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Abstract—In this paper, we analyze the effects of oscillator
phase noise and doubly-selective fading channel on the perfor-
mance of the staggered multitone (SMT) system. Unlike the more
familiar discrete multitone (DMT) systems, SMT is shown to be
insensitive to self-interference effects due to phase noise. The
impeding channel and phase noise interference coefficients are
defined and theoretical expressions for the inter-carrier and inter-
symbol interference are derived to establish solid analytical basis.
We demonstrate the resilience of SMT waveform to phase noise
distortion and channel fading effects in numerical experiments
using appropriate models and the theoretical considerations are
shown to fit well with simulation findings. Our assessment
indicates that SMT system performs nearly as well as the
classical DMT modulation for non-dispersive channels, while it
outperforms DMT system by 2 dB for the studied fading channel
scenario and fixed equalization complexity for both systems.

Keywords: Phase noise, Fading channels, SMT systems, Pro-
totype filters, SER, SINR.

I. INTRODUCTION

Staggered multitone (SMT) is a promising waveform can-
didate for beyond 4G systems due to its robustness to Doppler
spread and high spectral efficiency [1], relative to discrete
multitone (DMT) deployed in many communications systems
of the time, e.g., LTE, WiMAX, wireless LAN and DVB. A
generalized version of DMT called filtered multitone (FMT)
has been considered in wired systems (e.g., in VDSL [2]) and
future wireless communication systems for controlling out-
of-band leakage [3]. In the same way as the contemporary
DMT and FMT systems, being a multicarrier waveform,
SMT is also sensitive to random phase fluctuations between
transmitter and receiver frequency synthesizers, commonly
designated as oscillator phase noise. It is well-known that
when prototype filters at the transmitter and receiver maintain
subcarrier orthogonality while at the same time satisfying
Nyquist ISI-free criterion, there is neither real-valued inter-
carrier (ICI) nor inter-symbol (ISI) interference components
under ideal conditions. But a complex web of interference
appears to cause power leakage among data symbols as the
perfect reconstructability is compromised at the receiver by
amplitude and phase distortions. Their unique characteristics
in SMT waveforms depend on the channel and synchronization
conditions: 1) Inability of the oscillator to generate a pure
carrier signal introduces time-varying phase distortions and
hence both ICI and ISI, 2) ICI is caused by the frequency-
selective channels due to intrinsic contamination, and 3) Time
variation of channel destroys subcarrier orthogonality but more
notably introduce ISI.

The effects of phase noise on DMT and FMT systems have
been studied in [3]–[5] that showed the relation of phase noise
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spectrum to FMT performance and its reduced susceptibility to
self-interference. Authors concluded in [6] that the difference
in ICI levels between FMT and DMT is rather small and
both systems have similar performance for coherent receivers.
In [7], authors discuss the tolerable phase noise levels in
DMT, when a common phase error (CPE) correction method
is used. It was concluded that SER can be improved when
3-dB linewidth (of the low-pass filter used for phase noise
synthesis) is of the order of subcarrier spacing or otherwise ICI
is dominant and compensation is interference limited. In [8],
a filter optimization technique was employed to enhance the
robustness against carrier-frequency-offset (CFO). However, it
was revealed that conventional prototype filters were inherently
immune to CFO effects and optimization gain was at max
around 2−3 dB. A multitap equalization solution was proposed
in [9] to combat non-flat frequency response in each subcarrier
and inherent intrinsic interference issues in SMT systems.

Contribution: The objective of this paper is to analyze the
performance of SMT modulation in the presence of phase noise
and propagation channel time-frequency selectivity. Through
our in depth analysis, we derive expressions for interference
components that depict loss of orthogonality and dependence
on channel and phase noise defining metrics. Numerical results
validate our analytical findings and a comparison against DMT
system is presented under similar channel conditions and
equalizer design. To the best of our knowledge, not much
is known about SMT’s behavior in the presence of oscillator
phase noise, let alone the channel dispersion. To gain more
insight into phase noise characterization for SMT systems, we
will nevertheless resort to non-fading scenario.

Notation: (·)∗ denotes complex conjugation operation
while ~ represent convolution; E{·}, <{·} and ={·} refer to
expectation, real and imaginary operators respectively; 2 =
−1; R (C) denote real (complex) numbers while CN (µ, σ2)
is a complex proper Gaussian distribution with mean µ and
variance σ2.

II. SMT MODULATION SYSTEM

Figure 1 illustrates the block diagram of an SMT
transceiver that transmits real-valued data symbols am,k ob-
tained from MQ-QAM constellation using complex-to-real
transformation and then filtered by a symmetric real-valued
prototype filter p(n) after IFFT operation. The transmit signal
is collected into a sequence of discrete-time signal x(n) as:

x(n) =
+∞∑

m=−∞

K−1∑
k=0

p(n−mM)ej
2π
K knejϕm,kam,k (1)

where the pre-processing coefficients are usually selected as
ϕm,k = (m + k)π/2 − mkπ [10]. It should be noted that
the synthesis p(n) and analysis q(n) filter-pairs can be effi-
ciently incorporated with K-sized FFT and IFFT by employing
polyphase filtering structures [11]. Consider a time-variant
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Fig. 1. A generic baseband SMT system in the presence of phase noise and time-variant fading channel.

multipath channel hl(n) and a phase noise process φ(n), then
the received signal can be written as follows:

y(n) = ejφ(n)
L−1∑
l=0

x(n− l)hl(n) + w(n) (2)

where w(n) ∼ CN (0, σ2
w) are circularly-symmetric additive

noise samples. After the analysis filterbank, we can express
the output at m′-th symbol and k′-th subcarrier as:

zm′,k′ = e−jϕm′,k′
+∞∑

n=−∞
q (n−m′M) e−j

2π
K k′ny(n) (3)

= Im
′,k′

m′,k′ am′,k′ +
+∞∑

m=−∞
m6=m′

Im
′,k′

m,k′ am,k′

+
+∞∑

m=−∞

K−1∑
k=0
k 6=k′

Im
′,k′

m,k am,k + w̄m′,k′ (4)

which shows that the received signal is composed of the
true symbol multiplied by Im

′,k′

m′,k′ and a weighted sum of
contributions from other symbols and subcarriers. For an ideal
system, correlation between the transmit and receive filters is
represented by the ambiguity function: Am,k =. The interfer-
ence components in (4) with mapping (m, k) → (m′, k′) are
defined as:

Im
′,k′

m,k =
+∞∑

n=−∞

L−1∑
l=0

q (n−m′M) p (n− l −mM)

× hl(n)ejφ(n)ej
2π
K ((k−k′)n−kl)ej(ϕm,k−ϕm′,k′) (5)

≈
+∞∑

n=−∞
gm′,m(n)Hk(n)ejφ(n)

× ej
2π
K (k−k′)nej(ϕm,k−ϕm′,k′) (6)

where gm′,m(n) = q (n−m′M) p (n−mM), (6) is a rea-
sonable approximation, if the channel frequency-selectivity
is mild, so that

∑L−1
l=0 p (n− l −mM)hl(n)e−j

2π
K kl ≈

p (n−mM)Hk(n), and Hk(n) is the channel frequency
response (CFR) at the n-th time instant and k-th subcarrier.1

We assume a wide sense stationary channel process hl(n)
with an uncorrelated scattering environment. The length−L
impulse response hl(n) is modeled by zero-mean independent
complex Gaussian random variable (RV). They have exponen-

1This assumption holds true when subcarrier spacing fsub = B/K is much
smaller than coherence bandwidth Bc or prototype filters are sufficiently time-
localized. Nonetheless, it is well-known that the benefits of SMT w.r.t DMT
lie in high mobility scenarios [1].

tial power delay profile:

Eh
{
|hl(n)|2

}
= αe−βl, with α =

1− exp (−β)
1− exp (−βL)

(11)

and τrms = 1/β as the normalized r.m.s delay spread which
relates to coherence bandwidth as Bc ≈ 1/(τrmsTs) [12].
Since the channel is time-variant, the fading coefficients are
correlated at times n′Ts and n′′Ts represented by:

Rl,q(n′, n′′) = Eh
{
hl(n′)h∗q(n

′′)
}

(12)

= αe−βlJ0 (2πfd|n′ − n′′|Ts) δl,q (13)

where fd is the maximum Doppler shift, J0(·) is the zero-
order Bessel function of the first kind, δl,q is the Kronecker
delta function and Ts is the sampling duration. Using (11) and
(13), the auto-correlation between the frequency coefficients
separated by n samples and k subcarriers is given by:

ρn,k = Eh {Hk(n)H∗0 (0)} (14)

= αJ0(2πfdnTs)
L−1∑
l=0

e−βle−
2π
K lk. (15)

If gm(n) = q (n) p (n−mM) and H̄m,k =
eϕm,k

∑+∞
n=−∞ gm(n)Hk(n)e

2π
K kn is the cross CFR

without phase noise, then it can be shown that:

ρ̄m,k = Eh
{
H̄m,kH̄

∗
0,0

}
(16)

= eϕm,k
+∞∑

n′,n′′=−∞
gm(n′)g0(n′′)ρn′′−n′,ke

2π
K kn′ (17)

and the power of (m, k)-th CFR is |Ām,k|2 =
Eh
{∣∣H̄m,k

∣∣2} =
∑
n′,n′′

gm(n′)gm(n′′)ρn′′−n′,0e
2π
K k(n′−n′′).

Note that if fd = 0, then |Ām,k|2 = |Am,k|2.

The zero-mean stationary phase noise realization φ(n)
resembles practical oscillators in terms of its power spec-
tral density (PSD) shape. One of PSD shape of choice is
the so-called Linear decay spectrum [13]. The frequency-
characterization of the phase noise process is then given by
the double-sided PSD as:

Lφ(f) = 10−c +


10−a |f | ≤ fl
10−b

f−fl
fh−fl

−a
f > fl

10b
f+fl
fh−fl

−a
f < −fl

(18)

where fl is 3-dB bandwidth of the reference signal phase noise,
the parameters a and c denote noise floors at frequencies lower
than fl and higher than fh respectively, whereas b represents
spectral decay in between the two white noise regions. The
inverse Fourier transform of Lφ(f) gives the auto-correlation



Icm,k = (ρ̄m,k −Am,k) H̄0,0 +
√∣∣Ām,k∣∣2 − |ρ̄m,k|2∆m,k︸ ︷︷ ︸

, Tm,k

+
(
eϕm,k

∞∑
n=−∞

gm(n)Hk(n)φ(n)e
2π
K kn

︸ ︷︷ ︸
, Um,k

)
(7)

ς
(1)
m,k = <2

{
ρ̄m,k −Am,k

}
Eh
{ ∣∣∣<{H0,0

}∣∣∣2}+=2
{
ρ̄m,k −Am,k

}
Eh
{ ∣∣∣={H0,0

}∣∣∣2}+
( ∣∣Ām,k∣∣2−|ρ̄m,k|2 )E∆{ ∣∣∣<{∆m,k

}∣∣∣2}
(a)
=
|Am,k|2 +

∣∣Ām,k∣∣2
2

−<
{
ρ̄m,k

}
<
{
Am,k

}
−=

{
ρ̄m,k

}
=
{
Am,k

}
(8)

ς
(2)
m,k =

∞∑
n′,n′′=−∞

gm(n′)gm(n′′)Eφ,h

{
φ(n′)φ(n′′)

(
<{Hk(n′)}<{Hk(n′′)} sin Φ(n′)

m,k sin Φ(n′′)
m,k + ={Hk(n′)}={Hk(n′′)}

× cos Φ(n′)
m,k cos Φ(n′′)

m,k + <{Hk(n′)}={Hk(n′′)} sin Φ(n′)
m,k cos Φ(n′′)

m,k + ={Hk(n′)}<{Hk(n′′)} cos Φ(n′)
m,k sin Φ(n′′)

m,k

)}
(9)

(b)
=

∞∑
n=−∞

∞∑
q=−∞

gm(n)gm(n+ q)Rφ(q)R(<)
H (q, k) cos

(
2π
K
kq

)
(10)

function Rφ(n) = Eφ {φ(m)φ(m+ n)} that is only a function
of time difference nTs. When the variance of the phase
samples: σ2

φ = Rφ(0) is small, as is usually the case with
realistic frequency synthesizers, the complex exponential can
be well captured by the first-order power series approximate:

θ(n) = ejφ(n) =
∞∑
i=0

(
φ(n)

)i
i!

≈ 1 + φ(n) (19)

and similarly, the PSD of θ(n) is given by: Lθ(f) ≈ δ(f) +
Lφ(f).

III. PROPERTIES OF INTERFERENCE COMPONENTS

Assume the transmission over wide-sense stationary en-
vironment (i.e., both the channel and phase noise processes
have fixed distributions) and the prototype filters have even
symmetry, then interference power computation is indepen-
dent of the time/frequency points (m′, k′). Hence, we omit
symbol/subcarrier indices for brevity and treat I0,0

m,k , Im,k
as a general interference component originating from k-th
subcarrier in m-th symbol.

A. Coherent Receiver

In order to quantify the combined effects of both the chan-
nel and phase noise, we derive interference power as a function
of correlation functions ρ̄n,k and Rφ(n) respectively. Since,
we have apriori knowledge of channel but an unknown phase
process, we adopt the following mean-square-error (MSE)
function:

MSE = E


∣∣∣∣∣<
{
z0,0 − H̄0,0

+∞∑
m=−∞

K−1∑
k=0

Am,kam,k

}∣∣∣∣∣
2
 .

(20)
In the sequel, we assume that the channel coefficients H̄(m, k)
could be modeled by a correlation model:

H̄m,k = ρ̄m,kH̄0,0 +
√∣∣Ām,k∣∣2 − |ρ̄m,k|2∆m,k (21)

with H̄0,0,∆m,k ∼ CN (0, 1). Now, we can re-define effective
interference for coherent case from (20) given as (7) at the top
of this page.

Remark 1: Given the independence between H̄m,k, ∆m,k,
φ(n) and am,k, it is obvious that each interference term

ζm,k = Icm,kam,k is statistically-independent, zero-mean and

has variance Eh,φ
{
|< {ζm,k}|2

}
= ςm,kσ

2
a. In summary, (20)

can be simplified as: MSE = σ2
w/2 + σ2

a

∑
m,k ςm,k.

Remark 2: For the sake of exposition, assume a phase-
noise-free system, then the second term in (20) is the expected
intrinsic response for a single-tap equalizer. In essence, closer
the expected response is to a noiseless observation, better
orthogonalized SMT design is. This implies that SMT sys-
tem should be designed such that <

{∑
m,k H̄m,kam,k

}
'

<
{
H̄0,0

∑
m,k Am,kam,k

}
for all channel realizations hl(n)

in the distribution. Knowing that only real part is relevant,
a simple zero-forcing equalizer yields the symbol estimates:
â0,0 = <

{
z0,0/H̄0,0

}
. As a result, z0,0 in (4) can be easily

seen to retain a correlated component due to limited auto-
correlation 0 ≤ |ρ̄m,k − Am,k| ≤ |Am,k| and an uncorrelated
term that is aligned with the real field. These components
can be linked directly to a processed interference in (7). In
a non-time-varying flat fading scenario, ρ̄m,k = Am,k and
Tm,k = 0, ∀ m, k.

Remark 3: The perfect knowledge of H̄0,0 means that the
desired signal is self-affected by the phase noise distortion,
since

∣∣<{Ic0,0}∣∣ = |= {U0,0}| ≥ 0, where the equality holds
if Hk(n) = 1, ∀ k, n (more on this special case in Section
III-B).

Given a certain channel hl(n) and phase noise φ(n)
realization, the effective signal-to-interference-plus-noise ratio
(SINR) is defined as:

SINR (h, φ) =
|< {A0,0}|2∣∣∣={U0,0

}∣∣∣2+ +∞∑
m=−∞

K−1∑
k=0︸ ︷︷ ︸

(m, k) 6= (0, 0)

∣∣∣<{Icm,k}∣∣∣2+ SNR−1

(22)
where SNR = 2σ2

a/σ
2
w and <{A0,0} = 1 for orthogonal

designs. If we approximate interference components Icm,k as
Gaussian distributed, then for MP -PAM symbols am,k, the
symbol-error-probability (SEP) is well-known as [12]:

Ps = 2
(
1− 1

MP

)
Eh,φ

{
Q

(√
3

M2
P − 1

SINR (h, φ)

)}
(23)



where Q(·) is the Gaussian Q-function. In general, the
SEP from (23) is not analytically tractable, we hence fo-
cus on the power of interference components Icm,k in-
stead. Let Φ(n)

m,k , 2π
K kn + ϕm,k, then the power of

the RVs <{Tm,k} and ={Um,k} denoted by ς
(1)
m,k =

Eh,∆
{
|< {Tm,k}|2

}
and ς(2)

m,k = Eh,φ
{
|= {Um,k}|2

}
respec-

tively are given at the top of the previous page, where (a)
follows from the fact that ∆(m, k) and H̄(m, k) are uncor-
related, and in step (b) made the substitution q = n′ − n′′

and employed the channel cross-correlation R
(<)
H (q, k) =

Eh
{
<
{
Hk(n)

}
<
{
Hk(n+ q)

}}
= J0 (2πqfdTs) /2 and

R
(=)
H (q, k) = Eh

{
=
{
Hk(n)

}
=
{
Hk(n+ q)

}}
= R

(<)
H (q, k),

since hl(n) is a proper RV. Finally, ςm,k = ς
(1)
m,k + ς

(2)
m,k gives

us the total power of Icm,k. Several key properties of Icm,k can
be outlined from (7)-(10) and (17).

• From (8), ς(1)
m,k is an indicator of channel dispersion

as ς(1)
m,k → 0, ∀ m, k under ideal channel conditions

and worsens with higher selectivity. The former can be
proved under the limit of slow-flat fading cases by the
fact that ρ̄m,k is purely imaginary for (m, k)mod2 6=
(0, 0),

(
i.e, <

{
ρ̄m,k

}
= <

{
Am,k

}
= 0, =

{
ρ̄m,k

}
=

=
{
Am,k

}
and |Am,k|2 =

∣∣Ām,k∣∣2 ).
• If the channel is frequency-flat over the

entire bandwidth B, then defining Ãm,k(ν) =∑+∞
n=−∞ Jν(2πfdTsn)gm(n) exp

(
 2π
K kn

)
, we

have ρ̄m,k = eϕm,k
∑+∞
ν=−∞ Ãm,k(ν)Ã0,0(ν)

and
∣∣Ām,k∣∣2 =

∑+∞
ν=−∞

∣∣∣Ãm,k(ν)
∣∣∣2. Moreover,

for small but realistic Doppler spectrum,
ν = 0 gives a reasonable approximate.
Thus, ρ̄m,k ≈ J0(2πmMfdTs)Am,k and∣∣Ām,k∣∣2 ≈ |J0(2πmMfdTs)|2 |Am,k|2 so that
for (m, k)mod2 6= (0, 0):

ς
(1)
m,k =

(
1− J0

(
2πmMfdTs

))2

2
|Am,k|2 (24)

which causes both ISI and ICI but all the distortion
arises from m 6= 0 symbols as ς(1)

0,k = 0 for all k.

• For the opposite case of entirely frequency-selective
channels, we have ρ̄m,k = ρ0,kAm,k, |Am,k|2 =∣∣Ām,k∣∣2 and,

ς
(1)
m,k=

{(
1−<{ρ0,k}

)
|Am,k|2 , (m, k)mod2 = (0, 0)(

1−={ρ0,k}
)
|Am,k|2 , (m, k)mod2 6= (0, 0)

(25)
where a lack of ISI is obvious for all m.

B. AWGN Channel

In this section, we try to gain more insight into the impact
of phase noise by neglecting the influence of channel. Then,
(6) can be re-written as:

Im,k =
+∞∑

n=−∞
gm(n)ejφ(n)eΦ

(n)
m,k . (26)

The statistical parameters of CPE’s distribution are essential
because their significance implies the achievable gain with any

CPE correction method. The mean of <{I0,0} is:

µ0,0 = e−σ
2
φ/2

+∞∑
n=−∞

g0(n) = e−σ
2
φ/2 (27)

and the variance: σ2
0,0 = Eφ

{
|< {I0,0}|2

}
− µ2

0,0 of the CPE
term can be derived as:

σ2
0,0 =

e−σ
2
φ

2

+∞∑
n′=−∞

+∞∑
n′′=−∞

g0(n′)g0(n′′)

×
(
eRφ(n′−n′′) + e−Rφ(n′−n′′)

)
− e−σ

2
φ (28)

where we used the fact that φ(n) ∼ N (0, σ2
φ) and

E
{
eφ(n)

}
= e−σ

2
φ/2. It is worth noting that the convergence

of µ0,0 to A0,0 for negligible phase noise is implicit. Another
key aspect is that (27) has the same value as it would have
been in DMT and FMT systems [4] but the basic difference
lies in (28). In fact, it can be deduced by simply using the
approximate phase model (19) giving:

<{Im,k} ≈ <{Am,k} −
+∞∑

n=−∞
φ(n)gm(n) sin Φ(n)

m,k (29)

where interestingly, we note that the block-wise mean of phase
process φ(n) is entirely aligned across imaginary axis2 i.e.,
I0,0 = A0,0. It can hence be concluded that CPE correction
in SMT system would not be beneficial.

Noting that variance of <{Im,k} given by σ2
m,k =

Eφ
{
|< {Im,k}|2

}
is due to the random term in (29), a general

expression for σ2
m,k can be computed as follows:

σ2
m,k =

+∞∑
n=−∞

+∞∑
q=−∞

gm(n)gm(n+ q)Rφ (q)

× sin Φ(n)
m,k sin Φ(n+q)

m,k . (30)

Let SG(f ;m, k) is the discrete-time Fourier transform of
G(q;m, k) =

∑+∞
n=−∞ gm(n)gm(n + q) exp

(
 2π
M kn

)
, then

after some manipulation, it can be shown that:

σ2
m,k =

1
4

[∫ 1

0

SG (f ;m, 0)

×
(
Sφ

(
−f − k

K

)
+ Sφ

(
−f +

k

K

))
df

− eπ(m+k)

∫ 1

0

SG (f ;m, k)Sφ

(
−f − k

K

)
df

− e−π(m+k)

∫ 1

0

SG (f ;m,−k)Sφ

(
−f +

k

K

)
df

]
(31)

where Sφ(f) is the discrete phase noise spectrum given
by Sφ(f) = (1/Ts)Lφ(f/Ts), SG(f ;m, k) = SPQ(f −
k
M ;m)S∗PQ(f ;m) and SPQ(f ;m) = P (f)e−2πmMf ~
Q∗(−f). To understand this relation, assume we have ideal
prototype filters whose frequency-confined response is given
by P (f) = Q(f) = rect (Kf). Then, by computing
SG(f ;m, k), we can see that it will be non-zero for k = 0 and

2The CPE is, in essence, the scaled instantaneous mean of φ(n) in
DMT systems [7]. In general, analogy holds for entire ISI in SMT sys-
tems with some filtering. For orthogonal prototype filters, <{Im,0} '
±

P+∞
n=−∞ φ(n)gm(n), ∀ mmod2 6= 0 is approximately the average of

φ(n) in m-th offset symbol and a zero block-wise average means nearly no
existence of ISI. Nevertheless, we called <{I0,0} as CPE in (27) and (28).
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Fig. 2. Power spectral density (single-side) of the phase noise process φ(n)
with fl = 10 KHz.

zero otherwise. From this observation, we can conclude that
distortion due to phase noise corresponds to the power of phase
noise spectrum inside one subcarrier spacing fsub and ICI
arises due to frequency-shifted phase noise PSD: Sφ(−f± k

K ).

In summary, for a fixed bandwidth B and power of the
phase noise spectrum falling inside B, the total interference
power is independent of the number of subcarriers K. Increas-
ing the bandwidth B monotonically increases the interference
power and, if K is kept constant, then ISI increase might
outweigh that in ICI. The PSD of phase noise Sφ(f) deter-
mines the distribution of power amongst various interference
components. One can deduce that if fh � fsub, ICI has rather
minimal effect. For the converse case fh � fsub, SMT suffers
from relatively lower ICI than DMT due to higher frequency-
confinement. It is the combination of prototype filters and
PSD of phase noise that defines the robustness against the
interfering components. In fact, any realistic prototype filter
pair with spectrum SG(f ;m, k) creates side-lobes outside
|f | ≥ fsub/2 and from (31), it has an adverse effect on the
phase noise sensitivity.

IV. NUMERICAL ANALYSIS

Simulations are carried out with a multitap channel model
with r.m.s delay spread of τrmsTs = 100 ns (unless otherwise
stated differently). The prototype filters p(n) = q(n) are
obtained by truncating the sampled version of pulses p(n) =
p(t)|t=nTs from the extended Gaussian function (EGF) [10], to
a length Lpq = 4K for a system with K = 128 subcarriers. We
assume the receiver knows perfectly its own channel coefficient
but H̄(m, k), ∀ (m, k) 6= (0, 0) are unknown. The phase noise
process φ(n) has PSD shape with parameters set to: fh = 10fl,
a = 7, b = 4, c = 11 (shown in Fig. 2) having variance
σ2
φ ≈ 4× 10−3 at 10 MHz sampling rate and fl = 10 KHz.

In the first set of simulations, we have computed ICI as a
function of originating subcarrier location. It shows that ISI in
SMT for the most frequency-localized pulse (λ = 1) is on a
par with CPE in DMT and the first subcarrier produced most of
the interference. Also, as the localization factor λ gets higher,
lesser frequency confinement of the filter caused a shallower
ICI fall and decrease in ISI. One can easily conclude that in the
absence of phase noise compensator, an ISI resilient pulse (λ ≥
2) is preferable, whereas if a frequency-domain compensation
scheme is employed, the low-pass behavior of SMT (λ ≤ 2)
essentially requires lesser-order ICI mitigation.
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Fig. 3. ICI extension in SMT and DMT systems with AWGN channel,
fl = 10 KHz and B = 10 MHz. Note that k = 0 corresponds to CPE in
DMT and ISI in SMT.
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Fig. 4. Signal-to-interference ratio (SIR) versus subcarrier spacing to corner
frequency ratio fsub/fl for a fixed subcarrier number and AWGN channel.
Lines and markers indicate analytical and simulation results respectively.
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Fig. 5. SIR versus fsub/fl for a fixed subcarrier number and Rayleigh fading
channel with fd = 600 Hz, L = 3 and λ = 2. Lines and markers indicate
analytical and simulation results respectively.

In Fig. 4, we study the effect of subcarrier spacing fsub
relative to the corner frequency fl on the SIR performance.
A decrease in distortion with fsub/fl is justifiable because
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Fig. 6. SIR of SMT system versus normalized Doppler shift fdTs, λ = 2
and phase noise with fsub/fl ≈ 7.8.
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Fig. 7. Symbol error rate (SER) for AWGN channel versus SNR for various
constellation sizes with SMT having λ = 2 and phase noise with fsub/fl ≈
7.8.

smaller fsub relative to fl will cause ICI components to
assemble in the vicinity of the decay region in Fig. 2. More-
over, decreasing fsub will decorrelate phase noise samples.
Intuitively, a more noise-like phase noise process increases
sensitivity to phase noise distortion and as a result, makes
the phase noise estimation a challenge. A trade-off in SMT
systems is that the reduction of fsub w.r.t Bc reduces the
impact of channel frequency-selectivity. It is also shown that
the EGF pulse with larger λ outperforms smaller values by
reducing ISI contribution (see Fig. 3). In fact, DMT forms an
tight upper bound on the SMT performance and is achievable
only for larger λ or smaller fsub/fl. When the transmission
suffers from channel fading, we can deduce from Fig. 5
that a gain of up to 2 dB is expected from SMT for the
defined channel conditions due to better frequency confine-
ment. The loss in wider spacings can be attributed to SMT’s
non-orthogonality in frequency-selective channels. The regime
fsub � fl is dominated by phase noise and Doppler effects.
Due to orthogonality against multipath channel ensured by
cyclic-prefix (CP), the interference power in DMT case is
independent of channel frequency-selectivity.

We also demonstrate in Fig. 6 the SIR performance of
SMT under maximum Doppler shift fd. As expected, the
channel distribution has no influence on the phase noise (PHN)
contribution in (10). For the considered phase noise model,

the total SIR performance was overshadowed by phase noise
distortion due to a dominant phase noise process. However, an
interference breakup shows decreasing SIR of channel (CHN)
part in (8) with increasing Doppler spread due to higher ς(1)

in the case of fast-fading. A comparison between flat fading
and a three tap channel model in the absence of phase noise
shows a loss as large as 23 dB due to the well-known intrinsic
interference problem in SMT systems [9].

In Fig. 7, we show the sensitivity of SMT in terms of
SER using hard-decisions. The zero-th order Taylor series
approximate of (23) is also plotted and seem to fit well with
the numerical trials for all constellations. It is clear that higher
constellations suffer more from phase noise impact while SMT
and DMT have equivalent SER performance.

V. CONCLUSIONS

We have studied the influence of oscillator phase noise
and small-scale channel fading on SMT system performance.
The ICI and ISI components, that caused time and frequency
nuances, were analyzed in detail providing insight into the
sensitivity of SMT modulation. By analytical derivations and
simulation validation, we have shown that self-interference due
to phase noise has no influence on SMT systems, while at
the same time it suffers from significant ISI. We provided the
analysis of the effects of resulting interference separately under
various channel conditions. The performance comparison of
SMT and DMT was also discussed to outline the effect of
SMT’s frequency confinement on ICI performance and its
superiority in certain scenarios.
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