
A Co-simulation Framework for MPSoC Run-Time Behavior Analysis in Early
System Design

Anastasia Stulova, Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Rainer Leupers
Institute for Integrated Signal Processing Systems

RWTH Aachen University, Germany
{stulova, ceng, sheng, castrill, leupers }@iss.rwth-aachen.de

Abstract

Embedded systems architectures are characterized by
high heterogeneity and diversity in both, hardware and soft-
ware components. These properties are also valid for the
operating systems (OS) services. A broad usage of MPSoC
platforms as a hardware template opens a new dimension in
the design of OS due to availability of numerous processing
resources which should be properly utilized. In this paper
we present a virtual OS model and its integration into the
simulation framework for the early MPSoC software design
evaluation.

1. Introduction

Ad-hoc, application specific OS services are widely used
in embedded MPSoCs, mainly because they can bring sig-
nificant improvements to the run-time efficiency. In this
context, we present a framework for analysis of ad-hoc
scheduling policies already at early system design phases.
The importance of scheduling at run-time is mainly due to:
(i) its high workload overhead[6] and (ii) the influence on
the overall system execution. In order to efficiently manage
the system resources available on MPSoC platforms, cus-
tomized OS services and optimized task implementations
are needed.

In this paper we present a framework for analysing the
impact that customized OS services have on the MPSoC
platform efficiency. The framework is developed as a part of
a simulation model known as High Level Virtual Platform
(HVP) [1]. HVP is intended to support the early MPSoC
software design, when many system parameters are not yet
precisely defined.

The rest of this paper is organized as follows. An
overview of the related work is given in Section 2. In Sec-
tion 3 we describe the proposed OS model and its integra-
tion into the HVP simulation flow. Case studies are pre-

sented in Section 4. Section 5 concludes this paper and
gives insights into the future work.

2. Related Work

Our framework provides an environment where schedul-
ing behavior can be co-simulated with the abstraction of an
MPSoC platform while realistic applications runs on top of
it. Among existing frameworks intended to monitor run-
time behavior via simulations, we found limitations in the
following aspects:

(i) In most frameworks [8, 3, 11] simulation model is
very detailed with respect to the underlying hardware
architecture, which at that time must be fully defined;

(ii) Some existing simulators used in early system design
(such as [2] and [12]) model a particular OS or a
range of them, without giving the possibility of cus-
tomization or parameterization;

(iii) To our knowledge, there is no framework which al-
lows to unrestrictedly model both static tasks mapping
and dynamic approach with the possibility of task mi-
grations among cores;

(iv) In many frameworks [9, 5] applications and run-
time management developments are organized over
different flows. To exercise schedulers the designer is
forced to create artificial testbenches including hard-
ware platform and tasks on top of it. As a drawback it
introduces large overhead for OS developers.

3. A Virtual OS Model

Our work contributes with the methodology to analyze
different scheduling policies. The framework has been im-
plemented as a part of the high-level MPSoC simulator
HVP. More details about this tool are given in our publi-
cation [1]. The strength of this approach is that it helps to



Utilization of 

the processor 

by OS services

Utilization of the 

processor by 

application tasks

Deadline

miss rate

Scheduling 

options

Scheduler policy control

Active threads 

in the system

Tasks loaded in 

the simulator

Processor 

configuration

Threads 

distribution to 

the processors

(a)

(b)

Figure 1. Scheduling analysis support: (a) displaying tasks and OS workload on processing re-
sources via platform GUI; (b) scheduling traces visualization.

guide the software design process in very early stages, when
many system parameters are not yet well defined. The ap-
plication software development can be started much earlier
than in the traditional flow and results are obtained faster.

In this paper we address the problem of the MPSoC run-
time behavior evaluation, mainly dedicated to OS design-
ers. In particular we introduced into the current HVP run-
time management flow possibility to customize the schedul-
ing policy and ability to express a broad range of different
scheduling solutions while keeping generality of the tool.
Scheduling behavior can be written in C or C++ (which
are very familiar to embedded system designers). To be
plugged into the simulation platform the scheduler must be
compliant to the specified interfaces. The interfaces define
a set of C functions and data structures.

Scheduling strategy is described by the sched update
function. Each call of this function returns the schedul-
ing matrix sched matr and the time slice vector ts vect.
Given that Nt is the number of tasks and Nv is the num-
ber of Virtual Processing Elements (VPEs) in the platform,
sched matr is a matrix of bits with dimension Nt × Nv .
Each bit set to 1 corresponds to task dispatching to specific

VPE. In ts vect time slice values for the next tasks activa-
tion can be specified. It is a vector of size Nt (one value for
each task). Value 0 is used for non-time sliced tasks.

According to the introduced notation the scheduling
function has the following format:

sched update(sched evnt) → (sched matr, ts vect).
The input parameter sched evnt used by the function de-
notes an event in the simulator which might cause tasks
rescheduling. Among these events are: task state transi-
tions, end of time slice interval, parameter of VPE change.
The source of the event determines its nature. The schedul-
ing update function described above is invoked on every ar-
rival of the scheduling event. It is described by a 4-tuple
(evnt type, time stamp, task, vpe), where the first value cor-
responds to the event nature. The second element is a time
stamp of event occurrence. The last two parameters specify
a source task and/or VPE.

Custom scheduling policies can be attached to the simu-
lator by reimplementing the sched update() function. Such
implementations can be compiled to dynamic libraries us-
ing a host compiler and linked to the platform at run-time
via graphical user interface (GUI) or a configuration file.

2



Various scheduling policies classified in [10] can be im-
plemented using this generic interface. A platform user can
specify preemptive and non-preemptive, with static map-
ping and migrative, generic and containing the real-time
features scheduling schemes.

The scheduler has access to several internal data struc-
tures of the simulator via task and vpe elements of the
sched evnt entity. They contain a full description of dif-
ferent tasks and VPE characteristics (for example, a task
name, a deadline, a period, a priority; a VPE name, a type
and a clock frequency). This is essential as such parame-
ters are evaluated by the scheduling policy in order to make
decisions about tasks dispatching.

We model OS timing overhead as a combination of three
components: a context switch time, a migration penalty and
a scheduling time. Most of them can be parametrized by a
constant value via GUI or a configuration file. The context
switch represents the time consumed in save and load oper-
ations required to begin tasks execution and only included
in the case swapping in the tasks execution occurs. The
migration penalty corresponds to the additional time due to
task context transmissions across different cores (only con-
sidered if a task is dispatched from one core to another). To
model the time required to take scheduling decisions two
approaches are proposed:

(i) The time annotation mechanism similar to the one
presented in [7]. This way is more convenient if the
existing custom scheduling solutions are to be plugged
into the platform and some initial hardware templates
are given. Therefore timing information is known or
can be measured from available implementations;

(ii) Using the source code instrumentation as described
in the HVP tool chain [1]. In this case the time for
newly defined scheduling can be modeled because ex-
act numbers about execution latencies can be hardly
specified by the developer.

Our main motivation is to support the OS developer to
make correct decisions about the scheduler design while
providing a more realistic environment for the application
developer to reason about application behavior at the early
design stage. For these purposes various information is pre-
sented to the designer via a graphical workbench which en-
ables to quickly investigate candidate solutions (Figure 1).
For example for real-time analysis task deadline miss rates
are available. To inspect OS overhead the utilization of
processors by the scheduler can be monitored. Moreover,
scheduling traces can be graphically followed. Every trace
contains dynamic information about task migrations among
different processors and latencies of their execution (includ-
ing OS services). Knowledge of the OS latency is important
for system performance monitoring and verification.

4. Case study

We performed a case study on a test bench with three ap-
plications: H.264 (video decoder), GSM (speech encoder),
and AES (encryption). These applications are frequently
used in the embedded multimedia and can potentially run
concurrently on a single device. GSM and H.264 were
parallelized and characterized by throughput constraints (as
hard and soft real-time respectively). The applications set
up is shown in Table 1. We let the scheduler handle such
multi-applications scenario on a platform with three RISC
processors running at 1 GHz clock speed. The monitored
characteristics are the OS overhead, the violation of real-
time constraints (the deadline miss rate), the available pro-
cessor bandwidth for non real-time AES application and the
average processing elements (PEs) utilization. To model the
timing behavior of different scheduling implementations,
the annotation mechanism was used and the time measure-
ments of scheduling executions were performed on the In-
struction Set Simulator.

Table 1. Applications scenario set up.
Application Parallelized RT req. Throughput

GSM 6 tasks Hard 8000 samples/s
H.264 8 tasks Soft 40 ms/frame

AES no none -

Some results are summarized in Table 2. In our experi-
ment four scheduling schemes were explored. Initially we
configured scheduler to run locally at each processor, at first
with the Round-Robin (RR) policy and after with Earliest
Deadline First (EDF). Both partitioned applications were
mapped onto two VPEs and sequential AES was assigned to
another VPE. After that we analyzed two centralized sched-
ulers: EDF and hierarchical scheduling with different qual-
ities of service for different applications (as presented in
[4]). We configured this scheduling to give the highest pri-
ority to tasks of the GSM application. Between the remain-
ing H264 and AES applications priority is given to the first
one. Tasks belonging to the same application are always
arbitrated according to the EDF policy. It can be seen from
Table 2 that the centralized task management performs more
effective PEs utilization compared to the static mapping as-
signment. As a result it provides higher bandwidth to the
non-real time AES application. In these cases the maximum
utilization (up to 100%) of PEs is limited by the OS latency.
Moreover, hierarchical scheduling configured as described
above provides the best service guarantee to the real-time
constraint applications (the deadline miss rate decreases es-
pecially for the hard real-time GSM application) due to its
high customization to the applications scenario.

3



Table 2. Statistics of the applications execu-
tion on the platform with different scheduling
configurations.

Scheduling Local Local Centr. Centr.
all RR all EDF EDF Hierarch.

GSM max. DL 50 12 10 0
misses(%)

H.264 max. DL 15 8 7 9
misses(%)

avrg. AES exec. 52 47 63 68
bandwidth(%)

avrg. OS 10 35 27 17
overhead(%)

avrg. PEs 51 53 79 80
utilization(%)

5. Conclusions

In this paper we presented the abstract OS model and
its integration into the simulation platform. Our approach
unifies the applications and OS development for embed-
ded MPSoC platforms. The OS model was designed to be
generic enough to model a wide range of scheduling types.
On top of that the retargetability properties were addressed,
which help to easily configure OS scheduling and the tim-
ing model. In contrast to many similar frameworks our ap-
proach is more oriented on the tooling support. We provide
various statistics to developers to speed up the work on OS
and software development.

In the future we plan to evaluate the accuracy of our ap-
proach compared to the real hardware MPSoC platforms or
very detailed cycle accurate simulation engines. Addition-
ally, the timing model of tasks migration can be further re-
fined as it is essential for the migrative scheduling design.

References

[1] J. Ceng, W. Sheng, J. Castrillon, A. Stulova, R. Leu-
pers, G. Ascheid, and H. Meyr. A high-level virtual
platform for early MPSoC software development. In
Proceedings of the 7th IEEE/ACM international confer-
ence on Hardware/software codesign and system synthe-
sis, CODES+ISSS ’09, pages 11–20, New York, NY, USA,
2009. ACM.

[2] T. Furukawa, S. Honda, H. Tomiyama, and H. Takada.
A hardware/software cosimulator with RTOS supports for
multiprocessor embedded systems. In Proceedings of the
3rd international conference on Embedded Software and
Systems, ICESS ’07, pages 283–294, Berlin, Heidelberg,
2007. Springer-Verlag.

[3] P. Gerin, X. Guérin, and F. Pétrot. Efficient implementa-
tion of native software simulation for MPSoC. In Proceed-
ings of the conference on Design, automation and test in
Europe, DATE ’08, pages 676–681, New York, NY, USA,
2008. ACM.

[4] P. Goyal, X. Guo, and H. M. Vin. Readings in multimedia
computing and networking. pages 491–505, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[5] M. A. Hassan, K. Sakanushi, Y. Takeuchi, and M. Imai. En-
abling RTOS simulation modeling in a system level design
language. In Proceedings of the 2005 Asia and South Pa-
cific Design Automation Conference, ASP-DAC ’05, pages
936–939, New York, NY, USA, 2005. ACM.

[6] T. Kamiuchi, H. Nakanishi, and K. Hayashi. Operating
system structure model for real-time systems. In Object-
Oriented Real-Time Dependable Systems,1996. Proceedings
of WORDS ’96., Second Workshop on, pages 120 –124, feb
1996.

[7] T. Kempf, M. Doerper, R. Leupers, G. Ascheid, H. Meyr,
T. Kogel, and B. Vanthournout. A modular simulation
framework for spatial and temporal task mapping onto
multi-processor SoC platforms. In Proceedings of the con-
ference on Design, Automation and Test in Europe - Volume
2, DATE ’05, pages 876–881, Washington, DC, USA, 2005.
IEEE Computer Society.

[8] M. Krause, D. Englert, O. Bringmann, and W. Rosen-
stiel. Combination of instruction set simulation and abstract
RTOS model execution for fast and accurate target software
evaluation. In Proceedings of the 6th IEEE/ACM/IFIP in-
ternational conference on Hardware/Software codesign and
system synthesis, CODES+ISSS ’08, pages 143–148, New
York, NY, USA, 2008. ACM.

[9] R. Le Moigne, O. Pasquier, and J.-P. Calvez. A generic
RTOS model for real-time systems simulation with systemc.
In Proceedings of the conference on Design, automation and
test in Europe - Volume 3, DATE ’04, pages 30082–, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[10] V. Nollet, D. Verkest, and H. Corporaal. A safari through
the MPSoC run-time management jungle. J. Signal Process.
Syst., 60(2):251–268, Aug. 2010.

[11] Y. Yi, D. Kim, and S. Ha. Fast and time-accurate cosimu-
lation with OS scheduler modeling. Autom. Embedded Syst,
8:211–228, 2003.

[12] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. A.
Jerraya. Building fast and accurate SW simulation mod-
els based on hardware abstraction layer and simulation en-
vironment abstraction layer. In Proceedings of the confer-
ence on Design, Automation and Test in Europe - Volume
1, DATE ’03, pages 10550–, Washington, DC, USA, 2003.
IEEE Computer Society.

4


