
TECHNIQUES FOR COMPILED HW/SW
COSIMULATION

Andreas Ropers, Stefan Pees and Thomas Brüggen
Institute for Integrated Signal Processing Systems

Aachen University of Technology
Templergraben 55, 52056 Aachen, Germany

e-mail: fropers,pees,brueggeng@ert.rwth-aachen.de

Abstract

This paper presents a new approach for the coupling of compiled hardware and soft-
ware simulators. Unlike existing methods this technique offers a very flexible way for
integrating a software simulator into the hardware environment. In contrast to existing
in-house or off-the-shelf hardware software cosimulators the user has the ability to the
select the appropriate cosimulation method. In addition the compiled hardware/software
cosimulation approach offers a very high simulation speed. From a very tight coupling of
the simulators which improves the simulation speed, to a loose interaction of the simula-
tors which improves flexibility, various kinds of cosimulation mechanisms can be applied.
In this paper the different methods for cosimulation and the limitations are analyzed and
the realization of a HW / SW cosimulation environment is presented

1 Introduction

W ith the increasing complexity of DSP’s and ASIC’s the design verification has
become the most critical aspect of assuring the overall product quality and per-

formance. Typically, the complexity ot these designs actually disqualifies the use of
a unique level of abstraction (a unified model) to verify all aspects of a design. As
the hardware-part of the design matures, many different problems have to be faced us-
ing different models. In order to achieve acceptable performance, each model is used
in conjunction with one specific verification tool. During the design phase different
verification tools have to be used to ensure a complete design verification.

The interface between the hardware and the software can be modeled on different ab-
straction layers. On the application layer only signals like send, receive and wait are
modeled. The next lower abstraction layer is based on the operating system or de-
vice drivers (software part) and the bus interface (hardware part). Signals like register
reads and writes are modeled on this level of accuracy. The lowest level of abstraction
is presented by the bus functional model where pin-accuracy is required. In general
asynchronous communication schemes between hardware and software allows for an
abstract communication method. This could be for example, a process or device com-
munication mechanism. This speeds up simulation but make performance evaluation
more inaccurate.

1



Debugging and verification can be done using hardware or software based models.
The main advantage of hardware models (emulators) is their speed. The main disad-
vantage of emulators is their low flexibility, high costs and an the reduced visibility
of internal states. In addition the boundary between the hardware and the software is
fixed, thus contradicting the main principle of HW/SW co-design.

This is the reason, why most design-engineers prefer software-based models. The
main drawback of software models is the reduced simulation speed, which is up to four
times slower than the real hardware. Whereas most of the cosimulation approaches rely
on the interpretive simulation technique, compiled approaches proved to speed up the
simulation up to 2 orders of magnitude[1]. The principle of compiled simulation is a
well known approach for hardware simulation. For software simulation this technique
has been developed in the last four years [2, 3]. The speedup achieved with this new
technique is up to three orders of magnitude. Of course in a hardware / software
cosimulation environment the overall speedup can be reduced (Amdahl’s Law). Let
us suppose that for example a hardware- and a software simulator are scheduled the
same times. If the hardware simulator is 10 times slower, the software simulator can
only speedup the whole simulation about 10%. On the other hand that means that a
system containing only a little amount of hardware but a complex algorithm on a DSP,
can gain a lot of a fast software simulator. Due to that it makes a lot of sense to use the
compiled simulation principle, in the hardware- and the software-simulator.

This paper is organized as follows. After the introduction in Section 2 the mo-
tivation guiding this work is presented. Section 3 discusses previous work which is
related to those presented in the paper. The main possible connections of hardware
and software simulators are presented in Section 4. The implementation and perfor-
mance measurements are given in Section 5. Finally, in Section 6 the conclusions are
given.

2 Motivation

The main motivation for the work presented in this paper was to analyze the effects of
different hardware/software cosimulation techniques. In the past the connection of the
different simulators was often thought to be a serious bottleneck in the simulation per-
formance. With the development of fast simulators and the technique of the compiled
simulation a very high simulation speed can be reached. So the amount of time wasted
in the communication between the simulators becomes even higher. In order to pro-
vide a fast HW/SW cosimulation environment, we have to identify the bottlenecks and
provide a way to connect the software simulator with the hardware environment. This
was the motivation for our work to implement a cosimulation between a hardware and
a software simulator, both using the principle of compiled simulation. The software
simulator we used is the SUPERSIM described in [4]. For the hardware simulator we
used CYCLONE, a RTL-Level, cycle based VHDL-simulator provided from Synopsys.

3 Previous Work

Till today almost all DSP-simulators use the interpretive simulation technique. They
are shipped with off-the-shelf or in-house DSP processors and offer a comfortable



DSP-Simulator VHDL-Simulator

link ports

Interface
FOREIGN

Figure 1: Direct communication scheme

debugging frontend. In addition the user has full visibility of internal states and
breakpoints for example do not interfere with the processor state in contrast to em-
ulator boards. The main disadvantage of these DSP-simulators is their low simulation
speed[5] and the inability to be adopted for a special environment. All existing hard-
ware/software cosimulation environments rely on the interpretive simulation technique
at least for the software part [6, 7].

The connection of hardware and software simulators can be done in different ways.
In all cases API‘s1 have to be provided. In [8] a systematic overview of different API‘s
is given. An automatic generation of such interfaces is given in [9]. On the one hand
two simulators can be coupled in a direct manner. This has the advantage that the
interface can be optimized for this special purpose. On the other hand it is expendable
to implement these link modules for more than two simulators. For example for three
simulators 6 link modules are needed to connect each simulator to the other in an
optimized way. The amount of link modules needed can be reduced with a simulation
backplane. The simulation backplane[10] provides an API and a simulation layer for
the connection of various simulators, thus suffering from the requirement to connect
various kinds of simulators. So a tradeoff has to be done between a very sophisticated
solution for the cosimulation with one hardware and one software simulator, and a
more general cosimulation environment if more than two simulators are supported.

4 Connection Schemes

The connection between a hardware and a software simulator is essential for a powerful
and flexible HW/SW cosimulation environment. Even the fastest simulator is useless
if an inappropriate communication scheme is used. This chapter gives an overview
on possible connection methods and analyses pros and cons. Various possibilities are
provided by the software vendors to connect the different debuggers and hardware
simulators. In general communication schemes for simulators can be separated in:

� direct connections and

� indirect connections

Common to both approaches is the need to have a link in the simulator. The only
difference is that the indirect connection makes use of Inter-Process-Communication
(IPC). Figure 1 depicts the direct communication scheme. The simulators are coupled
with two appropriate link ports, one of them the FOREIGN-interface of the VHDL-
language.

1Application Programmers Interface



DSP-Simulator VHDL-Simulator

link ports link ports
FOREIGN
Interface

Communication Layer

Figure 2: Indirect communication scheme

This offers the possibility to implement a certain behaviour not in VHDL but in a
different module (C or other languages).

So every time the entity is activated by the hardware simulator the DSP-simulator
is invoked once and can perform the appropriate behaviour. So the scheduling of the
simulator is determined by the activation of the entity. As the two simulators are not
able to run in parallel, a conservative scheduling mechanism results which means that
each simulator is invoked once for each cycle step.

Even if the hardware (VHDL-code) does not need data from the DSP-simulator it
has to wait until the DSP has finished his operation. The advantage is that there is no
IPC overhead.

Direct connections require a linkable object of the simulator. The advantage is
the lack of communication overhead, thus enabling a powerful cosimulation. The
disadvantage is, that this technique is based on the existence of an object code of the
simulator. In addition the software vendor has to provide external entry points for the
main simulation functions. For the following examples we assume that the hardware
simulator acts as a master and the software simulator is the slave. This implies that the
DSP-simulator is embedded in the hardware environment.

This holds true for the indirect communication schemes (Fig. 2).
The communication layer can be implemented in different ways. The most popu-

lar IPC mechanisms are file-IO, Pipes or Shared Memory/Semaphores. All these can
be implemented in different ways like POSIX or Solaris IPC. For our experiments we
used the shared memory in conjunction with semaphores for a proper synchronisa-
tion. As the Solaris shared memory and semaphores are supposed to be much heavy
weighted, we also implemented the POSIX version in order to measure the overhead.
The advantage of an indirect communication scheme is, that both simulators can run
in parallel on different processors or machines. The synchronization between the sim-
ulators is done for example by means of IPC-semaphores. The disadvantage is the
additional overhead introduced by the IPC-mechanisms.

5 Implementation

The implementation of both, the direct and the indirect connection is illustrated on a
small application example (Fig. 3). Because of the complexity of real-life examples we
restrict ourselves to a simple example to show the principle of the cosimulation mech-
anisms. Here the Texas Instruments TMS320C54x-DSP does a multiplication and the
hardware-accelerator adds a constant. The DSP has a multistage pipeline which is sim-
ulated phase-accurate. That means that each pipeline stage is simulated separate and



mac_factor1_signal

mac_factor2_signal

command_signal
c54x_command

c54x_in1

c54x_in2

0

c54x_out3

c54x_out2

c54x_out1

shmaddr

2

1 32

2 31

2

shmaddr

c54x_parameter()

wait for semaphore 1 c54x_result()

c54x_clock

main()

3 1

3 1

entity mac

c54x_out1_signal

c54x_out2_signal

c54x_out3_signal

main()

wait for semaphore 0 set semaphore 1 = 0

Communication Layer

Wrapper_Function

DSP-Interface

entity c54x

add_clock

mac_clock clock_signal

mac_sum_signal
add_factor1mac_sum

entity add add_factor2
c54x_out2_signal

add_result

mac_result_signal

mac_result

compiled DSP-Simulator

mac_factor1

mac_factor2

Figure 3: Application example: DSP interacting with MAC-Unit

the user has full visibility of all internal states. Of course this level of detail slows down
the simulation speed dramatically compared to normal cycle-accurate DSP-simulators.
First we describe the implementation for the indirect communication method. The di-
rect method works the same way, but uses a direct link through the communication
layer, so that this one is not needed.

VHDL-Interface

The VHDL-interface is implemented by using the FOREIGN-interface of the VHDL-
language. The behaviour of the hardware (here the DSP) is not written in VHDL code,
but in an external function. This allows us to include the whole DSP within a few lines
of VHDL-code.



1 ARCHITECTURE c54x_behaviour OF c54x IS
2
3 -- entry point
4 -- init shared memory and semaphore
5 PROCEDURE init_all_c IS
6 BEGIN
7 END;
8 ATTRIBUTE foreign OF init_all_c: PROCEDURE IS "init_all";
9
10 --entry point
11 PROCEDURE c54x_param_c (PARAMETER_LIST: OUT INTEGER) IS
12 BEGIN
13 END;
14 ATTRIBUTE foreign OF c54x_param_c: PROCEDURE IS "c54x_param";
15
16 --entry point
17 PROCEDURE c54x_result_c (RESULT_LIST: IN INTEGER) IS
18 BEGIN
19 END;
20 ATTRIBUTE foreign OF c54x_result_c: PROCEDURE IS "c54x_result";
21

Line 1 defines the behaviour of the DSP (C54x) architecture. In the body of the
architecture declaration three external functions are declared. The first one in line 5
is the init-routine which initializes the DSP. The other two declarations in line 11 and
17 are the entry points for the output resp. input of the parameters. This is a very
flexible way to embed software simulators into a hardware environment. Multiple
instances of a DSP-simulator can be used, only limited by the amount of memory. So
complex multiprocessor systems can be simulated which offers a powerful tool for the
debugging and verification of such a system.

Communication Layer

The communication layer offers various commands which are used by the link ports
to establish a communication. These are provided as C++-class in order to hide the
implementation details and to offer a clean API. The following commands are imple-
mented for POSIX and Solaris:

� establish communication: this includes the reservation of shared memory for
data transfer, semaphores for the synchronization and the instantiation of a DSP-
simulator (which is automatically launched by invoking this initialisation rou-
tine).

� send data: allows the VHDL-simulator to pass data to the DSP-simulator.

� receive data: allows to receive data from DSP-simulator.

� send command: allows to send commands like simulate instruction to the DSP-
simulator.

� end communication: cleans all reserved memory and semaphores and closes the
DSP-simulator.

The commands establish communication and end communication are normally in-
voked during the initialization (resp. cleanup)-phase of the VHDL-simulator. So the



user only has to start the VHDL-simulator and all other things are done automatically
within the startup-phase.

DSP-Simulator

The link port of the DSP-simulator is implemented as a wrapper function that encap-
sulates the internal functions of the simulator in a C++-class. The commands are the
same as for the communication layer.

Results

The following table shows the results for the different cosimulation methods. The
DSP-simulator offers different stages of compiled simulation[4]. For the measure-
ments we used the dynamic scheduling. In contrast to the static scheduling this is
offered without an extra compilation step before simulation. The disadvantage is
the lower simulation speed which is about two to three times compared to the static
scheduling.

All results are performed on an Ultra-Sparc 1 (network-mode, all daemons on) with
170 MHz. The application is the MAC-application with the multiplication done by the
DSP and the add-operation in hardware. This represents a very small application, but
in order to analyze the IPC overhead we have to eliminate most of the simulation task.
For each method two results are given. One with GUI-Update, the other one without.
GUI update means, that after each step of the DSP-simulator the debugging frontend
is updated. We see, that the GUI-update worsens the measurements by nearly two

Simulation Speed [kCycles./sec.]
Method GUI-update no GUI-update
POSIX 0.362 7.8
Solaris 0.370 8.1
Direct cosim. 0.454 34
Only DSP-sim. 0.5 47

Table 1: Measurements for cosimulation-methods

dimensions. Thus the differences in the methods can be measured, but are not clear.
Obviously the original SuperSim is the fastest with about 500 cycles./sec followed by
the direct cosimulation with 454 cycles./sec. The Solaris and POSIX implementations
follow with 370 resp. 362 cycles./sec.
The differences in the simulation speed become more clear if the GUI update is omit-
ted. The IPC cosimulation (POSIX and Solaris) starts with about 8 kCycles./sec. fol-
lowed by the direct cosimulation with almost 34 kCycles./sec. Here we see that the
Solaris IPC-mechanisms (especially shared memory and semaphores) are much heavy
weighted. The POSIX implementation promises a much more efficient implementa-
tion of these communication methods, but the measurements show that they provide
almost the same performance. If only the DSP-simulator is running, the simulation
speed is about 47 kCycles./sec. This speed is only achieved because of the compiled
simulation technique.



Figure 4: Debugging environment with DSP- and VHDL-simulator

By using the indirect cosimulation method with IPC the simulation speed is slowed
down by a factor of three to four compared to the direct cosimulation. This is only valid
if small applications are simulated. As soon as more complex examples are simulated,
the overhead of the IPC is no longer significant. In this case, it might be advantageous
to be able to use two or more machines for the simulation. So a tradeoff has to be done
between the flexibility of the simulation and the simulation speed. Small examples
will profit from the direct cosimulation, while bigger ones will be faster in terms of
simulation on different machines, using the indirect cosimulation The simulation of a
big real-life example will be one of or tasks in the future.

Adaption to other DSP- and VHDL Simulators

Our technique for the cosimulation of compiled simulators with VHDL simulators is
tailored for the Cyclone simulator. Nevertheless other simulators can easily use this
technique if some requirements are met:

� The VHDL-simulator supports the foreign interface and so allows the use of
external c-functions.

� The DSP-simulator must provide entry-points for several functions like simulate
instruction. All SuperSim simulators provide this functionality

So a cosimulation between VSS (Synopsys) and SuperSim can be done in the same
way. Only the definition of the ports and the interfacing parts is different from the way
it is done in Cyclone.



6 Conclusions and Further Research

We have shown that compiled simulators can easily be interfaced with VHDL-simulators
by using the C++-classes developed in this project. The indirect cosimulation method
is significant slower with small examples than the direct cosimulation. When the de-
sign matures this disadvantage is no longer significant and it is better to use the indirect
cosimulation, thus allowing the processes to run on separate processors. Some aspects
of cosimulation have not been covered. Named Pipes or multi-threaded programming.
Concerning the simulation performance we expect the latter one to be between the
direct cosimulation and the IPC based one. A common executable, where the DSP-
simulator and the VHDL simulator are one binary executable, would be the fastest
solution, but also the most inflexible one. Multi-threaded programming and direct
cosimulation offers good simulation performance without neglecting the simulation
performance. The most flexible solution is the cosimulation with means of IPC, but
will only be superior if complex examples are addressed.

In the future the generation of DSP-simulators will more and more done auto-
matically. Coming from a machine description[11] DSP-simulators will be generated
including an interface for the cosimulation. With the easy way of integrating the sim-
ulator in the hardware environment presented in this paper, this will offer a very pow-
erful environment for hardware/software Co-design. The turnaround times will slow
down dramatically, thus enabling more powerful solutions per time-unit.

References

[1] V. Živojnović and H. Meyr, “Compiled HW/SW co-simulation,” in Proceedings of the
Design Automation Conference (DAC), (Las Vegas), pp. 690–695, June 1996.

[2] V. Živojnović, S. Tjiang, and H. Meyr, “Compiled simulation of programmable DSP ar-
chitectures,” in Proc. of 1995 IEEE Workshop on VLSI Signal Processing – Sakai, Osaka,
pp. 187–196, Oct. 1995.

[3] V. Živojnović, S. Pees, C. Schläger, R. Weber, and H. Meyr, “SuperSim - A new tech-
nique for simulation of programmable DSP architectures,” in Proc. Int. Conf. on Signal
Processing Application and Technology (ICSPAT), (Boston), pp. 1748–1763, Oct. 1995.

[4] S. Pees, V. Živojnović, A. Ropers, and H. Meyr, “Schnelle Simulation des TI TMS
320C54x DSP,” in Proc. of DSP Deutschland 97, (München), Oct. 1997.

[5] J. Rowson, “Hardware/software cosimulation,” in Design Automation Conference, (San
Jose, CA), pp. 439–440, Jun. 1994.

[6] A. Kalavade and E. A. Lee, “Manifestations of heterogeneity in hardware/software code-
sign,” Design Automation Conference, 1994.

[7] S. Sutarwala, P.Paulin, and Y.Kummar, “Insulin: An instruction set simulation environ-
ment,” (Ottawa - Canada), pp. pp. 355–362, CHDL, 1993.

[8] B. Schnaider and E. Yogev, “Software development in a hardware simulation environ-
ment,” in Design Automation Conference, (Las Vegas), 6 1996.

[9] C. A. Valderrama, F. Nacubal, P. Paulin, and A. A. Jerraya, “Automatic generation of
interfaces for distributed c-vhdl cosimulation of embedded systems: an industrial ex pe-
rience,” in 7th International Workshop on Rapid Systems Prototyping, (Greece), June
1996.



[10] A. Ghosh, M. Bershteyn, R. Casley, C. Chien, A. Jain, M. Lipsie, D. Tarrodaychik, and
O. Yamamoto, “A hardware-software co-simulator for embedded system design and de-
bugging,” in Asia South Pacific Design Automation Conference (ASP-DAC), 1995.

[11] S. Pees, A. Hoffmann, and H. Meyr, “Retargetable Timed Instruction Set Simulation of
Pipelined DSP Architectures,” in Proc. of DSP Deutschland 98, (München), Oct. 1998.


