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Abstract—In this paper, we present a novel algorithm for
oscillator phase noise estimation using two key properties of
the phase noise process in digital baseband: reduced-dimensional
characteristics when expanded with Karhunen-Loeve basis func-
tions and statistical improperness of the phase noise coefficients
paving the way for the optimality of widely-linear (WL) estima-
tors. The proposed methods are designed to take full-advantage
of the second-order statistics, rank-deficient models and has
an attractive trade-off between performance and complexity. To
compute rank-reduced WL Wiener filter for highly compressed
estimation, two methods are derived and analyzed using either
data or parameter subspace reduction. Numerical experiments
are presented for practically relevant phase noise distributions
and they demonstrate the applicability of the proposed methods.
They show that WL estimator can achieve up to 5 dB improve-
ment over the best strictly linear estimator, with the maximum
achieved in complexity-favorable low-rank conditions.

Keywords: Phase noise, Improper signals, Wiener filter,
Karhunen-Loeve transform.

I. INTRODUCTION AND BACKGROUND

Modern wireless communication systems, especially the
multicarrier waveforms, are sensitive to phase noise distortion
[1]. It appears as a random phase deviation of the frequency
synthesizer over time with respect to (w.r.t) a pure sinusoidal
tone. With the emergence of fully integrated solutions for
mobile terminals, the issue of phase noise becomes even
more pronounced, owing to the inferior fabrication accuracy
in cost effective designs. Striving for higher spectral efficiency
and throughput, efficient estimation of “mitigable” distortion
becomes a key parameter for the deployment of higher-order
constellations.

A number of approaches for phase tracking have been
proposed, including Fourier transform based approaches [2]–
[4], state-space algorithm based on Kalman filter [5] and
linear-minimum-mean-square-error (LMMSE) based methods
[1], [6]–[8]. The problem of phase noise estimation is more
involved, than for example channel estimation, due to its
continuous evolution nature. A reduced-rank estimation is
indeed superior in many respects. In many applications, high
computational complexity is undesirable or model reduction is
necessary to enhance robustness against noise at the expense of
model bias. Fortunately, a realistic phase noise has been known
to be a slowly varying process meaning that a high correla-
tion is expected and a low-rank approximation captures the
dominant structure of the linear model [3]. It is worthwhile to
point out that low-rank DFT approximations suffer from well-
known edge effects [4]. Distinction must be made between
dimensionality of the data signal and unknown parameters.
In this context, principal component analysis has been widely
employed for transformation of the received vectors in blind
techniques [9], whereas [10] derived a reduced-rank Wiener
filter through parameter compression, calling it the generalized
Karhunen-Loeve transform (GKLT).

The real phase noise process φ(n) corrupts the information-
bearing signal through a multiplicative term θ(n) = eφ(n).

Unlike [4], [7], [8] and by directly tracking θ(n), our ap-
proach does not put any restriction on the magnitude of phase
process φ(n). This paper studies an enhanced phase noise
estimator by exploiting the improperness of θ(n). A zero-
mean complex signal s(n) is said to be improper if its pseudo-
covariance E

{
s2(n)

}
is non-zero. This condition is fulfilled

when the real and imaginary parts of a complex process are
correlated or have unequal variance. It has been shown that
the performance of the linear estimators can be improved if
not only the observation y(n) but also the complex conjugate
y∗(n) of the observation is used for estimation of the desired
signal [11]1. The resulting schemes are commonly known as
“widely linear” (WL) solutions. The useful signal’s improper-
ness is beneficial for improving the estimation performance,
if there exists statistical dependence between y(n) and y∗(n).
In the maximum-likelihood context, the increase in degrees
of freedom due to improper signals has been exploited for
interference suppression [13]. To the best of our knowledge,
the application of WL solution to the phase noise estimation
problem is still unexplored.

The rest of this paper is organized as follows. In section
II, we describe the reference system and introduce WL pro-
cessing for phase noise estimation. An algorithm to efficiently
implement full-rank WL filter is discussed in section III. In
section IV we derive a reduced-rank version for the WL-
MMSE filtering. Simulation results are presented in V and
conclusions are drawn in the last section.

Notation: (·)†, ‖ · ‖F , (·)∗, (·)T and (·)H denote pseudo-
inverse, Frobenius norm, conjugation, transpose and conjugate
transpose operations respectively; I and 0 represent the identity
matrix and the null matrices respectively; Tr{·} and E{·} refer
to trace and expectation operators respectively;  =

√
−1 and

� denotes element-wise vector product; subscripts (·)r and
(·)i represent the real and imaginary parts respectively; diag [·]
creates a diagonal matrix from the argument vector.

II. SYSTEM MODEL AND WL ESTIMATOR

Our system assumes a bursty transmission of N symbols
and the estimator operates in either data-aided or decision
directed fashion. The baseband equivalent of a noisy channel
is described in the following relation:

y′ = x� θ′ +w (1)

where y′ , [y′(1), y′(2), . . . , y′(N)]T and w ,
[w(1), w(2), . . . , w(N)]T symbolize the channel output
and the additive proper white Gaussian noise with distribution
w(n) ∼ CN (0, σ2

w) respectively. In the case of fading
channels, the system input x , [x(1), x(2), . . . , x(N)]T
can be treated as a transmit signal filtered by a channel

1The performance equivalence between augmented formulation x̄(n) =
[x(n) x∗(n)]T and the alternative approach with processing of the real and
imaginary inputs: x̃(n) = [xr(n) xi(n)]T has been well established [12]. We
will use ascent (̄·) for the former and (̃·) for the latter case variable formats.



realization that can either be a priori known or estimated
jointly with the considered phase tracking algorithm
[5]. Moreover θ′ , [eφ(1), eφ(2), . . . , eφ(N)]T denotes
the unknown and to-be-estimated phase noise process
with functional dependence on zero-mean correlated
Gaussian-distributed samples: φ(n) ∼ N

(
0, σ2

φn

)
,

with the cross-correlation Rφφ(n,m) = E {φ(n)φ(m)}.
The a-priori known covariance functions of θ are:
Cθθ(n,m) = E

{
θ′(n)θ

′∗(m)
}
− µθ(n)µ∗θ(m) and

Cθθ(n,m) = E {θ′(n)θ′(m)} − µθ(n)µθ(m), where
E
{
θ′(n)θ

′∗(m)
}

= e−(σ2
φn

+σ2
φm
−2Rφφ(n,m))/2 and

µθ(n) = E
{
eφ(n)

}
= E

{
e−φ(n)

}
= e−σ

2
φn
/2.

In the sequel, we subtract the constant part from (1) i.e.,
y = y′ − ȳ = x � θ +w = s +w, so that both y and θ =
θ′−E

{
θ′
}

are zero-mean random variables. We are interested
in estimating θ′ such that its complex-valued estimator has the
widely-linear structure:

θ̂
′

= [F1 F2]︸ ︷︷ ︸
F̄

[
y
y∗

]
︸ ︷︷ ︸
ȳ

+E
{
θ′
}

= θ̂ + µθ (2)

or equivalently for θ estimation,

θ̂ = [1 1]︸ ︷︷ ︸
G

[
θ̂r
θ̂i

]
︸ ︷︷ ︸

ˆ̃
θ

= G
[
H11 H12

H21 H22

]
︸ ︷︷ ︸

H̃

[
yr
yi

]
︸ ︷︷ ︸
ỹ

(3)

where H11 = F1,r + F2,r, H22 = F1,r −F2,r, H12 = F2,i−
F1,i, and H21 = F1,i + F2,i. Note that for strictly linear (SL)
case, H11 = H22 and H12 = −H21.

It is of particular interest to compare WL solutions against
their SL variants. Assuming proper signals s(n) and w(n),
and a small phase noise magnitude i.e., θ(n) ≈ 1 + φ(n) and
s(n) = x(n)φ(n), the decisive factors are the two correlation
measures: µr = Eφ,x {s(n)sr(n)} = σ2

φn
Ex
{
x2
i (n)

}
and

µi = Eφ,x {s(n)si(n)} = σ2
φn
Ex
{
x2
r(n)

}
, using the fact

that Ex {xr(n)xi(n)} = 0. For the special case of M-PSK
modulation: x(n) = exp(ϕ(n)) with ϕ(n) = 2πmnM +ϕ0, de-
rotating y(n) we have µr = 0, therefore WL processing simply
means that imaginary coordinates: yi(n) = φ(n) + wi(n)
construct sufficient statistics. Whereas, for a more general case,
x(n) ∈ C, it is the disparity between µr and µi that allows WL
processing to exhibit performance advantage over SL, given
the power limit: µ = µr + µi.

Quantitatively, the WL’s performance advantage δ2
e can

be determined using the approximate diagonalization of the
covariance matrices. For a unitary matrix U, if Pyy =
E
{
yyT

}
= UΛpUT , then Cyy = E

{
yyH

}
≈ UΛcUH ,

giving [14]:

δ2
e = ρH

(
C∗yy −P∗yyC

−1
yy Pyy

)−1
ρ (4)

≈ ρHU∗ΛUTρ (5)

where the diagonal matrices are defined as Λ =
diag [δ1, δ2, . . . , δN ], Λc = diag [δc,1, δc,2, . . . , δc,N ] and
Λp = diag [δp,1, δp,2, . . . , δp,N ]. The positive semi-
definiteness of the inverse matrix in (4) ensures that δ2

e ≥ 0.
From (5), we can easily show that:

δn =
δc,n

δ2
c,n − δ2

p,n

. (6)

As expected, an increase in the degree of improperness, i.e.,
higher δp,n, promises higher MSE gain.

In the following sections, we derive FIR filters for WL-
MMSE estimation using (2) or (3).

III. ITERATIVE WL ESTIMATION

Defining z̃ = ˆ̃θ − θ̃, the objective function can be stated
as follows:

J̃opt = E
{

Tr
{
z̃z̃T

}}
(7)

= H̃CỹỹH̃T − H̃Cỹθ̃ −Cθ̃ỹH̃
T + Cθ̃θ̃ (8)

where Cỹỹ = E
{
ỹỹT

}
, Cθ̃ỹ = E

{
θ̃ỹT

}
and Cθ̃θ̃ =

E
{
θ̃θ̃

T
}

. For the minimization of MSE in (8), standard rules

for differentiation w.r.t the matrix H̃ ∈ R2N×2N are applied
that lead to the following condition:

H̃Cỹỹ = Cθ̃ỹ. (9)

Solving (9) for the Wiener filter matrix H̃ = Cθ̃ỹC
−1
ỹỹ requires

computationally expensive matrix inverse operation. Instead,
we note that (9) is equivalent to solving a system of linear
equations Cỹỹw̃ = ỹ followed by projection onto Cθ̃ỹ . The
conjugate gradient (CG) method solves for w̃ by arriving at
the optimal solution step-by-step. It does so by successively
looking in mutually conjugate directions in Krylov subspace.
The complete algorithm is listed in Table I.

It clear from Table I that, in each iteration, the computa-
tional complexity of this IWL algorithm is dominated by steps
3 and 5. For instance, O(N2) operations are needed to execute
matrix-vector multiplication in step 5. One possible solution
is to approximate Cỹỹ by a banded approximate having band-
width Q. As a consequence, the complexity is reduced to
O(QN) at the cost of approximation error.

The IWL algorithm requires a maximum of N iterations to
converge to the optimum solution. Because phase noise has low
signal dimensions, a relatively small number of iteration were
required to converge to the exact estimate in our simulation
environment.

IV. REDUCED DIMENSION WL-MMSE FILTERING

As the number of unknown but correlated phase noise terms
θ(n) equals the dimension of y, the aim here is to find a
reduced-rank realization of N × 1 vector θ to make the esti-
mation procedure efficient and feasible. Given the observation
reference ȳ =

[
yTyH

]T
, the best linear estimator of θ in

MSE sense is the well-known Wiener filter F̄ = Cθ̄ȳC
−1
ȳȳ ,

where Cθ̄ȳ = E
{
θ̄ȳH

}
and Cȳȳ = E

{
ȳȳH

}
. Let ˆ̄θη = F̆ȳ

be a reduced dimensional estimate of θ̄. To find F̆, we
will consider two algorithms for rank reduction namely Data
subspace reduction (DSR) and Parameter subspace reduction
(PSR).

A. Data Subspace Reduction via Principal Components

One way of achieving dimensionality reduction is to curb
the rank of the observation covariance matrix Cȳȳ . This will
essentially project the received vector onto an estimate of
lower dimensional signal subspace with significant energy. A
reduction in rank follows when N is larger than the signal
subspace and in fact, for the phase noise estimator, the energy
associated with the parameter subspace is expected to be
smaller than the data signal subspace. The DSR estimation
is based on the eigen-decomposition:

Cȳȳ = VNΛNVH
N (10)



1: Initialize: ŵ0 = 0, p0 = −g0 = ỹ
2: for k = 0 to K − 1
3: αk+1 = gTk gk

pTkCỹỹpk
4: ŵk+1 = ŵk + αk+1pk
5: gk+1 = gk + αk+1Cỹỹpk

6: βk+1 = gTk+1gk+1

gTk gk
7: pk+1 = −gk+1 + βk+1pk
8: end for
9: ˆ̃θ = Cθ̃ỹŵK−1

TABLE I. THE PROPOSED ITERATIVE WL (IWL) ALGORITHM

where V = [v1,v2, . . . ,v2N ] is the orthonormal matrix
containing eigenvectors vi and ΛN is the diagonal matrix
with eigen-value ordering λ1 ≥ λ2 ≥ · · · ≥ λ2N . Let Vη =
[v1,v2, . . . ,v2η]T be a 2N × 2η matrix whose columns form
the orthonormal basis for the η-dimensional subspace for the
received vector ȳη = VηVH

η ȳ and C(η)−1

ȳȳ := VηΛ−1
η VH

η .
Note that this procedure is dissimilar to [8] where effectively
the correlation matrix of the estimand is simply replaced by
its low-rank version.

The difference in MSE due to DSR relative to ˆ̄θ and the
total MSE can be computed as:

ε2
η =

1
2

Tr
{
E
{(

ˆ̄θ − ˆ̄θη
)(

ˆ̄θ − ˆ̄θη
)H}}

(11)

=
1
2

Tr
{(

Cθ̄ȳC
(η)
ȳȳ

−1
−Cθ̄ȳC

−1
ȳȳ

)
Cȳȳ

×
(
Cθ̄ȳC

(η)
ȳȳ

−1
−Cθ̄ȳC

−1
ȳȳ

)H }
(12)

=
1
2

Tr
{

Cθ̄ȳ

 2N∑
i=2η+1

viλ
−1
i v

H
i

CH
θ̄ȳ

}
(13)

MSE
(

ˆ̄θη
)

=
1
2

Tr
{
E
{(
θ̄ − ˆ̄θη

)(
θ̄ − ˆ̄θη

)H}}
(14)

=
1
2

Tr
{

Cθ̄θ̄ −Cθ̄ȳC
(η)−1

ȳȳ CH
θ̄ȳ

}
(15)

where it is obvious that the instability of C−1
ȳȳ computation

for low-dimensional ȳ has been avoided.2 Moreover, the
estimation error monotonically increases with smaller η as
revealed by (15).

For the best performance, one needs to predict the desired
signal subspace in advance so as to minimize the effect of
summation term in (13). Fortunately, rank reduction can be
applied without exact knowledge of the actual signal subspace
dimension η due to wider additive noise subspace. The major
computational effort is finding eigen-decomposition in (10)
requiring O

(
N3
)

flops.

B. Parameter Subspace Reduction via GKLT

This method instead reduces the dimension of the range
space of the filter F̆ (column space of F̄) that restricts ˆ̄θ to
lie in a reduced dimension space. The objective function to
minimize the covariance of error: z̄ = θ̄ − ˆ̄θη i.e., J̄ (η)

opt =
E
{

Tr
{
z̄z̄T

}}
, which is known to have GKLT solution [10]

explained in the following.

2There is a non-zero probability of any x(n) being zero, if its discrete
Fourier transform X(m) has spectral nulls implying that diag [x] can be
rank-deficient.

The key step here is to find the rank-constrained filter
matrix F̆ ∈ C2N×2N while minimizing the trace of the extra
covariance (or model bias) :

J̄
(η)
opt − J̄

(N)
opt = E

{
Tr
{(

F̆ȳ − F̄ȳ
)(

F̆ȳ − F̄ȳ
)H}}

= Tr
{(

F̆− F̄
)

Cȳȳ

(
F̆− F̄

)H}
. (16)

Now let us decompose the positive semi-definite matrix Cȳȳ =

C1/2
ȳȳ C1/2

ȳȳ

H
, then it is obvious that ε2

η = J̄
(η)
opt − J̄

(N)
opt is:

ε2
η =

∥∥∥(F̆− F̄
)

C1/2
ȳȳ

∥∥∥2

F
. (17)

In a result known as Eckart-Young-Mirsky Theorem [15], this
corresponds to finding a truncated SVD:

F̆C1/2
ȳȳ =

2η∑
i=1

uiσiv
H
i (18)

and F̆ =
2η∑
i=1

uiσiv
H
i C−1/2

ȳȳ (19)

where the SVD of CWL = Cθ̄ȳC
−1/2
ȳȳ = UNΣNVH

N =∑2N
i=1 uiσiv

H
i . Due to the fact that improperness destroys even

multiplicity of the singular-values3, (19) approximates 2 × η
significant canonical correlations in the ordering σ1 ≥ σ2 ≥
· · · ≥ σ2η .

Proposition 1: The estimation MSE
(

ˆ̄θη
)

between θ̄ and

its low-rank approximate ˆ̄θη is the sum of model bias ε2
η given

by:

ε2
η =

1
2

2N∑
i=2η+1

σ2
i (20)

and the error variance of the full-rank estimator ν2 =
1
2E
{

Tr
{(
θ̄ − ˆ̄θ

)(
θ̄ − ˆ̄θ

)H}}
known to be:

ν2 =
1
2

Tr
{
Cθ̄θ̄ −Cθ̄ȳC

−1
ȳȳ Cȳθ̄

}
(21)

=
1
2

2N∑
i=1

(
σ2
θ,i − σ2

i

)
(22)

where σ2
θ̄,i

are the singular-values of Cθ̄θ̄.

Proof: See appendix A.

Remark 1: A crucial implication of (30) is that reducing
dimension η monotonically increases the error variance e2

η by
elevating the model bias ε2

η or equivalently by shifting purged
singular-values from the first to second summation in (30).

Remark 2: If we neglect ν2 for the moment and assume
that in SL case CSL = Cθ̄ȳC

−1/2
ȳȳ has replicated singular-

values ~σ1, ~σ2, . . . , ~σN , then the reduced-rank WL system curbs
model bias by an amount:

δ2
ε = 2

N∑
i=η+1

~σ2
i −

2N∑
i=2η+1

σ2
i ≥ 0 (23)

where the inequality results from singular-value analysis for
matrix perturbations [15]. Interestingly, if one considers that
the distribution of θ̄ (e.g., for models in [1], [2], [5], [16])

3Proper case has even-multiplicity i.e., σ2i−1 = σ2i, ∀ i = 1, 2, · · · , N .



effects the composition of Cθ̄θ̄ and hence, the imbalance
between σ2i−1 and σ2i, the gap in (23) with decreasing η
values can not only widen but in some cases close down due
to spectrum dependent disparity in the singular values σi.

The major computational burden in (19) is the com-
putation of the inverse-square-root matrix C−1/2

ȳȳ requiring
O
(
N3
)
. To circumvent the explicit computation, an implicit

technique is the fixed-rank matrix factorization (FMF). Let
Ȟ =

(
ŨηΣ̃

1/2
η

)(
Σ̃1/2
η ṼT

η

)
= QRT , where Q ∈ R2N×2η

∗ ,

R ∈ R2N×2η
∗ and Rn×m∗ is the set of fixed column rank n×m

real matrices. The solution ˆ̃θη = Ȟỹ is obtained from an MSE
minimization problem:

J̃
(η)
opt = E

{
Tr
{(

Ȟỹ − θ̃
)(

Ȟỹ − θ̃
)T}}

(24)

= Tr
{

Cθ̃θ̃ + QRTCỹỹRQT−QRTCỹθ̃ −Cθ̃ỹRQT
}

(25)

where the optimal solution satisfies following conditions at the
stationary point:

−Cθ̃ỹR + QRTCỹỹR = 0 (26)

−CT
ỹθ̃

Q + CỹỹRQTQ = 0. (27)

Due to the inter-dependence between optimization variables,
closed-form results are rather difficult to derive. However, a
useful technique is to minimize J̃ (η)

opt w.r.t Q and R by alter-
native optimization. At the k-th iteration, parameter updates
comprises of:

Q(k + 1) = Cθ̃ỹR(k)
(
RT (k)CỹỹR(k)

)−1
(28)

R(k + 1) = C−1
ỹỹ Cθ̃ỹQ

†(k + 1). (29)

For most practical oscillators, η � N implying that Q and
R are tall matrices and the algorithm can be realized with
O
(
N2η

)
computational operations at each iteration.

V. TEST SCENARIOS WITH NUMERICAL RESULTS

Numerical results are presented in this section with two
goals. First, the performance improvement of WL over SL
is quantified under various conditions. Next, the effectiveness
of the proposed algorithms are tested in OFDM systems
with transmission taking place over multi-tap Rayleigh fading
channels (except Fig. 1) which is equalized by a single-tap
LMMSE equalizer. Simulation environment for all numerical
experiments consists of K-sized FFT with K = N = 64 and
the total bandwidth occupation of 10 MHz. Perfect decisions
are assumed except in Fig. 4 where estimators operate in
decision-directed manner using convolutional error codes and
soft-decisions. Two phase noise models are used: In Model-A,
φ(n) is a Wiener-Lévy process [1], [5] with the distribution of
increments: φ(n) − φ(n − 1) ∼ N

(
0, σ2

ζ

)
, where as Model-

B simulates PSD of phase noise with a linear-decay behavior
(refer to [16] with parameters: a = 7, b = 2, c = 11, fl = 10
KHz and fh = 1 MHz).

Fig. 1 plots the MSE gain of WL estimator: ∆MSE =
1
N Ex

{∑N
n=1

MSE(θ̂′SL(n))
MSE(θ̂′WL(n))

}
for PSR and DSR methods. As

mentioned earlier, the gain varies with rank for both phase
noise models but depicts a unique maxima for Model-B.
However, the maximum gain achieving rank is independent
of SNR and the gain increases with higher SNR. In general,
all WL estimators converge to full-rank gain that is found to
be lower than 3-dB as expected from [11].
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Fig. 1. Gain of WL w.r.t SL system in terms of MSE versus estimator rank
over AWGN channel. a) Model-A (σ2

ζ = 10−4) and b) Model-B.
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Fig. 3. MSE of phase estimates versus Wiener phase increment variance σ2
ζ

for SNR= 20 dB.

In Fig. 2, we compare the sum-MSE of the SL and WL
estimators. In terms of MSE, we do not find much difference
in the performance of PSR and DSR methods. When the full-
rank WL estimator has little to offer (1 − 2 dB at most), its
reduced-rank version improves the MSE performance up to
5-dB w.r.t SL counterparts.

The reduction of estimation precision with higher phase
noise severity is demonstrated in Fig. 3 for the PSR method.
It is obvious that low-rank version converges to full-rank WL
estimator for lower σ2

ζ due to small dimensionality of θ where
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Fig. 4. Frame error rate (FER) performance of phase noise compensation
schemes with η = 5 and Model-B phase noise. A codeword spans 3 OFDM
symbols using rate-1/2 convolutional code and mapped to 64-QAM symbols
in a bit-interleaved-coded-modulation (BICM) structure with 802.11a/g like
subcarrier mapping. The CPE is estimated using pilot tones whereas CSI is
known perfectly.

as non-optimal rank selection in higher phase noise variance σ2
ζ

conditions reduces gap between η-rank WL and SL estimators.
In our extensive simulations, residual error in IWL persistently
dropped below −50 dB in 7 iterations, whereas it took FMF 15
iterations to achieve the same feat due to linear convergence.

Finally, we put our proposed method to test in Fig. 4 for a
cyclic-prefixed OFDM system and analyze FER performance
against common-phase-error (CPE) correction method [6] and
the state-of-the-art DFT-compressed (η-DFT) estimator in SL
MMSE class [1] with 2u + 1 = η, lP = N and consistent
compensation technique. We can observe that the proposed
method η-FMF outperforms η-DFT at FER of 10−1 by 7-dB
without iterations and η-FMF without iteration is better than η-
DFT with 2 iterations. Both techniques have comparable rank
definition i.e., Karhunen-Loeve transform (KLT) vs Fourier
transform basis functions in addition to the fact that their
complexities are scaled by the estimation order. One plausible
reason of the superior results for η-FMF, in addition to WLE
gain (Fig. 1), is the higher degree of component compression
(around 2-dB better SNR) achieved by KLT than by any DFT-
based method as obvious from the genie plots in Fig. 4.

VI. CONCLUSIONS

Optimal and reduced-rank widely-linear filters for phase
noise estimation have been presented based on MMSE crite-
rion. For large filter lengths, efficient implementations were
proposed using iterative methods and shown to allow rea-
sonable complexity reduction relative to explicit computa-
tions. Numerical results indicate that by properly selecting
estimation-rank, the complexity-reduced method can approach
the precision of a full-rank estimator, whereas performance
gains w.r.t its strictly linear counterparts are substantial, both
from the perspective of estimation accuracy and the digital
baseband error performance.

APPENDIX A
PROOF OF PROPOSITION 1

Firstly, we revisit the orthogonality property of the full-

rank estimate and its error i.e., E
{(
θ̄ − ˆ̄θ

)
ˆ̄θ
H
}

= 0. It is

important to note that (19) places ˆ̄θη in a reduced dimension
subset of subspace spanned by ˆ̄θ implying that the former can
be obtained by a projection operator as ˆ̄θη = UηUH

η
ˆ̄θ = Pη

ˆ̄θ,

where Uη is a tall matrix with orthonormal columns and Pη

is the projection on the column space of Uη . This in turn

means that E
{(
θ̄ − ˆ̄θ

)
ˆ̄θ
H

η

}
= E

{(
θ̄ − ˆ̄θ

)
ˆ̄θ
H
}

Pη = 0

also holds. Finally, the error variance of the estimate ˆ̄θη can
be derived as:

MSE
(

ˆ̄θη
)

=
1
2
E
{

Tr
{(
θ̄ − ˆ̄θη

)(
θ̄ − ˆ̄θη

)H}}
=

1
2
E
{

Tr
{(
θ̄ − ˆ̄θ + ˆ̄θ − ˆ̄θη

)(
θ̄ − ˆ̄θ + ˆ̄θ − ˆ̄θη

)H}}
=

1
2
E
{

Tr
{(
θ̄ − ˆ̄θ

)(
θ̄ − ˆ̄θ

)H
+
(

ˆ̄θ − ˆ̄θη
)(

ˆ̄θ − ˆ̄θη
)H}}

=
1
2

 2η∑
i=1

(
σ2
θ̄,i − σ

2
i

)
+

2N∑
i=2η+1

σ2
θ̄,i

 (30)

that shows the estimation error consists of two independent
components: the estimation error variance and the purged
dimension variance.
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