
DSP � MULTIMEDIA TECHNOLOGY Magazine� vol� �� no� �� July�August� ����� pp� �	
 ��

COMPILERS FOR DIGITAL SIGNAL PROCESSORS

The Hard Way From Marketing� to Production�Tool

Vojin �Zivojnovi�c

Aachen University of Technology

Aachen� Germany

I� Introduction

High�level language compilers for DSP processors are
one of the rare products of the DSP industry for which
a controversy regarding their use and usefulness exists�
Although DSP compilers are available for almost all
�xed� and �oating�point DSP processors found on the
market� their present role in the software design process
is far less signi�cant than expected by users� compiler
designers� and sales personnel� Contrary to standard
programming practice and despite all e�orts� assembly
programming remains an inevitable part of the DSP
software design process� As a consequence� a provoca�
tive question can be asked� Are state�of�the�art DSP
compilers marketing or production tools� Facts presen�
ted in this paper should help the reader in forming his
own conclusion about this question� We present below
an overview of DSP compiler technology� their charac�
teristics� and their role in DSP code development�

This paper should help the reader to form a complete
picture of the main features of DSP compilers and perhaps
help in predicting future developments in the highly in�
teresting �eld of DSP applications� The paper is orga�
nized as follows� Following the introduction� Section
II discusses the low e�ciency of state�of�the�art DSP
compilers and its consequence for development of mul�
timedia applications� Section III brie�y reviews the hi�
story of DSP compilers� Section IV discusses the role of
DSP compilers in DSP code development� An overview
of DSP processor architectures is presented in Section
V� This section discusses the in�uence of DSP processor
architecture on compiler design and compiler e�ciency�
Section VI gives an overview of high�level programming
languages for programming DSP processors� Language
extensions and compilation �ags of DSP compilers are
discussed in Section VII� Section VIII discusses the role
of �xed�point arithmetic in �xed�point DSP compilers�
Compiler optimization issues are reviewed in Section
IX� Section X presents some results from a quantitative
evaluation of DSP compilers� Finally� Section XI dis�
cusses future developments in the DSP compiler �eld�

II� DSP Compilers� Processors� and

Multimedia Applications

DSP compilers are software tools which enable pro�
gramming of DSP processors in a high�level language
�HLL	� Instead of using cumbersome and time�comsuming
assembly language� the programmer expresses the com�
putation in a language which is more easily understood
and used� As a consequence� the programmer
s pro�
ductivity is higher� and the code is easily portable to
various platforms and can be reused for other purposes�
All these factors shorten the time to market of the �nal
product� As in standard� general�purpose processing�
there is a strong motivation for using high�level pro�
gramming languages and compilers for programming
DSP processors�

DSP processors are special�purpose processors� They
were introduced in the early eighties to enable cost�
e�cient real�time implementations of DSP algorithms�
As successors to microcontrollers� they inherited many
microcontroller characteristics � on�chip memory and
I�O� small size� and low cost� However� DSP processors
gained a number of additional� highly speci�c architec�
tural features which increased their processing power�
At the same time� these features made them highly
unsuitable as compiler targets and hardly controllable
from standard programming languages� As a conse�
quence� most state�of�the�art DSP compilers show se�
rious de�ciencies in e�cient utilization of the target
architecture�

Recent e�orts in DSP processor design try to make
the processor architecture more compiler friendly� Alt�
hough risky for its position on the market � chip price
and power consumption will probably rise � this could
be a step in the right direction� However� even the exi�
sting� architecture�related e�ciency problems of DSP
compilers are solvable� Despite the di�erences in the
design goals between general�purpose and digital signal
processing� and between respective processor architec�
tures� the problems of DSP compiler design could be

successfully solved by using and extending the existing
know�how of compiler and programming language spe�
cialists� The reason why this has not been done yet
lies in the �nancial investments necessary to support
compiler design teams attacking the problem� Such
specialized teams are expensive� and the DSP proces�
sor and compiler manufacturers could not recoup their
development cost by selling the compilers� As a con�
sequence� the DSP industry has largely decided to use
existing compilers for general�purpose computers and
to adapt them modestly �and more or less successfully	
to DSP processors� Such an approach guarantees a
compiler which ful�lls the main goal of every compiler
� to generate correct code� Also� for DSP architectures
which are similar to general�purpose architectures and
for code fragments that are not signal�processing inten�
sive� the results can be satisfactory� However� for most
DSP processors and applications� the generated code is
far from optimum and cannot be used in the �nal pro�
duct without additional� hand�crafted modi�cations�

New factors are in�uencing developments in the DSP
compiler market� The DSP market is no longer a small
niche of the overall computer market� Especially in
multimediaand mobile communications� the market for
DSP processors is constantly growing� Orders to the
DSP chip industry have grown from quantities of tens
of thousands to millions� or even tens of millions� The
number of new companies that are using DSP techno�
logy is also constantly increasing� Such developments
could be highly bene�cial for the DSP compiler market�

Another new development has to be taken seriously by
the producers of DSP processors if they want to exploit
the multimediamarket� Although they are more expen�
sive and less powerful for DSP applications� general�
purpose processing �GPP	 processors could take over
the market opportunities of the DSP processor indu�
stry because of better compilers�

In a letter dated January �� ����� Microsoft announ�
ced the withdrawal of its Resource Management Inter�
face �RMI	 speci�cation� The RMI was an attempt to
enable the producers of multimedia boards and equip�
ment to easily interface to Microsoft
s new operating
systems� In the letter to potential independent software
and hardware vendors and OEMs Microsoft explained
the reason for their withdrawal from RMI�

Independent software vendors are looking for
solutions enabling them to write device dri�
vers and DSP algorithms only once� regard�
less of the DSP instruction set� Exploiting
the features and capabilities of each DSP�
based platform is by nature a device�dependent
operation� and existing resource management
architectures� including the Microsoft RMI�

will not provide this level of independence�

It is obvious that this would not be a problem with
high quality DSP compilers and that this decision enor�
mously favors the native processors � GPP processors �
as DSP engines� A huge GPP processor producer has
already started an initiative under the name Native Sig�
nal Processing �NSP	 in order to introduce GPP pro�
cessors as basic components for multimedia processing�
The others will follow in short order�

III� Short History of DSP Compilers

Although the �rst DSP processors appeared in the early
eighties� the �rst commercial DSP compilers became
available in ����� This delay stemmed from the compiler�
unfriendly architectural characteristics of the �rst DSP
processors� such as a small number of registers and li�
mited addressing capabilities�

One of the �rst commercially available DSP compilers
was the C compiler for the AT�T DSP� �oating�point
processor� AT�T re�targeted the UNIX portable C
compiler to the DSP� ���� At the same time TI relea�
sed their C compiler for the TMS��C�� This was also
based on an existing C compiler for general�purpose
processors� This compiler became the basis for the de�
velopment of their �xed�point C compiler and a later
C compiler for their �oating�point processors�

Motorola and Analog Devices �� started with their own
C compiler solutions for the DSP����� and ADSP����
�xed�point families� respectively� However� both com�
panies later decided to switch to the GNU C compiler
� gcc � from the Free Software Foundation ��� as the
basis for their new �xed� and �oating�point compilers�

Since that time the GNU C compiler has been used
by numerous companies wishing to develop a bug�free
DSP compiler without large investments in compiler
design� The gcc compiler by the Free Software Foun�
dation is available free of charge under the terms of the
GNU Public License �GPL	� This license requires that
companies incorporating GPL code into their products
must make available the source code for the products
at no charge� Attempts to use the standard gcc re�
targeting procedure mostly failed� To obtain accepta�
ble e�ciency of the code� complex changes to the gcc

have been necessary� Also� additional assembly level
optimizers have often been added as a post�compiling
procedure �e�g�� in compilers for the DSP����� by Mo�
torola	�

In ���� an e�ort was started to standardize DSP�oriented
extensions of the ANSI C language �������� Although
a lot of very useful extensions have been proposed by

the Numerical C Extensions Group �NCEG	� the di�e�
rent interests of the NCEG members coming from the
DSP and general numerical processing �elds have made
agreeing on a common standard impossible�

The growing DSP market has become attractive for
companies with experience in compilers for general�
purpose processors� In ���� Tartan released the �rst
Ada DSP compiler which targeted TI
s TMS��C��
processor ���� In ���� the same company released the
�rst C�� compiler speci�cally designed for DSP pro�
cessors ����

Intermetrics released their C compiler for the Motorola
DSP����� �oating�point DSP processor family in �����
the NEC ���� processor in ��� ��� and the Mwave
processor in ����� Intermetrics
 newest design is the C
compiler for the NEC ����� �xed�point family ��������

IV� Role of DSP Compilers in DSP Code

Development

Devices with embedded DSP functionality obtain their
processing capabilities through use of programmable
and�or hardwired processing elements� If the predomi�
nant processing power comes from programmable in�
tegrated circuits we speak about DSP processor�based
designs�

The main advantages of DSP processors over ASIC so�
lutions are lower development costs� shorter develop�
ment time� and a high degree of �exibility in the design�
Development of devices with embedded DSP processors
can be divided into two main tasks� code development
and processor�hardware integration� In this paper we
are interested in the former�

IV��� Assembly�Based Design

The classical� assembly�based approach to DSP code
development is to convert the algorithm directly into
the processor
s assembly code �Fig� �	� The main pro�
blem with this approach is that programming� debug�
ging� and functional veri�cation all take place at the
assembly level� The resulting productivity is mostly
low� and the design sometimes becomes a real night�
mare� Although most complaints are about program�
ming in assembly language� experience shows that the
main problem is actually in assembly�level debugging
and functional veri�cation� Even though experienced
DSP programmers learn every new assembly langu�
age and obtain the necessary programming skill very
quickly� �xing coding bugs � especially conceptual bugs
� in assembly can cost huge amounts of time�

algorithm

production-quality
 assembly code

profilingdebugging

verification

final product

problem specification

integration

Figure �� Classical Approach to DSP Code Design�

A well�known and proven approach to improving code
design is to program in a high�level language and use
the compiler as the translator to assembly code� High�
level language programming o�ers a number of advan�
tages over assembly programming� The most important
are�

� programming comfort � the high expressive power
of the high�level language makes programming
more comfortable and thus more productive�

� testing and debugging � high�level description of
the program enables e�cient testing and debug�
ging�

� re�usability � the same code can be reused in other
applications�

� portability � the same code can be ported to other
targets supporting the same language� and

� maintainability � less e�ort is necessary if changes
or extensions of the code have to be made�

All these advantages are valid for DSP code develop�
ment� too� Unfortunately� the relatively low e�ciency
of state�of�the�art DSP compilers is a serious limitation�
The overhead in execution time and memory utilization
introduced by the compiler is very often unacceptably
high �see Section X	� In general� the code generated by
the DSP compiler cannot be used directly in the �nal
product� and the compile�link�run procedure cannot be
applied� Exceptions are situations in which the DSP
processor subsystem of the device is not cost�sensitive
or in which the processing speed is not critical or can
be scaled by faster processors or additional processing
units� as in rapid prototyping� In these cases the rela�
tive ine�ciency of DSP compilers can be tolerated� In
the remainder of this section we concentrate on imple�
mentations where this is not the case�

IV��� Heterogeneity of DSP Programs

Programs found in typical DSP applications are not ho�
mogeneous� In addition to their functionality� di�erent
fragments of the program have di�erent run�time and
compile�time characteristics� For example� in the pro�
gram of a V�� modem� the instructions implementing
the �ltering operation are executed more frequently
than the instructions doing startup synchronization�
Such behavior is known as locality of reference� The
well known general rule of thumb is that ��� of the
execution time is spent in ��� of the code ����

Another form of heterogeneity is introduced by the type
of the code� We shall distinguish two code types� DSP�
type and GPP�type code� DSP�type code is made up of
instructions which implement DSP�speci�c algorithms
�e�g�� FIR or FFT	� Features of the DSP processor�
like multiply�add instructions or bit�reversed addres�
sing� are specially tailored to speed up this type of code�

GPP�type code is found in general�purpose applications
where string manipulations and general numeric com�
putations dominate� In DSP applications� GPP�type
code is found in the form of glue logic between DSP�
type code fragments and is characterized by heavy use
of general arithmetic and control statements of the lan�
guage� like for� if�then�else� and switch� This is the
reason why GPP�type code is often also referred to as
control�type code�

Existing DSP compilers handle GPP�type code in a
much more e�cient manner than DSP�type code� Al�
most all availableDSP compilers are made by re�targeting
and modifying existing GPP compilers which are tailo�
red according to the general�purpose code model� Also�
if the underlying architecture is a GPP processor� the
compiler has a much easier task of generating e�cient
code� Fig� shows the compilation problem in de�
pendence on the code and architecture type� If the
code is of DSP type and the architecture is tailored
to DSP�type applications� current compilers have di��
culty generating e�cient code� In cases where the code
is of GPP type or the architecture is more similar to
the GPP processor architectures� the problem becomes
easier� The reason for such behavior lies in the model
mismatch� The standard languages� like C� and the re�
lated compiler technology are developed to match the
general�purpose application and architecture model� If
the model is not appropriate� only suboptimal results
can be obtained�

Execution frequency is related to code�type characteri�
stics� The time�critical parts of the code are very often
of DSP type� so most of the execution time is spent
in the code which is hard to compile e�ciently� This
forces reliance on the manual recoding process�

GPP code

DSP code

DSP arch. GPP arch.

hard easy

FFT@GPP

switch@GPP

switch@DSP

FFT@DSP

Figure � Compilation Pro�
blem in the Code�Architecture Space� �switch�DSP
means switch code running on a DSP processor	

IV��� High�Level Language�Based Design

As of today� the design principle of using DSP compilers
relies on the use of the heterogeneity of typical DSP
code� A DSP compiler�based design �ow is presented
on Fig� �� Its main characteristic is the introduction

algorithm

problem specification

functional
simulation

production-quality
 assembly code

debugging

assembly code

verification

final product

design validation

integration

test data

compilation

 recoding of
critical sections

profiling

HLL code

Figure �� HLL�Based Approach to DSP Code Design�

of HLL programming and use of the DSP compiler�
The intention is to move the validation �debugging and
functional veri�cation	 from the assembly level to the
HLL level in order to make the design less error prone
and thereby faster�

The role of the HLL program is twofold� First� the HLL
code serves as a bit�accurate prototype in which debug�
ging and functional veri�cation is much more comforta�

ble than on the assembly code� Working on a high�level
description hides the unnecessary details of the imple�
mentation and enables the user to fully concentrate on
the functional behavior of the program� Also� by fee�
ding the HLL program with user�de�ned test input se�
quences� the signal at prede�ned internal points can be
determined� Even if the input and corresponding ou�
tput veri�cation sequences are provided a priori� as in
the case of standardized algorithms �e�g�� CCITT�ITU
standardization	� they determine only the input and
output of the program and not the internal signals� In
this way no details about the sources of incorrect be�
havior are available� Using the bit�accurate HLL code�
the designer can generate all internal signals as the res�
ponse to the test input� These signals are highly useful
for the veri�cation of the �nal assembly code�

Second� the HLL program is used as the input to the
DSP compiler� which then generates the assembly pro�
gram� For the most part� the generated code is of un�
satisfactory run�time e�ciency� both in execution time
and program�data memory utilization� The procedure
which has proved to be the most e�cient is to locate
the time�critical parts by pro�ling and recode themma�
nually or use fast library routines� An example for this
procedure is presented in �����

Recoding is the most cumbersome and error�prone part
of the HLL�based design process� Modifying the time�
critical parts in the HLL program by using functions or
assembly in�lining is advantageous� Also� the memory
map of the HLL program should be laid out with the
�nal memory con�guration in mind�

In general the designer should try to keep the corre�
spondence between the HLL and the assembly program
as close as possible� Changes during recoding of the
assembly program should be mirrored in the HLL pro�
gram� Although it is simpler to put aside the HLL
program and concentrate only on the assembly code�
the additional work in synchronizing the two programs
will be paid back quickly� During debugging and veri��
cation of the recoded assembly code all the advantages
become clear� For example� if the variables in the HLL
and assembly program represent the same signal� and
the program is fed with the same input data� the va�
lues of the variables can be compared during run�time�
In this way bugs can be detected and located quickly
�Fig� �	� Also� by maintaining the correspondence bet�
ween the HLL and assembly code future maintenance
is much easier and the code is more reusable�

V� DSP Architectures and Compilers

The architectures of state�of�the�art DSP processors
are tailored to be highly e�cient on DSP�type pro�

HLL program assembly program

int x; .word _x;

mv r0, $_x
compare

x =...;
...

...

...

...

correct

Figure �� Comparative Debugging�

grams� For example� almost all DSP processors are
able to compute an FIR �lter with a speed of one in�
struction per �lter tap� It is obvious that more than
one operation per instruction has to be executed� In
the case of a FIR �lter� six operations �one multiplica�
tion� one addition� two memorymoves� and two pointer
updates	 have to be accomplished within one instruc�
tion cycle� Additionally� looping has to be executed
without any additional instructions�

To reach this goal and at the same time keep the price
and power consumption of the chip low� DSP proces�
sor architectures developed a number of characteristics
that make them very unfriendly to standard compilers�
These characteristics and their in�uence on DSP com�
piler design are explained in more detail below�

small number of general�purpose registers

The �rst �xed�point processors had a small number of
general�purpose registers� For those architectures it
was almost impossible to apply standard compilation
techniques� The compiler was not able to allocate regi�
sters to variables since all the registers had to be used
as temporary variables during expression evaluation�

Later on� the number of general�purpose registers grew
in every new architecture appearing on the market� the�
reby making the compiler
s register allocation task ea�
sier and register spilling �freeing a register by saving
its content in memory	 less frequent� Modern �oating�
point processors o�er enough general�purpose registers
to enable e�cient code generation�

heterogeneous register set

Registers of a �xed�point DSP processor are very of�
ten of di�erent lengths and therefore cannot deliver
the same accuracy during arithmetic operations� For
example� some DSP processors have only one or two
registers of full length � accumulators� Full accuracy
can be guaranteed only if all intermediate values of a
computation are stored in one of these registers�

DSP compilers work with data types which are of con�

stant width during the lifetime of a variable� If this
width is the width of the accumulators� the computa�
tion becomes very slow because additional memory ac�
cesses are necessary �e�g�� if long type is used	� On the
other hand� if the data type is the width of the data
memory� the computation is inaccurate� Only some
compilers permit explicit control over the accumulators
�����

non�orthogonal instruction set

An instruction set is said to be orthogonal if the ope�
ration� operand type� and addressing mode of the in�
structions are mutually independent ����� For example�
if an instruction has two register operands� it should
be possible to execute the same operation on any com�
bination of general�purpose registers of the processor
register �le�

This is mostly not the case for DSP processors� DSP
processors are actually half�way between accumulator
and general�purpose register architectures� Instructions
have a predetermined subset of registers which can be
used as valid operands� For example� the multiply�
accumulate instruction in most DSP processors expects
the two multiplicands to be located in di�erent� memory�
space dependent register banks� Obviously� the non�
orthogonality of the instruction set introduces di�eren�
ces among registers and makes the register set hetero�
geneous�

In the case of non�orthogonal instruction sets� the in�
struction scheduling and register allocation optimiza�
tions have to work with a reduced e�ective number
of registers� This decreases e�ciency because many
register�to�register moves are necessary to meet the re�
quirements of the instructions�

multiple function units

In DSP processors multiple data and address processing
units can operate in parallel and can be used by a single
instruction� In this way DSP processor architectures
are similar to VLIW architectures �����

To use the whole processing potential of the proces�
sor� DSP compilers have to detect operations which
can be done in parallel and schedule them adequately
at compile�time� Current compilers can detect simple
combinations of arithmetic operations that can be done
in one instruction �e�g� multiply�add with shift	� Par�
allel operations in address processing units seem to be
a more complex problem�

multiple data memory spaces

The Harvard architecture of DSP processors is charac�
terized by di�erent memory spaces for the program and
data� The extended Harvard architecture is additio�

nally characterized by multiple data memory spaces �
combined program�data and data�only memory spaces�
Full speed can be obtained only if the data is properly
distributed among di�erent memory spaces�

Current DSP compilers are not able to make any de�
cisions about the allocation of data� as well as pro�
gram�data and data spaces� Architectural descriptions�
which are the source of knowledge about the processor
s
architecture� do not contain this type of information�
As a consequence� the generated code is suboptimal�
Only some newer DSP compilers o�er language exten�
sions or pragmas for user�directed allocation of multiple
memory spaces�

heterogeneous memory space

DSP processor data and program memory can be on�
chip or o��chip� O��chip memory usually cannot be
accessed at the same speed as on�chip memory � addi�
tional wait states have to be inserted� Also� access to
multiple data spaces in some processors cannot be done
in a single instruction if the memory is o��chip� Proper
memory allocation can signi�cantly increase processing
speed in these situations�

The standard approach during code generation is to
postpone the decision about �nal memory mapping of
variables until the linking process� However� to opti�
mally deal with heterogeneous memories the compiler
itself should be able do the memory mapping� State�
of�the�art DSP compilers are missing this capability�

pipelined architecture

To speed up computation� most modern DSPs use pi�
pelined architectures� Pipelining means that the pro�
cessor works on di�erent portions of di�erent instruc�
tions simultaneously� For example� while the proces�
sor is executing instruction N� it might be fetching the
operands of instruction N��� and fetching the opcode
for instruction N�� Pipelining allows faster processor
clock rates but can have side e�ects that the program�
mer must avoid� Pipeline e�ects visible to the DSP
programmer on many DSPs are delayed branches� pi�
peline �ushes� and delayed register updates�

Pipelining e�ects increase the complexity of the compi�
ler
s instruction scheduler� Some compilers� like the gcc
provide an internal mechanism for dealing with pipe�
lining e�ects� but still cannot deliver optimum results�
More aggressive optimizations in new DSP compilers
should improve the use of pipelining and thereby speed
execution�

modulo and bit�reversed addressing

Non�linear addressing modes permit non�sequential ac�
cess to data memory locations� Modulo addressing and

bit�reversed addressing are typical non�linear addres�
sing modes found in DSP processors and are used for
circular bu�ers and FFT computation� respectively�

Without explicit information from the high�level langu�
age� the compiler is unable to detect addressing which
can be done more e�ciently directly by the address ge�
nerator� The main limitation comes from the language
side�

hardware zero�overhead� loops

Hardware support for looping is provided in most DSP
processors� The loop is executed with little or no time
spent managing the iterators�

Most DSP compilers can use hardware looping very ef�
�ciently�

no support for software stack operations

Most DSP processors have a simple and relatively small
hardware stack that is accessed implicitly by interrupts
and subroutine call�return instructions� The hardware
stack cannot be used by compilers for argument passing
or allocation of automatic variables�

DSP compilers have to build the program stack in soft�
ware� which requires additional instructions and regi�
sters�

Summarizing this section we can conclude that there
are two ways to overcome the architecture�dependent
problems of DSP compilers� One way is to improve
the interaction between the user and the compiler by
using DSP�oriented high�level languages� language ex�
tensions� and directives which are better suited for the
problem at hand� The other way is to improve the opti�
mization capabilities of the compiler� These issues will
be treated in the next sections�

VI� High�Level Languages for DSP

Programming

Compared to compilers for general�purpose computers�
DSP compilers are available for relatively few high�level
languages�

At this writing� C is the most common high�level lan�
guage for programming DSP processors� It is simple
to use� it permits hardware�close programming� and
perhaps most important� it is widespread among users�
Existing DSP C compilers support the ANSI C lan�
guage standard ����� and some also support the older
K�R standard�

The C language is not the ideal language for program�
ming DSP�type applications� For example� digital �l�

ters exhibit a speci�c behavior which can be best de�
scribed by a data��ow model and block�diagram �gra�
phical	 languages� The main disadvantage of block�
diagram languages is that they behave very poorly on
control�type code�

Some feel that C�� is the DSP language of the fu�
ture� Its main strength is the high modeling e�ciency
which can be easily adapted to user
s needs� There is
a widespread opinion that the C�� language is not as
e�cient as pure C� Surely there are some C���speci�c
constructs which produce a large overhead compared
to C� however� the user can always switch back to pure
C if this is advantageous ����

The Ada programming language o�ers some very inte�
resting features for the DSP programmer� especially if
the target is a �xed�point processor� Ada is a more po�
werful language than C� It is a strongly typed language
with a rich set of types� subtypes� and type attributes�
It even supports concurrent processing� Additionally�
for applications in the military �eld there is sometimes
no alternative� However� Ada
s main disadvantage is
its complexity �e�g�� twice as many keywords as C	 and
low modeling e�ciency for hardware�related program�
ming �e�g�� no instructions for bit manipulation	�

Applicative languages� like Silage ����� Signal ����� or
Data�Flow Language �DFL� a language based on Si�
lage	 also have a number of advantages over functio�
nal languages like C or Ada� In applicative languages
instruction precedence is de�ned by pure data prece�
dence� thus making it easy to implement a data��ow
graph model of the computation� Despite this �and
other	 advantages� applicative languages have not fo�
und acceptance among the DSP programmer commu�
nity�

Although existing languages are not optimal for DSP
programming� new languages for DSP programming
will probably not be developed� Introducing language
extensions for existing high�level languages seems to
be a more reasonable step toward improving the design
process�

VII� Language Extensions and Compilation

Directives

The role of programming language standards is to spe�
cify a common platform for software development of
a set of common applications on a set of platforms
with common characteristics� For example� the ANSI
C standard was developed with a particular applica�
tion and hardware model in mind� If the application
or hardware model do not match the standard model�
only suboptimal results can be obtained�

In the case of using the C language to program DSP
processors� the application and hardware model do not
match� The best examples of this mismatch are the ab�
sence of support for �xed�point arithmetic and the as�
sumption of a homogeneousmemory architecture� Fixed�
point DSP applications need specialized arithmetic which
is not covered by existing C data types and arithmetic
rules� Also� the standard approach used in C compilers
incorporates a single homogeneous memory bank� As
mentioned in previous sections� memory in the typical
DSP processor is highly heterogeneous�

One way to overcome this model mismatch is to intro�
duce extensions to the language� This necessity was
recognized quite early� The role of language extensions
is twofold� First� extensions improve the expressive po�
wer of a language� This has a direct impact on the
modeling e�ciency and thereby on the productivity of
the programmer� Second� extensions improve the run�
time e�ciency of the compiler�

Standardization of C extensions necessary for numeri�
cal computing started in ���� as a subcommittee of
the ANSI C X�J�� standard committee� known also
as the Numerical C Extensions Group �NCEG	� The
main intention of the NCEG was to standardize math
libraries and suggest changes to the C language ����
The committee was formed by members from compa�
nies interested in general numerical processing and di�
gital signal processing� Unfortunately� no Numerical C
standard has been issued to date� Although numerical
processing and digital signal processing have a simi�
lar application model� the di�erences in the hardware
model between general numerical processing and digi�
tal signal processing is too large� It is easy to justify
the necessity for language extensions� but it is not at
all easy to standardize them� Numerical C extensions
can be found in the Analog Devices
 �oating�point C
compilers �see �����	�

Despite the lack of an NCEG standard� many C com�
pilers support language extensions to varying degrees�
For example� almost every DSP C compiler supports
some target�speci�c features� Even in the ANSI C
standard using the pragma keyword implementation�
dependent action can be performed� Also� all the GNU�
based compilers support at least the gcc extensions�

The extensions to the ANSI C language standard that
are supported in DSP compilers can be divided into
three groups�

VII��� General Extensions

General extensions are extensions which enable more
e�cient programming in C without the restriction on a
speci�c type of application or architecture� The follo�

wing extensions are part of the GNU compiler ��� and
therefore are in all of its DSP�targeted derivates�

� in�line assembly�
In�line assembly permits intermixing C and as�
sembly instructions in the same source code� It is
used to exploit processor features which are un�
reachable through C� like reading status �ags or
setting some speci�c non�memory�mapped regi�
sters�

� variable�length arrays�
Variable�length arrays permit run�time speci�ca�
tion of the array length�

� in�lining�
In�lining eliminates the context switching overhead
introduced by the function call� The core of the
function is inserted at the position of the call�
In�lining represents a typical tradeo� between fa�
ster�larger and slower�smaller code�

VII��� Numerical Extensions

Numerical extensions are tailored to meet the needs
of applications dominated by numerical computations�
Although their main goal is to simplify programming�
i�e�� raise the expressive power of the language� they
also enable more e�cient code generation for DSP pro�
cessors� Some examples are�

� iterators�
Iterators help in specifying operations which are
performed repeatedly on a large amount of data�
For example� A�I���� stands for for�i���i�N�i��	
A�i����� where I is an iterator� This extension
is part of the Numerical C proposal and can be
found in the compiler described in ����

� complex data type�
The complex data type is used to specify pairs of
variables describing the real and the imaginary
part of the value� This extension can be found in
�����

� fractional data type�
The fractional data type speci�es �xed�point num�
bers with values between �� and �� and is hig�
hly useful for programming �xed�point proces�
sors� This extension is implemented in ���� and
reported in �����

VII��� DSP�Oriented Extensions

DSP�oriented extensions are introduced to improve com�
piler e�ciency in use of speci�c architectural features

of DSP processors�

� multiple�memory spaces�
Multiple memory spaces is one of the main cha�
racteristics of DSP architectures� To take advan�
tage of this feature variables have to be properly
distributed between the memory spaces� There�
fore� memory space quali�ers �that is� keywords
that tell the compiler to use a particular memory
space	 for variables are necessary�

� bit�reversed and circular addressing�
Another speci�c feature of DSPs is non�linear ad�
dressing modes� like modulo or bit�reversed ad�
dressing� To be controllable from the C code� the
compiler has to provide appropriate language ex�
tensions or compiler directives�

In addition to language statements� most compilers use
compilation directives and �ags for control of the com�
pilation process� The standard process in which the
program is fed to the compiler and the compiler de�
livers the output is unsuitable for DSP code design�
Enabling a closer interaction between programmer and
compiler using an interactive compilation tool would be
highly advantageous�

VIII� DSP Compilers and Fixed�Point

Arithmetic

In this section we concentrate on one of the language
extensions which is of great importance if the target is
a �xed�point DSP processor � support for �xed�point
arithmetic�

VIII��� Fixed�Point vs� Floating�Point

Processing

Fixed�point DSP processors have a number of advanta�
ges over �oating�point processors� Most important are
lower costs and lower power consumption of the hard�
ware� as well as higher computation accuracy for the
same word length� The price paid lies in decreased dy�
namic range and extra programming e�ort that must
be expended to implement manual scaling�

To avoid nonlinear e�ects introduced by over�ow� un�
der�ow� saturation� and wrapping during computation�
control of each variable
s range has to be done by ap�
propriate scaling of the operands� In the �oating�point
case the exponent of a variable is part of the run�time
representation and is computed and updated automati�
cally by the �oating�point ALU� but in the �xed�point

case the exponent of each variable is implicit and deter�
mined by the programmer o��line using the predicted
dynamic range of the variable� Therefore the scaling
of �xed�point operands has to be done explicitly by
the programmer� This is generally a tedious and error�
prone process�

VIII��� Fractional vs� Integer Arithmetic

Fixed�point representation of a number using N � x�
y binary numbers is denoted by Qx�y� where x and
y determine the number of bits to the left and right
of the decimal point� The most common �xed�point
representations are integer �y � �	 and fractional �x �
�	� If the numbers are represented in two
s complement�
the fractional representation covers the numbers from
���� �	�

The fact that multiplication of two fractional numbers
produces again a ���� �	 result and no over�ow can oc�
cur �except for �����	� is recognized by the program�
mers of DSP processors as advantageous for scaling�
This is one of the reasons why most state�of�the�art
�xed�point DSP processors support fractional arithme�
tic and only a few additionally support integer arith�
metic� We present below the main di�erences between
fractional and integer arithmetic and show that frac�
tional computation can be even more accurate�

Integer and fractional two
s complement number repre�
sentations on DSP processors di�er in the multiplica�
tion operation� Fractional and integer multiplication
of two N �bit numbers both yield a �N � �	�bit re�
sult �assuming that the cases of ����� �fractional	 or
MININT�MININT �integer	 are excluded	� If the re�
sult has to be represented by N bits� the fractional
result is right�side and the integer left�side extended�
Therefore� fractional multiplication of two N �bit two
s
complement numbers stored as a N �bit result is equi�
valent to the integer multiplication with a subsequent
one�bit left shift�

Where integer arithmetic uses the additional bit for
possible range extension in subsequent operations� frac�
tional arithmetic enables more accurate computation�
For example� if z�a
b�c�� with a�b�c and z fractional
numbers is computed� a more accurate result is obtai�
ned than where the same variables are integers scaled
to represent the same values� The di�erence is a conse�
quence of the fact that after the fractional multiplica�
tion an implicit scaling happens via a left shift� So� the
subsequent addition can be done with an additional bit
of accuracy� Fig� � illustrates this fact�

Another very important di�erence between fractional
and integer representations becomes apparent during
word�length reduction� e�g�� saving a double�word accu�

a * b

c

z

✚

=

S 0

S X

S X

●

●

●

S S
●

S S
●

a * b

c

z

✚

=

S S
●

X

integer arithmetic fractional arithmetic

Figure �� Accuracy of the z�a
b�c Calculation�

mulator into a single�word memory location� To keep
the implicit exponent of the number unchanged� in the
fractional case the upper and in the integer case the lo�
wer word is extracted� This di�erence plays an impor�
tant role if fractional computation has to be emulated
by integer arithmetic�

VIII��� Fractional Arithmetic and the C

Language

Fixed�point arithmetic is an important part of real�time
programming languages �see ���	� For the same po�
wer consumption and price the �xed�point arithmetic
is always faster than the �oating�point� The standard
C language supports only Qx�� �xed�point data types
and arithmetic� If fractional arithmetic has to be im�
plemented in C it has to be emulated using the provided
integer types and operations� This is generally a time�
consuming operation� To extract the upper word of the
multiplication result� a casting to long has to be ap�
plied� In most compilers this introduces a call to a fun�
ction which enormously slows down the computation�
Also� the necessary left shift after each multiplication
introduces more overhead� As an example� fractional
arithmetic is emulated in C and an o��the�shelf �xed�
point DSP compiler is tested �Fig� �	�

#clock-cycles

326z=(((long)a*(long)b)>>23) + c;

int a, b, c, z;

optimum assembly code 2

code

Figure �� Overhead of the Emulation of Fractional
Arithmetic �int has � bits	�

The emulation of the fractional multiply�add operation
requires more than ��� cycles� although the same ope�

ration can be done in only two cycles in assembly� Our
experiments with the arithmetic of a GNU�based DSP
compiler show that if the compiler is changed to sup�
port fractional arithmetic only six clock cycles are nee�
ded�

The introduction of the fractional data type as an ex�
tension to the C language standard is necessary if the C
compiler is to be used for programming of �xed�point
DSP applications� The above discussion shows that the
fractional data type is advantageous not only for the
scaling operation� but also for the accuracy of the com�
putation� If emulation with integer arithmetic is used�
an extremely high overhead is introduced� Our experi�
ments with some GNU�based DSP compilers show that
the fractional data type can be added in a simple way�
especially if the float data type is overloaded� Unfor�
tunately� at the time of this writing only a small num�
ber of �xed�point DSP compilers support the fractional
data type �����

VIII��� Compiler Support for Automatic

Scaling

If the dynamic ranges of the variables are known a
priori� the compiler has all the necessary information
to compute the scaling by itself� At compile�time the
compiler attaches to each variable an implicit exponent
computed according to the range� If an arithmetic ope�
ration on variables with di�erent exponents has to be
executed� the compiler inserts the necessary scaling di�
rectly into the code to adapt the implicit exponents�
A prototype of a DSP compiler with automatic scaling
was developed in ���� Similar approaches at the as�
sembly level can be found in ���� Unfortunately� none
of the commercially available compilers supports this
feature�

IX� Compiler Optimizations

Processing of state�of�the�art compilers can be gene�
rally divided into two main phases� front�end and back�
end processing� In the front end the source code is
analyzed and translated into an intermediate represen�
tation� This representation is neither source language�
nor target machine�dependent� In most compilers it
has a form of simple three�address instructions �two
operands and the result	 or of data structures �e�g�� in
gcc	� In the next step� during the back�end processing�
the intermediate representation is processed and con�
verted into the �nal assembly or machine code� This
process is depicted in Fig� ��

To generate high�quality output code� compilers apply
a series of optimizations to the intermediate and �nal

HLL code

 intermediate
representation

assembly code

 front-end
processing

 back-end
processing

Figure �� The Compilation Process�

assembly code� The goals of the optimization are to re�
duce execution time and memory consumption� Most
compilation algorithms delivering optimum results be�
long to the class of NP�complete problems for which
only algorithms of exponential complexity are presently
known� What does this mean in practice For example�
if the compiler has to optimize a page with n � �� as�
sembly instructions� some optimumalgorithmwill need
T � ban time units� If we use typical values of a �
and b � ����� we see that the optimum result will be
delivered in ��� days� This is a long time to wait�

The only alternative is to use algorithms which are of
polynomial complexity and which deliver suboptimal
solutions� but do so in a reasonable time� However�
even in this case the chunk of code has to be of mo�
dest size� What the words !reasonable! and !modest!
mean depends on the application domain� Where the
compilation of one page of general�purpose code has to
be �nished in the time it takes for one gulp of co�ee� in
DSP code development even the duration of an entire
lunch could be tolerated�

Compiler optimizations can be divided into machine�
independent and machine�dependent optimizations� Most
compiler specialists from the general�purpose compu�
ter �eld understand the term !optimizing compilers!
to refer to machine�independent optimizations� These
optimizations are introduced at the intermediate level�
without using any information about the target archi�
tecture and instruction set� For completeness the most
common machine�independent optimizations are revie�
wed below� For more details refer to the compiler bible
by Aho ����

� strength reduction
Replace a more expensive operator by a cheaper
one� e�g�� x� � x � x�

� common subexpression elimination
Avoid recomputing the expression if the previously
computed value can be used�

� constant propagation
Compute expressions involving only constants at
compile�time�

� dead code elimination
Remove code that computes values that are never
used�

� loop unrolling
Write a loop as a sequential stream of repeated
statements�

� loop�invariant code motion
Move to outside the loop expressions whose values
do not change as the loop is executed�

� function in�lining
Insert the body of a function at the point of the
function call�

Most machine�independent optimizations can be made
super�uous by a proper programming style� Especi�
ally for the typical DSP user and typical DSP applica�
tion� machine�independent optimizations are of minor
importance for the e�ciency of the �nal code�

What a DSP user is really interested in are machine�
dependent optimizations� These optimizations are tar�
get dependent and directly in�uence the e�ciency of
the generated code� The most important are as fol�
lows�

� register allocation and assignment�
Allocation of registers for variables and assign�
ment to the machine�speci�c register set�

� instruction elimination�
Removal of unnecessary instructions�

� control��ow optimization�
Elimination of unnecessary conditional and un�
conditional jumps�

� instruction selection � compaction�
Multiple operations can be executed in one in�
struction cycle using parallel execution units� The
instruction compactor analyzes the instructions
and tries to combine them into a small number
of parallelized instructions� For example� a mul�
tiply and subsequent add can be combined into a
single multiply�add instruction�

� instruction scheduling � software pipelining�
The execution sequence of instructions is changed
to better exploit the characteristics of the under�
lying architecture� Mostly it is applied to avoid
pipeline stalls and prepare the code for better use
of multiple processing units�

Most of these optimizations are performed only on frag�
ments of code using a moving window� This procedure
is commonly called peephole optimization�

In most state�of�the�art DSP compilers machine�dependent
optimizations are far from optimal� Why One reason
is the DSP�speci�c architectural features� which are ra�
rely understood by the compiler without a program�
mer
s help� However� it seems that even a more impor�
tant reason is the general approach to DSP compilers�
Not only are DSP compiler designs heavily in�uenced
by the design of GPP compilers� but they also su�er
from constraints which have been introduced by the
speci�c type of general�purpose applications and the
way general�purpose code is developed� An example is
algorithmic complexity of the optimizations�

DSP code development needs much more complex opti�
mizations than general�purpose code development� Where
GPP compilers tend to need only linear or quadra�
tic optimization complexity� DSP compilers need more
complex optimizations�

For example� an overhead in code execution time of
�� over the optimum code due to use of a compiler
is less costly for a word processing software producer
than for a producer of portable phones� The production
price of the word processing software will be the same�
though performance issues may a�ect sales� The por�
table phone� however� would have to be equipped with
a �� faster processor or additional hardware� which
could even double its price� This is one of the reasons
why di�erent approaches to GPP and DSP compiler
design and especially optimization are needed�

X� Quantitative Approach to DSP Compiler

Design

In order to explore quantitative characteristics of DSP
compilers the Institute for Integrated Systems in Sig�
nal Processing of the Aachen University of Technology
started the DSPstone project in ���� ���� During this
project a DSP�related benchmarking methodology was
de�ned which should help in evaluating DSP compi�
lers� The main goal was to get exact quantitative data
about the overhead which is introduced if a high�level
language and compiler are used for DSP code design�
DSPstone also incorporates three suites of benchmarks
�application� DSP�kernel� and HLL�kernel suite	� More
information can be found in ����

We present below some more detailed results for the
ADPCM application benchmark program and the Mo�
torola DSP����� family C compiler �� The analysis

�Recently we repeated the same analysis for the Analog De�

vices ADSP���� family C compiler and obtained very similar

was performed to explore quantitative characteristics
of DSP compilers and their use in DSP code design�

The ADPCM benchmark is a full� standard�compliant
implementation of the ADPCM G��� transcoder� The
C language and the handwritten assembly versions are
compared� For the DSP compiler the overhead in exe�
cution time was measured to be ���� and the overhead
in program and data memory utilization to be ��� and
���� respectively� These results show that the main
problem in using the DSP compiler is its high overhead
in execution time� Our attempts to speed up the execu�
tion by recoding only the time�critical FMULT routine
in assembly resulted in only a modest �� improvement
in execution time�

To provide a better insight into the behavior of DSP
compilers and their interaction with the architecture we
analyzed the dynamic instruction distribution �DID	
of the code� These distributions show how frequently
the instructions from speci�ed instruction classes are
used during program execution� Fig� � shows the DID
for the ADPCM handwritten assembly code and Fig�
� for the code obtained by compiling the C program�
Five instruction classes were de�ned � move�transfer�
logical� loop�control� jump� and arithmetic�

39%

11%

1%

8%

40%
move and transfer

logical

loop and control

jump

arithmetic

Figure �� Dynamic Instruction Distribution for the AD�
PCM Handwritten Assembly Code�

The di�erence in distributions between the compiled
and handwritten code for some instruction classes in�
dicates that the ine�ciency of the compiler does not in�
�uence all instruction classes equally� The percentage
of move and transfer instruction in the overall code is
much higher for the compiled than for the handwritten
assembly code� We have concluded that one of the rea�
sons for this behavior lies in the the compilation tech�
nique itself� The intermediate representation of the C
code is translated into fragments of assembly instruc�

results

55%

5%

2%

12%

25%
move and transfer

logical

loop and control

jump

arithmetic

Figure �� Dynamic Instruction Distribution for the AD�
PCM Compiled Code�

tions which are glued together using many register�to�
register and memory�to�register move instructions�

The ability to execute more than one operation per in�
struction is one of the main characteristics of DSP pro�
cessors� The percentage of parallel instructions during
execution is computed to get more information about
the use of parallel operations in typical applications like
the ADPCM transcoder� In the assembly code appro�
ximately �� percent of the executed instructions are
of parallel type� where in the compiled code parallel
instructions amount to less than ��� Obviously the
compiler has serious problems using parallel instruc�
tions� However� this result gives an even more impor�
tant indication of the compiler
s ine�ciency� Let
s sup�
pose that the processor is able to execute at most six
operations per instruction� If the only reason for the
ine�ciency of the compiler is its inability to use paral�
lel instructions� the overhead in execution time would
be at most ���� Obviously this is much lower than
the actual overhead of ���� which we measured� Our
conclusion is that the analyzed compiler has additional
weak points beyond instruction compaction�

Finally� we wanted to explore how much stack opera�
tions in�uence the e�ciency of the code� As discussed
earlier� most DSP processors do not provide su�cient
support for software stack operations� Our measure�
ments on the DSP compiler under test show that ab�
out �� of the execution time and ��� of the instruction
memory are used for stack operations� Although very
important� stack manipulation is not the main problem
of this compiler�

These examples show that the quantitative approach to
compiler evaluation can deliver useful results� To im�
prove the design process� additional quantitative ana�
lysis �e�g�� register usage	 and additional benchmark
applications are necessary�

XI� Future of DSP Compilers

Summarizing the paper we can conclude that there are
three areas where additional e�orts are necessary to
improve current DSP compilers�

� programming languages � language extensions� com�
pilation directives� and �ags are necessary to pro�
vide the compiler with all the information neces�
sary to generate e�cient code�

� compiler technology � speci�c applications and
special�purpose architectures cannot be covered
by standard� general�purpose compiler technology
� new DSP�oriented compiler technology should
be developed� and

� architecture � new DSP processor architectures
should be developed with compilation problems
in mind�

There is no doubt that the future of DSP program�
ming belongs to compilers� However� it is unreasonable
to expect that the compilers for existing DSP archi�
tectures will ever break the e�ciency barrier comple�
tely� A more probable scenario is the improvement of
new compilers coming with each new generation of DSP
processors�

Following the trends in the design of general purpose
architectures and compilers ���� we expect that new
DSP architectures will be designed with compiler limi�
tations in mind� Also� improvements in DSP compiler
technology should help close the gap� Figure �� pre�
sents the design �ow and tools needed for a successful
joint design of DSP architectures and compilers� The

processor
 design

compiler
 design

 fast ISA
simulation

 quantitative
performance
 data

benchmarks

 ISA
definition

generated
 code

Figure ��� Processor�Compiler Co�Design�

main feature of the proposed design method is that
it relies strictly on quantitative performance analysis�

Processor and compiler performance are measured on
selected benchmarks using a fast instruction set archi�
tecture �ISA	 simulator� The benchmarks are selected
to represent the future �eld of application as close as
possible� The ISA simulator can be adapted to archi�
tectural features of the processor and has an extensive
support for statistical pro�ling and comparison of com�
piler and architecture versions� Computed performance
results are used as feedback information for processor
and compiler redesign� At the same time� new proces�
sor features are accounted automatically for in the ISA
simulator and provided as a model to compiler design�

XII� References

��� W� Hartung� S� Gay� and S� Haigh� "A practical C
language compiler�optimizer for real�time imple�
mentations on a family of �oating�point DSPs�!
in Proc� of the ICASSP� �New York	� IEEE� Apr�
�����

�� S� Kafka� "An assembly source level global com�
pacter for digital signal processors�! in Proc� of
the ICASSP� pp� ���������� �����

��� R� Stallman� Using and Porting GNU CC� Free
Software Foundation� Inc�� �����

��� K� Leary and C� Cavigioli� "The ADSP����� An
IEEE �oating point and �xed point DSP for HLL
programming�! in Proc� of the ICASSP� pp� �����
����� �����

��� K� Leary� "DSP�C� A standard high level language
for DSP and numeric processing�! in Int� Conf�
on Sig� Proc� Appl� and Tech�� �Cambridge� MA	�
pp� ������� Nov� ����

��� M� Ho�man� "Numerical C enhances coding of
signal processing algorithms�! DSP Applications�
Dec� �����

��� D� Syiek� "Challenging assembly code quality�! in
Int� Conf� on Sig� Proc� Appl� and Tech�� �Berlin�
Germany	� pp� �������� Nov� �����

��� B� Harbison� "Uses and misuses of C�� in DSP
application development�! in Proc� of the ICSPAT�
pp� �������� �����

��� M� Blower� "Mapping C to DSP�! in Int� Conf�
on Sig� Proc� Appl� and Tech�� �Cambridge� MA	�
pp� ������� Nov� ����

���� B� Krepp� "DSP�oriented extensions to ANSI C�!
in Proc� of the ICSPAT� pp� ������� �����

���� B� Krepp� "A better interface to in�line assembly
code�! in Proc� of the ICSPAT� pp� ������� �����

��� A� Aho� R� Sethi� and J� Ullman�Compilers� Prin�
ciples� Techniques and Tools� Addison�Wesley�
�����

���� P� Papamichalis� J� Reimer� and J� Rowlands� "Sy�
stem and algorithm implementation techniques on
the TMS�� family�! DSP � Multimedia Techno�
logy� ����� this issue�

���� J� Hennessy and D� Patterson� Computer Archi�
tecture � A Quantitative Approach� Morgan Kauf�
mann Publishers� Inc�� �����

���� B� Kernighan and D� Ritschie� The C Program�
ming Language � ANSI C� Prentice�Hall� �����

���� P� Hil�nger� "A high�level language and silicon
compiler for digital signal processing�! in Proc� of
the Custom Int� Circ� Conf�� pp� ������ �����

���� P� Guernic� T� Gautier� M� Borgne� and C� Maire�
"Programming real�time applications with SIG�
NAL�! Proc� of the IEEE� vol� ��� pp� ���������
Sep� �����

���� Analog Devices� Inc�� ADSP������ Family� C
Tools Manual� �����

���� Intermetrics� Inc�� 		��� Family C Compiler�
User�s Manual� �����

��� S� Young� Real�Time Languages� Design and De�
velopment� John Wiley � Sons� ����

��� R� Lipsett� "The Intertools DSP C compilers�!
DSP � Multimedia Technology� ����� this issue�

�� D� Fritz� "The PLC ANSI C compiler for the Zi�
log Z��C�� DSP�! DSP � Multimedia Technology�
����� this issue�

��� K� Baudendistel� Compiler Development for Fixed�
Point Processors� PhD thesis� Georgia Institute of
Technology� ����

��� S� Kim and W� Sung� "An autoscaling assembler
for the TMS��C��! in Int� Conf� on Sig� Proc�
Appl� and Tech�� �Santa Clara� CA	� pp� �������
Oct� �����

��� V� #Zivojnovi$c� J� Mart$inez� C� Schl%ager� and
H� Meyr� "DSPstone� A DSP�oriented benchmar�
king methodology�! in Proc� of ICSPAT��� � Dal�
las� Oct� �����

��� M� Tremblay and P� Tirumalai� "Partners in plat�
form design�! IEEE Spectrum� Apr� �����

