
Graph-based Kernel Recognition for
Compiler Guidance
María Rodríguez∗,1

∗ ICE, RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany

ABSTRACT

Functional and performance portability as well as maintainability have become dominant issues
when developing embedded software, mainly due to the increasing use of heterogenous processor
architectures in modern designs. Compilers had to evolve as well to cope with this trend. For
example, auto-parallelizing, source-to-source and auto-tuning compilers are active research areas.
In this work we present an approach that can supply these kinds of compilers with additional
information useful to guide the selection of proper optimization techniques. The approach tries
to recognize a known algorithmic kernel for which an optimization technique is proven to be
beneficial, even though its implementation differs from the original model of the kernel. To that
end, our approach uses a graph-based representation for the kernels to perform the analysis.

KEYWORDS: algorithmic classification; program expression graphs; structural representation

1 Introduction

Naturally, there exists many disparate implementations of the same algorithm that are how-
ever functionally equivalent. For example, the code listings below implement the matrix
transposition in two slightly different ways.

Listing 1: Reference Implementation
int i, j;
for (i = 0; i < w; i++)

for (j = 0; j < h; j++)
y[(i*h) + j] = x[i + (w*j)];

Listing 2: Another Implementation
int i, j;
for (i = 0; i < w; i++)

for (j = 0; j < h; j++)
y[i][j] = x[j][i];

Is it possible for a compiler to recognize that both implementations have the same func-
tionality? Consider that Listing 1 is supplied within the Texas Instruments DSP library [Ins14]
as a functional descriptor of an optimized kernel for matrix transposition. The kernel con-
tains platform-dependent optimizations and intrinsic function calls. On the other hand, List-
ing 2 is an arbitrary example of a benchmark performing the same. Therefore, if the compiler

1E-mail: rodriguez@ice.rwth-aachen.de



recognizes the functional equivalence of both then this fact could guide the developer or the
compiler to replace Listing 2 with the corresponding TI’s optimized kernel.

This is a simple example use case. Our main idea is to supply compilers with additional
information that guides their code transformation decisions, e.g. which ones and in which
order to apply them. Our approach has the potential to improve many different kinds of
compilers, as for example, auto-parallelizing, source-to-source or auto-tuning compilers.

2 Proposed Approach

The proposed graph-based kernel recognition uses an example code, that we call model, to
represent a specific functionality. The code piece under recognition is called the unknown
kernel. The approach looks for functional equivalence among both. Therefore, in the previ-
ous example, if Listing 1 serves as the model that represents the matrix transposition then
Listing 2, which is the unknown kernel, is analyzed using Listing 1 to determine if they are
functionally equivalent.

Our first attempt in this direction uses Program Expression Graphs (PEGs) to represent
both the model and the unknown kernel. A PEG is a directed graph where each node repre-
sents an operation, incoming edges represent operands, and the outgoing edges represent
uses of the result [Gay12]. In [TSTL09], PEGs have been successfully used to represent in-
traprocedural imperative code with branching and looping constructs.

There are two main reasons to use PEGs. The first one is that PEGs are a complete rep-
resentation, i.e. no additional structure like a CFG, for example, is needed to represent the
original code. Second, PEGs enable equality reasoning. By repeatedly applying a set of sim-
ple mathematical rules or axioms one can extend a PEG with information of equivalent
expression nodes. The result is a new graph called EPEG. The described process is proposed
in [TSTL09], named Equality Saturation. One of the main conclusions of that work is that
EPEGs have shown to be an efficient way to represent simultaneously multiple versions of
the original program.

The hypothesis of our approach is that after applying Equality Saturation to the PEG of
the unknown kernel, the result will be an EPEG that contains the model PEG. The recogni-
tion process is basically to find within the EPEG of the unknown kernel a subgraph that is
isomorphic to the model PEG.

In order to illustrate the capabilities of both PEGs and EPEGs, let us consider the example
code of Figure 1.a, and its PEG representation in Figure 1.b. At the top of the PEG, the final
outgoing edge is the last use of the variable a. Most of the nodes are known mathematical
operations, except for φ. It basically selects depending on the first argument between the
second and the third argument, i.e. it represents the merging of the two possible values of a.
For this example, δ represents the PEG subgraph that computes the branch condition.

By applying the axiom set of Figure 1.c, one can extend the PEG into the EPEG of Fig-
ure 1.d. The dashed edges represent the equivalence relations among two expression nodes.
It can be thus seen how EPEGs represent simultaneously multiple functionally equivalent
code versions. In the example, there are ten ways to select a valid PEG from the EPEG. Fig-
ure 1.f shows one of the possible resulting graphs, which is obtained by selecting the proper
node in each dashed relation, and Figure 1.e is the corresponding C implementation.



...
if (...)

a=a+6;
else

a=a-3;
return a * 5;

(a)

• (a+ b) ∗m = a ∗m+ b ∗m

• (a− b) ∗m = a ∗m− b ∗m

• φ(a, b, c) ∗m = φ(a, b ∗m, c ∗m)

(c)

...
if (...)

a=a*5+30;
else
a=a*5-15;

return a;

(e)

return value

∗

φ 5

+ −δ

6
a 3

(b)

return value

∗

φ 5

+ −δ

6
a 3

φ

∗δ + ∗ −

∗ ∗ ∗
5 5

a 56 5 3 5

30 15

(d)

return value

φ

+ −
∗

5

δ

30 a
15

(f)

Figure 1: (a) sample code, (b) the PEG of the sample code, (c) axiom set, (d) EPEG after
Equality Saturation, (e) new version of the sample code, and (f) corresponding PEG selection

3 Related Work

What the proposed approach solves can be also considered as a classification problem,
where the analyzed code kernels are objects, i.e. instances of a certain class, and a class is the
set of all objects proven to have functional equivalence. Under this view, the graph-based
kernel recognition approach basically tries to determine whether or not an unknown object
belongs to the class represented by the model object.

As stated in [BR11], to formally define an object is crucial for any classification. This
approach uses the structural way, in which objects are represented as graphs, instead of the
common statistical way using a feature vector. The advantage of graphs is that they allow to
represent relationships. For example, PEGs describe dependencies and data flow relation-
ships among the computed values, which is a key information for the desired classification.
Moreover, unlike feature vectors, graphs are not fixed to a specific size. They can be adapted
to the size and complexity of the individual object under consideration.

In the remainder of the section, we summarize related work for algorithm classification.
The algorithmic species approach [NCC13], for example, is a fine-grained classification of
affine loop nests based on the polyhedral model. They define five fixed classes: element,
chunk, neighborhood, shared and fill. These classes describe a specific access pattern for a
single array access in a statement. The key idea is the use of these access patterns as building
blocks to cover a complete loop nest, which enables the creation of an unlimited amount of
different species using only a limited set of access patterns. Therefore, species are classes of
algorithms, capturing information about the structure of parallelism and the amount of data
re-use in nested for-loops. Using this information programmers can reason about the code
or compilers can take decisions.

Our work shares similar goals to the algorithmic species approach, both try to extract
algorithm details by means of classifying the analyzed source code. In [NCC13], other clas-
sification approaches like dwarfs [ABD+09], the Galois classification system [PNK+11], and
algorithmic skeletons [Col91] have been evaluated with respect to five requirements that in
their perspective an algorithm classification must meet. The algorithm classes are required



to be: (1) automatically extracted, (2) intuitive, (3) formally defined (4) complete and (5) fine-
grained. The algorithmic species approach meets all of them. In terms of those requirements,
the conclusions for our approach are:

(1) The automatic extraction of classes is possible, since all involved steps are deterministic
and formal. There are tools available to automatically obtain PEGs, EPEGs and also to
find subgraph isomorphisms.

(2)-(5) The classes in our approach can be as intuitive or complex as the user wants, since
the starting point is any C code that describes a functionality. Therefore, the flexibility
of our approach enables the exploration of different domains and different levels of
granularity.

(3) The PEG is actually a mathematical structure and the relation of equivalence is what
defines a class. Therefore, it is also formally sound.

(4) The algorithmic species approach is only complete for the domain of affine nests. Our
classification is also complete, although to a larger extent, since it is able to classify any
code for which a PEG can be generated. Therefore, our approach can work on algo-
rithms using data structures such as sparse matrices, graphs and trees, for example.

4 Current Work

The first milestone is to evaluate the practicability of the proposed approach, in this direction
some challenges have been identified. One consists to define the subgraph isomorphism
problem in the presence of the equivalence and data flow edges, as current algorithms work
only with one edge type. Additionally, the selection of the axiom set is crucial, as it will
define the coverage and efficiency of our approach. Thus, one open question is, which is the
minimum axiom set that enables to efficiently recognize functionally equivalent algorithms.
Furthermore, we are designing a suitable benchmark for the evaluation of our approach and
the identification of potential additional challenges.

References
[ABD+09] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer, John Kubiatowicz, Nelson Morgan, David

Patterson, Koushik Sen, John Wawrzynek, David Wessel, and Katherine Yelick. A view of the parallel computing landscape.
Commun. ACM, 52(10):56–67, October 2009.

[BR11] Horst Bunke and Kaspar Riesen. Recent advances in graph-based pattern recognition with applications in document analysis.
Pattern Recogn., 44(5):1057–1067, May 2011.

[Col91] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation. MIT Press, Cambridge, MA, USA, 1991.

[Gay12] DavidM. Gay. Using expression graphs in optimization algorithms. In Jon Lee and Sven Leyffer, editors, Mixed Integer
Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pages 247–262. Springer New York,
2012.

[Ins14] Texas Instruments. Tms320c6000 dsp library (dsplib), 2014.

[NCC13] Cedric Nugteren, Pieter Custers, and Henk Corporaal. Algorithmic species: A classification of affine loop nests for parallel
programming. ACM Trans. Archit. Code Optim., 9(4):40:1–40:25, January 2013.

[PNK+11] Keshav Pingali, Donald Nguyen, Milind Kulkarni, Martin Burtscher, M. Amber Hassaan, Rashid Kaleem, Tsung-Hsien Lee,
Andrew Lenharth, Roman Manevich, Mario Méndez-Lojo, Dimitrios Prountzos, and Xin Sui. The tao of parallelism in algo-
rithms. SIGPLAN Not., 46(6):12–25, June 2011.

[TSTL09] Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: A new approach to optimization. SIGPLAN
Not., 44(1):264–276, January 2009.


	Introduction
	Proposed Approach
	Related Work
	Current Work

