consuming operation. To extract the upper word of the
multiplication result, a casting to long has to be ap-
plied. In most compilers this introduces a call to a fun-
ction which enormously slows down the computation.
Also, the necessary left shift after each multiplication
introduces more overhead. As an example, fractional
arithmetic is emulated in C and an off-the-shelf fixed-
point DSP compiler is tested (Fig. 6).

code #clock-cycles

int a, b, ¢, z;

z=(((long)a* (long)b)>>23) + c; 326

optimum assembly code 2

Figure 6: Overhead of the Emulation of Fractional
Arithmetic (int has 24 bits).

The emulation of the fractional multiply-add operation
requires more than 300 cycles, although the same ope-

ration can be done in only two cycles in assembly. Our
experiments with the arithmetic of a GNU-based DSP
compiler show that if the compiler is changed to sup-
port fractional arithmetic only six clock cycles are nee-

ded.

The introduction of the fractional data type as an ex-
tension to the C language standard is necessary if the C
compiler is to be used for programming of fixed-point
DSP applications. The above discussion shows that the
fractional data type is advantageous not only for the
scaling operation, but also for the accuracy of the com-
putation. If emulation with integer arithmetic is used,
an extremely high overhead is introduced. Our experi-
ments with some GNU-based DSP compilers show that
the fractional data type can be added in a simple way,
especially if the float data type is overloaded. Unfor-
tunately, at the time of this writing only a small num-
ber of fixed-point DSP compilers support the fractional
data type [21,22].

VIIIL.4. Compiler Support for Automatic
Scaling

If the dynamic ranges of the variables are known a
priori, the compiler has all the necessary information
to compute the scaling by itself. At compile-time the
compiler attaches to each variable an implicit exponent
computed according to the range. If an arithmetic ope-
ration on variables with different exponents has to be
executed, the compiler inserts the necessary scaling di-
rectly into the code to adapt the implicit exponents.
A prototype of a DSP compiler with automatic scaling
was developed in [23]. Similar approaches at the as-
sembly level can be found in [24]. Unfortunately, none
of the commercially available compilers supports this
feature.

IX. Compiler Optimizations

Processing of state-of-the-art compilers can be gene-
rally divided into two main phases: front-end and back-
end processing. In the front end the source code is
analyzed and translated into an intermediate represen-
tation. This representation is neither source language-
nor target machine-dependent. In most compilers it
has a form of simple three-address instructions (two
operands and the result) or of data structures (e.g., in
gee). In the next step, during the back-end processing,
the intermediate representation is processed and con-
verted into the final assembly or machine code. This
process is depicted in Fig. 7.

To generate high-quality output code, compilers apply
a series of optimizations to the intermediate and final

l HLL code

front-end
processing

intermediate
representation

back-end
processing

l assembly code

Figure 7: The Compilation Process.

assembly code. The goals of the optimization are to re-
duce execution time and memory consumption. Most
compilation algorithms delivering optimum results be-
long to the class of NP-complete problems for which
only algorithms of exponential complexity are presently
known. What does this mean in practice? For example,
if the compiler has to optimize a page with n = 50 as-
sembly instructions, some optimum algorithm will need
T = ba™ time units. If we use typical values of a = 2
and b = 1078, we see that the optimum result will be
delivered in 130 days. This is a long time to wait.

The only alternative is to use algorithms which are of
polynomial complexity and which deliver suboptimal
solutions, but do so in a reasonable time. However,
even in this case the chunk of code has to be of mo-
dest size. What the words "reasonable” and ”"modest”
mean depends on the application domain. Where the
compilation of one page of general-purpose code has to
be finished in the time it takes for one gulp of coffee, in
DSP code development even the duration of an entire
lunch could be tolerated.

Compiler optimizations can be divided into machine-

independent and machine-dependent optimizations. Most

compiler specialists from the general-purpose compu-
ter field understand the term ”optimizing compilers”
to refer to machine-independent optimizations. These
optimizations are introduced at the intermediate level,
without using any information about the target archi-
tecture and instruction set. For completeness the most
common machine-independent optimizations are revie-
wed below. For more details refer to the compiler bible

by Aho [12].

e strength reduction
Replace a more expensive operator by a cheaper
one, e.g., £? = x * .

e common subexpression elimination
Avoid recomputing the expression if the previously
computed value can be used.

e constant propagation
Compute expressions involving only constants at
compile-time.

e dead code elimination
Remove code that computes values that are never
used.

e loop unrolling
Write a loop as a sequential stream of repeated
statements.

e loop-invariant code motion
Move to outside the loop expressions whose values
do not change as the loop is executed.

e function in-lining
Insert the body of a function at the point of the
function call.

Most machine-independent optimizations can be made
superfluous by a proper programming style. Especi-
ally for the typical DSP user and typical DSP applica-
tion, machine-independent optimizations are of minor
importance for the efficiency of the final code.

What a DSP user is really interested in are machine-
dependent optimizations. These optimizations are tar-
get dependent and directly influence the efficiency of
the generated code. The most important are as fol-
lows:

register allocation and assignment;
Allocation of registers for variables and assign-
ment to the machine-specific register set.

e instruction elimination;
Removal of unnecessary instructions.

control-flow optimization;
Elimination of unnecessary conditional and un-
conditional jumps.

instruction selection - compaction;

Multiple operations can be executed in one in-
struction cycle using parallel execution units. The
instruction compactor analyzes the instructions
and tries to combine them into a small number
of parallelized instructions. For example, a mul-
tiply and subsequent add can be combined into a
single multiply-add instruction.

e instruction scheduling - software pipelining;
The execution sequence of instructions is changed
to better exploit the characteristics of the under-
lying architecture. Mostly it is applied to avoid
pipeline stalls and prepare the code for better use
of multiple processing units.

Most of these optimizations are performed only on frag-
ments of code using a moving window. This procedure
is commonly called peephole optimization.

In most state-of-the-art DSP compilers machine-dependent

optimizations are far from optimal. Why? One reason
is the DSP-specific architectural features, which are ra-
rely understood by the compiler without a program-
mer’s help. However, it seems that even a more impor-
tant reason is the general approach to DSP compilers.
Not only are DSP compiler designs heavily influenced
by the design of GPP compilers, but they also suffer
from constraints which have been introduced by the
specific type of general-purpose applications and the
way general-purpose code is developed. An example is
algorithmic complexity of the optimizations.

DSP code development needs much more complex opti-

mizations than general-purpose code development. Where

GPP compilers tend to need only linear or quadra-
tic optimization complexity, DSP compilers need more
complex optimizations.

For example, an overhead in code execution time of
20% over the optimum code due to use of a compiler
1s less costly for a word processing software producer
than for a producer of portable phones. The production
price of the word processing software will be the same,
though performance issues may affect sales. The por-
table phone, however, would have to be equipped with
a 20% faster processor or additional hardware, which
could even double its price. This is one of the reasons
why different approaches to GPP and DSP compiler
design and especially optimization are needed.

X. Quantitative Approach to DSP Compiler
Design

In order to explore quantitative characteristics of DSP
compilers the Institute for Integrated Systems in Sig-
nal Processing of the Aachen University of Technology
started the DSPstone project in 1993 [25]. During this
project a DSP-related benchmarking methodology was
defined which should help in evaluating DSP compi-
lers. The main goal was to get exact quantitative data
about the overhead which is introduced if a high-level
language and compiler are used for DSP code design.
DSPstone also incorporates three suites of benchmarks
(application, DSP-kernel, and HLL-kernel suite). More
information can be found in [25].

We present below some more detailed results for the
ADPCM application benchmark program and the Mo-
torola DSP56000 family C compiler !. The analysis

IRecently we repeated the same analysis for the Analog De-
vices ADSP2100 family C compiler and obtained very similar

was performed to explore quantitative characteristics
of DSP compilers and their use in DSP code design.

The ADPCM benchmark is a full, standard-compliant
implementation of the ADPCM G.721 transcoder. The
C language and the handwritten assembly versions are
compared. For the DSP compiler the overhead in exe-
cution time was measured to be 510% and the overhead
in program and data memory utilization to be 51% and
175% respectively. These results show that the main
problem in using the DSP compiler is its high overhead
in execution time. Our attempts to speed up the execu-
tion by recoding only the time-critical FMULT routine
in assembly resulted in only a modest 9% improvement
in execution time.

To provide a better insight into the behavior of DSP
compilers and their interaction with the architecture we
analyzed the dynamic instruction distribution (DID)
of the code. These distributions show how frequently
the instructions from specified instruction classes are
used during program execution. Fig. 8 shows the DID
for the ADPCM handwritten assembly code and Fig.
9 for the code obtained by compiling the C program.
Five instruction classes were defined - move&transfer,
logical, loop&control, jump, and arithmetic.

[] move and transfer
[] logical

[100p and control
W jump

B aithmetic

11%

39%

Figure 8: Dynamic Instruction Distribution for the AD-
PCM Handwritten Assembly Code.

The difference in distributions between the compiled
and handwritten code for some instruction classes in-
dicates that the inefficiency of the compiler does not in-
fluence all instruction classes equally. The percentage
of move and transfer instruction in the overall code is
much higher for the compiled than for the handwritten
assembly code. We have concluded that one of the rea-
sons for this behavior lies in the the compilation tech-
nique itself. The intermediate representation of the C
code is translated into fragments of assembly instruc-

results

12%

[] moveand transfer
25%] logical
I 100p and control
B jump

B aithmetic

2%
5%

55%

Figure 9: Dynamic Instruction Distribution for the AD-
PCM Compiled Code.

tions which are glued together using many register-to-
register and memory-to-register move instructions.

The ability to execute more than one operation per in-
struction is one of the main characteristics of DSP pro-
cessors. The percentage of parallel instructions during
execution is computed to get more information about
the use of parallel operations in typical applications like
the ADPCM transcoder. In the assembly code appro-
ximately 25% percent of the executed instructions are
of parallel type, where in the compiled code parallel
instructions amount to less than 5%. Obviously the
compiler has serious problems using parallel instruc-
tions. However, this result gives an even more impor-
tant indication of the compiler’s inefficiency. Let’s sup-
pose that the processor is able to execute at most six
operations per instruction. If the only reason for the
inefficiency of the compiler is its inability to use paral-
lel instructions, the overhead in execution time would
be at most 125%. Obviously this is much lower than
the actual overhead of 510% which we measured. Our
conclusion is that the analyzed compiler has additional
weak points beyond instruction compaction.

Finally, we wanted to explore how much stack opera-
tions influence the efficiency of the code. As discussed
earlier, most DSP processors do not provide sufficient
support for software stack operations. Our measure-
ments on the DSP compiler under test show that ab-
out 9% of the execution time and 11% of the instruction
memory are used for stack operations. Although very
important, stack manipulation is not the main problem
of this compiler.

These examples show that the quantitative approach to
compiler evaluation can deliver useful results. To im-
prove the design process, additional quantitative ana-
lysis (e.g., register usage) and additional benchmark
applications are necessary.

XI. Future of DSP Compilers

Summarizing the paper we can conclude that there are
three areas where additional efforts are necessary to
improve current DSP compilers:

e programming languages - language extensions, com-
pilation directives, and flags are necessary to pro-
vide the compiler with all the information neces-
sary to generate efficient code;

e compiler technology - specific applications and
special-purpose architectures cannot be covered
by standard, general-purpose compiler technology
- new DSP-oriented compiler technology should
be developed; and

e architecture - new DSP processor architectures
should be developed with compilation problems
in mind.

There is no doubt that the future of DSP program-
ming belongs to compilers. However, it is unreasonable
to expect that the compilers for existing DSP archi-
tectures will ever break the efficiency barrier comple-
tely. A more probable scenario is the improvement of
new compilers coming with each new generation of DSP
processors.

Following the trends in the design of general purpose
architectures and compilers [26], we expect that new
DSP architectures will be designed with compiler limi-
tations in mind. Also, improvements in DSP compiler
technology should help close the gap. Figure 10 pre-
sents the design flow and tools needed for a successful
joint design of DSP architectures and compilers. The

benchmarks
ISA J
definition .
processor _________ » compiler
design i design
quantitative i generated
perfgrrtnance i code
ata H
\/
fast ISA
simulation

Figure 10: Processor-Compiler Co-Design.

main feature of the proposed design method is that
it relies strictly on quantitative performance analysis.

Processor and compiler performance are measured on
selected benchmarks using a fast instruction set archi-
tecture (ISA) simulator. The benchmarks are selected
to represent the future field of application as close as
possible. The ISA simulator can be adapted to archi-
tectural features of the processor and has an extensive
support for statistical profiling and comparison of com-
piler and architecture versions. Computed performance
results are used as feedback information for processor
and compiler redesign. At the same time, new proces-
sor features are accounted automatically for in the ISA
simulator and provided as a model to compiler design.

XII. References

[1] W. Hartung, S. Gay, and S. Haigh, “A practical C
language compiler/optimizer for real-time imple-
mentations on a family of floating-point DSPs,”
in Proc. of the ICASSP, (New York), IEEE, Apr.
1988.

[2] S. Kafka, “An assembly source level global com-
pacter for digital signal processors,” in Proc. of
the ICASSP, pp. 10611064, 1990.

[3] R. Stallman, Using and Porting GNU CC. Free
Software Foundation, Inc., 1990.

[4] K. Leary and C. Cavigioli, “The ADSP-21020: An
IEEE floating point and fixed point DSP for HLL
programming,” in Proc. of the ICASSP, pp. 1077—
1080, 1991.

[5] K. Leary, “DSP/C: A standard high level language
for DSP and numeric processing,” in Int. Conf.
on Sig. Proc. Appl. and Tech., (Cambridge, MA),
pp- 342-345, Nov. 1992.

[6] M. Hoffman, “Numerical C enhances coding of
signal processing algorithms,” DSP Applications,
Dec. 1993.

[7] D. Syiek, “Challenging assembly code quality,” in
Int. Conf. on Sig. Proc. Appl. and Tech., (Berlin,
Germany), pp. 178-190, Nov. 1991.

[8] B. Harbison, “Uses and misuses of C++ in DSP
application development,” in Proc. of the ICSPAT,
pp. 703-708, 1994.

[9] M. Blower, “Mapping C to DSP,” in Int. Conf.
on Sig. Proc. Appl. and Tech., (Cambridge, MA),
pp- 346-352, Nov. 1992.

[10] B. Krepp, “DSP-oriented extensions to ANSI C,”
in Proc. of the ICSPAT, pp. 695-702, 1994.

[11] B. Krepp, “A better interface to in-line assembly
code,” in Proc. of the ICSPAT, pp. 802-805, 1994.

[12] A. Aho, R. Sethi, and J. Ullman, Compilers, Prin-
ciples, Techniques and Tools. Addison-Wesley,
1986.

[13] P. Papamichalis, J. Reimer, and J. Rowlands, “Sy-
stem and algorithm implementation techniques on
the TMS320 family,” DSP & Multimedia Techno-
logy, 1995. this issue.

[14] J. Hennessy and D. Patterson, Computer Archi-
tecture - A Quantitative Approach. Morgan Kauf-
mann Publishers, Inc., 1990.

[15] B. Kernighan and D. Ritschie, The C Program-
ming Language - ANSI C. Prentice-Hall, 1988.

[16] P. Hilfinger, “A high-level language and silicon
compiler for digital signal processing,” in Proc. of
the Custom Int. Circ. Conf., pp. 213-216, 1985.

[17] P. Guernic, T. Gautier, M. Borgne, and C. Maire,
“Programming real-time applications with SIG-
NAL,” Proc. of the IEEE, vol. 79, pp. 1321-1336,
Sep. 1991.

[18] Analog Devices, Inc., ADSP-21000 Family: C
Tools Manual, 1993.

[19] Intermetrics, Inc., 77016 Family C Compiler:
User’s Manual, 1994.

[20] S. Young, Real-Time Languages: Design and De-
velopment. John Wiley & Sons, 1982,

[21] R. Lipsett, “The Intertools DSP C compilers,”
DSP & Multimedia Technology, 1995. this issue.

[22] D. Fritz, “The PLC ANSI C compiler for the Zi-
log Z89C00 DSP,” DSP & Multimedia Technology,
1995. this issue.

[23] K. Baudendistel, Compiler Development for Fized-
Point Processors. PhD thesis, Georgia Institute of
Technology, 1992.

[24] S. Kim and W. Sung, “An autoscaling assembler
for the TMS320C25,” in Int. Conf. on Sig. Proc.
Appl. and Tech., (Santa Clara, CA), pp. 543-552,
Oct. 1993.

[25] V. Zivojnovié, IJ. Martinez, C. Schliger, and
H. Meyr, “DSPstone: A DSP-oriented benchmar-
king methodology,” in Proc. of ICSPAT’94 - Dal-
las, Oct. 1994.

[26] M. Tremblay and P. Tirumalai, “Partners in plat-
form design,” IEEE Spectrum, Apr. 1995.

