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Abstract—The flexibility and programmability of an
application-specific instruction-set processor (ASIP) come at
the expense of reduced area and energy efficiency compared
to application-specific integrated circuit (ASIC) solutions.
Nevertheless, ASIPs are desirable for versatile application
domains like wireless communications and software defined
radio (SDR). Typically, ASIP designers reduce the ASIC-ASIP
efficiency gap by increasingly complex architectures with
decreasing flexibility and usability. This paper takes the opposite
approach and presents concepts for a highly efficient, lightweight
SDR ASIP. Efficiency enablers include simple but effective
measures like a carefully chosen instruction set, optimized
data access techniques for efficient utilization of functional
units, and the use of flexible floating-point arithmetic with
runtime-adaptive numerical precision. We present a conceptual
processor core to show the impact of these measures and discuss
its potential as well as limitations compared to tailored ASIC
solutions. For demonstration, we choose the field of linear
MIMO detection. We present synthesis results for several design
versions in 90 nm CMOS technology and the corresponding
energy benchmarks. Also, we show post-layout results for a
selected design to demonstrate the feasibility of our concept.

Index Terms—SDR, ASIP, floating-point, adaptive precision,
area and energy efficiency

I. INTRODUCTION

The variety of wireless mobile communication standards
like IEEE 802.11a/b/g/n [1], GSM, UMTS, LTE, and LTE
Advanced [2] has motivated the use of programmable plat-
forms for physical layer processing. Instead of integrating one
application-specific integrated circuit (ASIC) for each commu-
nication standard, software defined radios (SDRs) implement
the different standards in software. A programmable platform
increases flexibility and decreases time to market, but has
drawbacks in terms of efficiency, manifested as an increase
in silicon area and energy consumption.

The simple and repetitive control flow of an ASIC can be
represented by a finite state machine (FSM) which controls
the combinational logic elements in the data path. This hard-
wired control is more energy efficient than reading instruction
words from a program memory and decoding them. Moreover,
ASIC designers can reduce energy consumption by adapting
the wordwidth of each arithmetic unit in the data path to
the individual numerical requirements at design time, while
processor cores for baseband processing are commonly limited
to one or very few integer or fixed-point formats. To mitigate
the ASIC-ASIP efficiency gap, ASIP designers have developed
increasingly complex architectures like coarse grained recon-
figurable arrays (CGRAs) controlled by an ASIP [3] or stream
based architectures [4]. While improving efficiency, these
architectures suffer from a loss of flexibility and programma-
bility. In this paper, we take the opposite design approach and
present a fully and easily programmable, flexible lightweight
SDR ASIP and its efficiency enabling concepts. We show that
a well designed lightweight ASIP surpasses other less flexible

programmable solutions from the open literature and achieves
a competitive efficiency when compared to tailored ASICs.

An efficient ASIP needs a suitable instruction set, ver-
satile enough to support a multitude of use cases but also
application-specific enough to boost the processor’s efficiency
into the range of comparable ASICs. The vectorial nature of
multiple-input multiple-output (MIMO) baseband processing
motivates a single instruction multiple data (SIMD) instruction
set with native support for complex-valued arithmetic. To
support e.g. multiple antenna configurations, the instruction set
has to handle a set of matrix and vector dimensions efficiently.
This calls for tailored permutation units to map the desired
functionality onto the existing data path. Also, to ensure
high utilization of the available functional units, a specialized
bypassing unit that can retrieve computational results from
different points within the pipelined arithmetic logic unit
(ALU) is needed. The limited dynamic range of fixed-point
number formats requires additional effort for numerical sta-
bilization (e.g. by scaling or matrix factorization) [5], which
can be avoided by the use of floating-point arithmetic. Despite
the increased energy consumption per operation, the higher
dynamic range enables the use of algorithms with reduced
runtime [6], which puts this drawback into perspective.

MIMO baseband processing algorithms show diverse re-
quirements in numerical precision depending on the use case
(e.g. antenna setup). Moreover, some of these algorithms can
be decomposed into distinct sections with different precision
requirements. This inspired the concept of numerically aware
processing (NAP), which adapts the numerical precision of the
data path at runtime on a bit-granular level to reduce switching
activity and hence energy consumption. The idea of NAP is
related to the concept of approximate computing (AC) [7]
which assumes that a small degradation of processing accuracy
is tolerable e.g. due to perceptual limitations of humans with
regard to multimedia content. Our research shows that the
same concept applies to MIMO baseband processing.

In this paper, we present the napCore, a fully programmable
floating-point processor core that implements aforementioned
efficiency enabling measures. The core is generally suitable
for algorithms based on vector arithmetic. We choose linear
MIMO detection as an exemplary application domain, due
to its popularity and the availability of implementations for
comparison. Similar results can be obtained for other vectorial
algorithms (e.g. linear channel estimation and interpolation).
We show that a well designed lightweight ASIP can compete
with less flexible architectures and non-programmable ASICs
in terms of efficiency. While not each enabling measure on
its own may be new, it is our main contribution to show
that the right mix generates an architecture which proves
that efficiency does not require complexity and does not
contradict an architecture which is easy to use. In Section II,
we give a general overview of the napCore architecture and its
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efficiency-enabling features. Section III shows an architectural
exploration by comparing energy efficiency and area efficiency
of topographical gate-level models for varying operand widths.
In Section IV, we present linear MIMO detection as a case
study. After elaborating on the numerical precision require-
ments of the software implementation, we present a layout of
our processor core for these requirements and discuss energy
efficiency as well as area efficiency of the implementation.

II. ARCHITECTURE OVERVIEW

The napCore is a fully programmable SIMD processor
core designed for vector arithmetic. This section discusses the
enabling architectural features for area and energy efficiency
while abstracting from any specific application. The data path
of the napCore provides native support for complex-valued
arithmetic. Its runtime-adaptive floating-point format can be
changed within one clock cycle by means of mantissa masking
(see Section II-E). The design contains separate memories for
program data and vector data. The latter is a two-port memory
with one read port and one write port. It stores data words of
the same width as the operand vectors, so one vector can be
read/written per memory operation. The architecture contains
two register files. The scalar register file has two read ports
and one write port. It is mainly used for scalar operations
or vector arithmetic including a scalar operand. The vector
register file has three read ports and one write port. It is
internally realized as P scalar register banks, where P is
the parallelism degree of the SIMD architecture. This banked
design enables access to individual scalars without the need to
read/rewrite the remaining vector elements. For the following
case study in the field of MIMO baseband processing, we
chose parallelism degree P = 4, so that one vector register
can accommodate e.g. one matrix of dimension 2 × 2. This
choice enables to use of efficient divide-and-conquer matrix
operations for higher dimensions (see Section IV-B).

A. Pipeline overview
Figure 1 shows the pipeline structure of the SIMD core.

An instruction word is requested from the program memory
(PMEM) in the pre-fetch stage (PFE) and received one cycle
later in the fetch stage (FE). It is then interpreted in the decode
stage (DC), which configures all further stages. Operands
are loaded and preprocessed by the PrepOp-DC unit, which
also performs operand bypassing to resolve data hazards. The
following four arithmetic stages (EX1, EX2, RED1, RED2) are
designed to match the processing scheme of standard vector
arithmetic operations, which is a composition of multiplica-
tions and subsequent additions. The additional complexity of
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Fig. 1: Overview of SIMD processor core architecture

floating-point additions over fixed-point additions motivates
to split a complex-valued multiplication across stages EX1
and EX2, where EX1 executes the real-valued multiplications,
while EX2 accumulates the real-valued products to form
the complex-valued result. Newton-Raphson units for scalar
inversion are also located in EX1. In the reduction stages RED1
and RED2, the result of the element-wise multiplication can
be further processed by means of additions, which can be
configured e.g. to form an adder tree. Also, one additional
vector operand can be read from the vector register file by
the PrepOp-EX2 unit in EX2 to serve as input to RED1, e.g.
for multiply-accumulate operations. Results are written back
to the vector memory (VMEM) or the scalar/vector register
files after processing is completed in the RED2 stage.

B. Operand acquisition
For programmable architectures with inherent parallelism

like SIMD or very long instruction word (VLIW) processors,
the potential for data-level parallelism is defined by the paral-
lelism of the data path, given there is an efficient operand
acquisition mechanism. Even for regular vector arithmetic
operations, this is a challenging task. Consider the previously
described SIMD architecture with a scalar and a vector register
file. Depending on the instruction, very different data access
patterns have to be realized, which leads to the complex
operand acquisition architecture depicted in Fig. 2 for the first
operand. Widths of the data path are given as multiples of
complex-valued scalars.

The vector and scalar register files vREG and sREG are
accessed depending on the type of the operand. Bypassing
units vBP and sBP attempt to obtain the demanded operand
from the pipeline where it is potentially present as the result
from a previous operation (see Section II-D) and signal the
successful acquisition (is bp) to the subsequent multiplexer.
In the next step, the required scalar elements are sent to the
four mantissa masking units (marked by &). The switch s3
configures if the operand to load is scalar or vectorial and
accordingly activates the first or all masking units. A scalar
operand, however, can come from a scalar register or one
element of a vector register as configured by s2. If the scalar
comes from the vector register, the right element is selected
by s1. The masked operands are forwarded to the pipeline
register between stages DC and EX1. In case the same scalar
element is to be forwarded to all elements of the operand,
as e.g. required for a scalar-vector multiplication, this can be
triggered by s4. Otherwise the masking results are forwarded
element by element. When fetching the operand in the EX1
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stage, there is an additional permutation unit marked as π (see
Section II-C). This flexible operand acquisition paired with
the P -wise partitioned vector register file allows versatile data
access schemes, e.g. obtaining scalars from the scalar register
file or from elements of the vector register file, the use of
vector elements in scalar operations, and using scalar elements
(from vREG as well as sREG) in vectorial operations.

C. Permutation network

Figure 3 shows a schematic overview of the two permuta-
tion networks in front of the multipliers in EX1. Apart from
straight pass-through, the networks support patterns especially
for 2 × 2 vector arithmetic operations like matrix inversion,
determinant calculation, or matrix-matrix multiplication. Since
the first vector typically holds the left-hand value of a mul-
tiplication and 2 × 2 matrices are stored row-wise in the
vector registers, the left and right pair of multiplexers are
wired to select one of the two matrix rows via hilo1 and
hilo2. Furthermore, the crossbar cb1 allows to repeat the same
scalar element twice at the output. The path for the second
vector operand contains the same set of multiplexers. Since
the right-hand value of a matrix multiplication is typically
accessed column-wise while the matrix is stored row-wise,
the input can be transposed via crossbar cb2. Crossbar cb3
is used to realize further permutations, e.g. for 2 × 2 matrix
inversion.

D. Operand bypassing

The bypassing unit attempts to fetch an operand from
the pipeline as a result of a previous instruction instead of
waiting until it becomes available in the register file after
passing through the pipeline. Since the ALU of the napCore
architecture spans across several pipeline stages, the decoder
has to know for each instruction at which stage of the pipeline
its computation is finished. When executing a component-wise
complex multiplication of two vectors for example, the result
is valid after the summation of the partial products in the
EX2 stage and can be bypassed from there. To inform the
decoder about this context, each instruction injects an index
into the pipeline at the decoding stage, indicating after how
many arithmetic stages its result is valid. The bypassing logic
in the decode stage uses this information to decide whether or
not an operand is bypassed. Since an additional vector operand
can be loaded as input to the RED1 stage, one further operand
preprocessing unit PrepOp-EX2 is located in the EX2 stage.
The major difference between PrepOp-DC and PrepOp-EX2
is that there is no bypassing in the latter, and it obtains just
one vector from the vector register file.
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Fig. 3: Permutation units for vector operands one and two

E. Numerically aware processing

Many algorithms can be decomposed into distinct sections
of different requirements for numerical precision, as we will
demonstrate in Section IV-B for the exemplary case of two
linear MIMO detection algorithms. For a floating-point num-
ber

a = sgn ·m · 2e (1)

with sign sgn ∈ {+1,−1}, mantissa m, and exponent e,
we can exploit the normalized nature of the floating-point
mantissa, which guarantees 1 ≤ m < 2. We know that mask-
ing a certain number of least significant bits (LSBs) of the
mantissa, in the following referred to as mantissa masking,
will always leave the same number of most significant bits
(MSBs). Note that this is not the case for fixed-point data
formats, where the MSB may be located at any bit position
within a data word. Accordingly, mantissa masking is more
suitable for floating-point number formats. The principle is
illustrated in Fig. 4, where a variable bitmask is applied to the
last four LSBs of an exemplary floating-point number format.
The width of the bitmask has to be chosen according to the
variation of precision requirements in the target application
domain. In our processor core, we place a masking unit as in
Fig. 4 at the end of operand loading in PrepOp-DC as well
as after every arithmetic component within the 4-stage ALU.
The bitmask can be adapted at runtime by a configuration
instruction in the program code.

F. Floating-point Newton-Raphson iterator

One common task in vector arithmetic is vector norming,
which requires the calculation of a scalar inverse. This opera-
tion is one of the few examples where the floating-point arith-
metic unit is less complex than its fixed-point counterpart, as
will be illustrated in the following. Since root finding problems
like scalar inversions are computationally complex, they are
typically approximated by the Newton-Raphson algorithm [8],
which finds the nulls of a function f by iteratively calculating

yn+1 = yn −
f(yn)

f ′(yn)
n = 0, 1, 2, .. (2)

given an initial choice of y0, where f ′ is the derivative of
function f . To find y = 1/x, the nulls of the function
f(y) = 1/y − x have to be determined. In that case, the
iteration according to (2) is given by

yn+1 = 2yn − y2nx, (3)

where our processor core calculates one iteration per cycle.
The choice of a suitable initial y0 close to the converging
point of the iteration is essential for fast convergence. For a
floating-point number as in (1), the scalar inverse is calculated
as

1

a
= sgn · 1

m
· 2−e. (4)
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Fig. 4: Mantissa masking
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Fig. 5: Reduction stages RED1 and RED2

Since mantissa m lies in the range of 1 ≤ m < 2, the inverse
mantissa is also limited in range (0.5 < 1/m ≤ 1). Thus,
the selection of y0 is less complex than for a fixed-point
implementation, where the range of the input operand has
to be considered explicitly. This allows the implementation
of a simple two-choice selection mechanism, dividing the
solution space into two parts of equal size. Four subsequent
Newton-Raphson iterations are sufficient for the baseband
applications described in Section IV-A.

G. Configurable reduction stages
To support a versatile instruction set, e.g. for efficient

processing of vectorial data of different dimensions, the
reduction stages RED1 and RED2 are designed to fit the
requirements of a wide range of vector arithmetic operations.
The maximum number of required complex adders in RED1
corresponds to SIMD parallelism degree P , which is needed,
if a multiply-accumulate operation with P -dimensional vector
operands is executed. Note that for an inner product, an adder
tree of depth ld (P ) is sufficient, which requires P/2 adders
in RED1 (if P is a power of 2). In RED2, P/4 adders
are sufficient for an inner product, but for our use case of
P = 4, we chose to place an additional adder, which is
used for some specialized instructions for
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Fig. 6: Synthesis results: area efficiency

arithmetic (the dimension for which one square matrix fits
into one vector register). Figure 5 shows parts of the reduction
stages RED1 and RED2 for P = 4. For reasons of simplicity,
not all multiplexing and demultiplexing control signals are
included. As previously discussed, there are four and two
complex adders in RED1 and RED2, respectively. To support
various vector arithmetic operations, the additions in stages
RED1 and RED2 require flexible interconnects. The input to
RED1 can come from the result of previous pipeline stages
(res0..res3) or from the vector register file (vr0..vr3), whose
content can also be forwarded to RED2 (fw vr). If no additions
are required for the current instruction, the result from EX2
can also be simply forwarded through the pipeline by setting
no red1..no red4. As will be shown in Section IV-B, support
for
√
P ×

√
P vector arithmetic enables efficient divide and

conquer algorithms, e.g. for matrix inversion. The price to pay
to support these operations is the permutation network marked
as π in front of the adders in Fig. 5, configurable via cfg pi.

III. SYNTHESIS RESULTS & ENERGY BENCHMARK

This section discusses synthesis results and identifies design
points optimizing throughput, area efficiency, or energy effi-
ciency respectively. Based on this analysis, the potential for
energy savings using mantissa masking is evaluated.

A. Design space exploration

In Fig. 6, we present synthesis results of the napCore
architecture for different floating-point formats. Here, s stands
for the sign bit, m represents the number of mantissa bits,
not including the redundant leading MSB (hidden bit), and e
stands for the number of exponent bits. The design is syn-
thesized for a 90 nm standard performance CMOS technology
under typical conditions with a core voltage of 1V. On the
Y-axis, the figure shows the silicon complexity A as number
of required kilo gate equivalents (kGE) without memory as
a function of the clock period Tc on the X-axis. The figure
allows the identification of the design points with maximum
architectural throughput as well as the minimum area-timing
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Fig. 8: Energy consumption per cycle under full load bench-
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(AT) products, which represent the design points for maximum
area efficiency.

Figure 7 shows the results of an energy benchmark for
the same clock frequencies and number formats as presented
in Fig. 6. Results are derived based on averaged power
analysis of topographical gate-level models of the processor
architecture. The benchmark program consists of a series of
matrix-vector multiplications implemented by inner products,
thus, it occupies all ALU stages of the pipeline simultaneously
and is a good indicator for the energy consumption under full
load. The energy E given on the Y-axis shows the average
energy consumption per clock cycle. Naturally, a relaxed
timing constraint during synthesis allows for a more energy
efficient hardware implementation, but the decrease of E(Tc)
shows saturating behavior, so at a certain point, the marginal
decrease in energy consumption does not justify lowering the
clock frequency. As a result, this plot allows the identification
of the design points for energy efficiency in the saturation area
of E(Tc). The results from Fig. 6 and Fig. 7 are summarized
in Table I, giving the clock frequency at the design points
for maximum throughput fTc , maximum area efficiency fAc ,
and energy efficiency fEc as well as the corresponding silicon
complexities AT , AA and AE .

Table II gives a more detailed overview of the power
breakdown of the napCore architecture for number formats
s1m8e6, s1m12e6 and s1m16e6. Here, as well as for the
remainder of this paper, all configurations are synthesized

s1m8e6 s1m12e6 s1m16e6

fT
c 588 526 476

fA
c 500 476 435

fE
c 435 400 385

AT 131 160 198
AA 96.1 137 176
AE 88.1 123 162

TABLE I: Clock frequency fc [MHz] and area A [kGE] for
different design points

at the design point for energy efficiency. The table shows
the power consumption of the arithmetic stages, the program
memory and the register file as well as further miscellaneous
parts like control and pipeline registers. For all configurations,
the major share of the power is consumed by the 16 multipliers
in the EX1 stage, and their share increases when raising the
number of mantissa bits from eight (33.9%) to 16 (51.2%).
The second largest share comes from the floating-point adders
in the remaining ALU stages. A fraction of around 62 to 74%
of the total energy is consumed within the ALU. The remains
is distributed among control, memory accesses, register file
accesses, and switching activity within pipeline registers.

B. Energy benchmark for mantissa masking
To assess the potential energy savings achievable by means

of adaptive mantissa precision, we execute the same bench-
mark as presented in Section III-A for core configurations
s1m8e6, s1m12e6 and s1m16e6. We reduce the mantissa width
bit by bit in software at runtime and observe how the energy
consumption changes. The results are shown in Fig. 8. The
first triplet of lines (suffix EP ) shows the energy consumption
of the entire processor core, while the second triplet (suffix
EA) solely shows the energy consumed within the arithmetic
logic stages EX1, EX2, RED1, RED2.

Figure 8 outlines the potential as well as limitations of
mantissa masking. On the one hand, it demonstrates that
the runtime-adaptive mantissa format enables energy savings
which show nearly linear behavior with respect to the chosen
wordwidth. On the other hand, we see that there is still an
overhead of masking down the mantissa format as opposed
to using arithmetic units which natively support the required
precision. Observe e.g. the difference in energy consumption
per cycle between core configurations s1m16e6 and s1m12e6
for 12 mantissa bits. For s1m16e6, mantissa masking decreases
energy consumption from 0.780 nJ to 0.669 nJ, while in native
s1m12e6 arithmetic, the operation only consumes 0.539 nJ.

IV. CASE STUDY: LINEAR MIMO DETECTION

In the following case study, we apply the concept of NAP
to linear MIMO detection. First, two linear MIMO detection
algorithms are presented. Then, their software implementation
on the napCore is discussed, including an evaluation of the
required numerical precision. After that, a layouted version
of the processor core for the maximum required precision is
presented and used to evaluate the efficiency of the implemen-
tations of the previously introduced algorithms.

s1m8e6 s1m12e6 s1m16e6

mW % mW % mW %

EX1 44.4 33.9 90.4 45.2 148.0 51.2
EX2 15.8 12.1 20.3 10.1 27.4 9.5
RED1 9.6 7.3 13.2 6.6 18.4 6.4
RED2 11.2 8.5 14.9 7.4 20.0 6.9
PMEM 9.6 7.3 8.9 4.5 8.6 2.9
REG 11.5 8.8 13.5 6.8 17.3 6.0
MISC 28.9 22.1 38.8 19.4 49.3 17.1

Σ 131 200 289

TABLE II: Power breakdown under full load benchmark
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A. Algorithms
Multicarrier transmission schemes like orthogonal

frequency-division multiplexing (OFDM) divide the available
bandwidth into approximately frequency-flat subcarriers. This
allows the description of the transmission of each subcarrier
separately. For a system with Nt transmitter antennas and
Nr receiver antennas, these frequency-flat transmissions are
given by

y = Hx + n, (5)

where x is the transmitted symbol vector of dimension Nt,
y is the received symbol vector of dimension Nr, H is the
channel matrix of dimension Nr×Nt of the current subcarrier,
and n is the noise vector of dimension Nr.

Figure 9 shows the basic structure of a MIMO OFDM
receiver using linear MIMO detection. After translating the
received signal from analog to digital domain (A/D), RX
OFDM processing transfers the incoming time domain data
to frequency domain. After that, the non-guard subcarriers are
forwarded to the subsequent receiver chain. MIMO prepro-
cessing is a preparative step to enable actual MIMO detection.
First, an estimate of the channel matrices is derived for each
subcarrier. Then, an equalizer matrix (EQM) is calculated
and used by the spatial equalizer to estimate the originally
transmitted symbol vector. The soft symbol demapper transfers
this vector into a series of log-likelihood ratios (LLRs). These
soft-bits are then handed to the outer modem for forward error
correction (FEC). In the next detector-decoder iteration, the
result of FEC is fed back into the receiver chain.

1) Open-loop linear MMSE detection: Linear MMSE
equalization derives an estimate x̂ of the originally transmitted
symbol vector x. The equalizer matrix is chosen to minimize
the expected mean square error between x and x̂. For a flat
fading channel superimposed by additive white Gaussian noise
(AWGN) of spectral density N0, the resulting equalizer matrix
is derived as

G =
(
ĤHĤ +N0INt

)−1
ĤH , (6)

where Ĥ is the estimated channel matrix and INt is an
identity matrix of dimension Nt × Nt. After multiplying the
equalizer matrix by the received symbol vector, the estimate
x̂ is transferred back to a bitwise representation. For that
purpose, an LLR is derived for each bit i of each antenna
element k of the symbol vector according to

L(bk,i) ≈ ρk
(
min
s∈A0

i

|x̂k − s|2 − min
s∈A1

i

|x̂k − s|2
)

, (7)

RX OFDM

Processing

Channel

Estimator

S
p
a
ti

a
l

E
q
u
a
li
z
e
r

S
y
m

b
o
l

D
e
m

a
p
p
e
r

Inner Modem, RX

Outer Modem, RX

Channel

Decoder

RX OFDM

Processing

MIMO Detector

EQM
MIMO

Preproc.

A/D

A/D

Sym/Var

Remap

-1

Fig. 9: MIMO OFDM receiver structure

with A0
i denoting the constellation symbols with a zero at

position i of their bitwise representation and A1
i denoting

the constellation symbols with a one at the same position
respectively. Finally, the signal-to-interference-plus-noise ratio
(SINR) ρk of the k-th antenna stream is calculated according
to

ρk ≈
1

N0

[(
ĤHĤ +N0INt

)−1]
k,k

− 1. (8)

As an extension to our work presented in [6], we decompose
the equalization and SINR calculation into three classes of
different numerical precision requirements. The first one,
Pmul
ol , is used in the multiplicative part of equalization, namely

calculating
Aol =

(
ĤHĤ +N0INt

)
(9)

and subsequently
y = A−1ol ĤHy.

The class Pinv
ol covers the calculation of A−1ol itself, while P llr

ol
includes deriving the SINR as in (8), which is later used for
LLR calculation. The precision requirements of these classes
will be presented at the end of this section.

2) Iterative linear MMSE detection and MMSE-PIC: Iter-
ative linear MIMO equalization derives an estimate for the
transmitted symbol vector based on the estimated channel
state (Ĥ, N0) and additional priori information from previous
iterations, e.g. in the shape of posteriori LLRs. The concept
is briefly introduced in the following. The interested reader
is referred to [9] for more information on iterative linear
MMSE detection and to [10] for further information on the
reduced complexity parallel interference cancellation (MMSE-
PIC) algorithm, as it is used in this work.

The algorithm presented in [10] requires to first derive the
most likely transmitted symbol vector s based on posteriori
LLRs. In [11], it is described how the computational com-
plexity of this vector remapping can be reduced to a piecewise
linear function. Assuming that s was actually transmitted, the
transmitter symbol vector estimate is now used to cancel the
inter-antenna interference it would have caused at the receiver.
The resulting set of interference mitigated receiver symbol
vectors is given by

ŷk = y −
∑
j 6=k

hjsj , (10)

where hj denotes the j-th column of the estimated channel
matrix. The vectors ŷk with k ∈ {1..Nt} are an approximation
of what the receiver antennas would have received, if only the
k-th transmitter antenna had been transmitting. Afterwards,
MMSE filtering is applied to these vectors to derive an
estimate of each transmitted symbol vector element. It was
shown in [10] that the required MMSE filter vectors can be
derived from a single matrix

WH =
(
ĤHĤΛ +N0I

)−1
ĤH . (11)

The diagonal matrix Λ of dimension Nt × Nt holds the
element-wise symbol variances of s. These variances can be
calculated based on the LLRs of the previous iteration by

6
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Fig. 10: Coded bit error rate for open-loop and iterative 4×4 MIMO detection using 4QAM, 16QAM and 64QAM constellations1

means of piecewise linear functions [11]. The actual MMSE
filtering can be expressed based on the rows wH

1 .. wH
Nt

of
WH according to

x̂k =
wH

k ŷk

wH
k hk

. (12)

The new LLRs for the i-th bit within the k-th element of vector
x̂ are calculated as in (7) using the SINR given by

ρk =
wH

k hk

1−ΛkkwH
k hk

. (13)

Similar to Section IV-A1, we define three different classes
of precision requirements for iterative MIMO detection. The
class Pmul

it covers the calculation of

Ait =
(
ĤHĤΛ +N0INt

)
(14)

as well as the interference mitigated vectors ŷk in (10). The
class Pinv

it contains the actual matrix inversion of Ait and
P llr
it contains the calculation of SINRs, which are used later

for LLR computation.

B. Software implementation

For a software implementation, the previously introduced
algorithms have to be mapped onto our proposed processor
architecture. A SIMD core is inherently suitable for vector
arithmetic like the calculation of Aol in (9) and Ait in (14). As
discussed in Section II-G, our processor core supports 2× 2
matrix-matrix operations, where each matrix is stored in a
single vector register. These operations enable an efficient
implementation of higher order matrix inversions, using a
divide and conquer (DnQ) algorithm [4], which divides e.g.
the inversion of a 4 × 4 matrix A into operations on 2 × 2
matrices a, b, c and d.

A =

(
a b

c d

)
(15)

Based on this representation, A−1 is given by

A−1 =

(
a−1 + a−1bsca−1 −a−1bs

−sca−1 s

)
(16)

with s = (d−ca−1b)−1. The algorithm can be simplified for
hermitian matrices as in (9) since c = bH .

For the inversion of 2× 2 matrix a,

a−1 =
1

deta

(
+a22 −a12
−a21 +a11

)
, (17)

the determinant of a can be directly calculated due to
the higher dynamic range of floating-point arithmetic. Thus,
MIMO detection for multiple antenna setups (e.g. 2×2, 2×4,
4 × 4 and 4 × 8) can be efficiently implemented based on
(16) and (17). Execution times of MIMO detection including
equalizing and SINR calculation are listed in Table III for the
aforementioned setups.

In the following, we analyze the numerical precision re-
quirements of the previously introduced six classes, when
using a DnQ matrix inversion algorithm. The analysis is based
on extensive Monte Carlo simulations for a 4 × 4 MIMO
setup with an i.i.d. Rayleigh slow fading channel superimposed
by additive white Gaussian noise (AWGN). The power delay
profile of the channel impulse response is modeled according
to the TGn-C model [12]. The receiver setup is chosen
as depicted in Fig. 9 with convolutional channel coding of
rate r = 1/2, using generator polynomials g0 = (133)8 and
g1 = (171)8. The code length is 3072, 6144 and 9216 bit
for 4QAM, 16QAM and 64QAM2. Channel decoding is per-
formed according to the BCJR algorithm [13]. In our analysis,
we reduced the number format of each precision class until it
caused a perceivable impact on the coded bit error rate (BER)

1it-0 and it-1 denote initial open-loop detection and first iterative detection
2Code length corresponds to eight OFDM symbols with 48 data subcarriers

Antenna setup 2 x 2 2 x 4 4 x 4 4 x 8

Open-loop 22 24.5 80 101
Iterative 32.5 35 112 137

TABLE III: Cycle count of linear MIMO detection
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Fig. 11: Layout of s1m12e6 configuration for energy efficiency

shown in Fig. 10. Table IV shows the required mantissa bits
for all precision classes.

One sees an increase in precision requirements for more
dense constellations, due to the narrower margin of error. The
matrix inversion generally turns out to have a higher precision
requirement than the multiplicative section because of the
higher dynamic range, which can be mainly located within
the determinant calculation. Only the SINR calculation has
a constant precision requirement, since the channel decoder’s
algorithmic performance depends on the LLR precision and
not on the used constellation. Also, it is interesting to observe
the drop in precision requirements from the initial open-loop
detection to the subsequent iterative detection. These findings
can be exploited by the flexible characteristics of the napCore
to reduce energy consumption.

C. Layout implementation

Table IV identifies the s1m12e6 floating-point number for-
mat as the maximum precision requirement for the previously
introduced linear detection algorithms. To prove the feasi-
bility of our processor architecture, this section presents a
post-layout model for that particular precision at the design
point for energy efficiency. For increased accuracy, all follow-
ing assessments of energy efficiency are based on that model.
Figure 11 shows the physical view of the core, overlaid with
the interpolated borders between the pipeline stages, pipeline
registers (e.g. DC EX marks the pipeline register between the
DC stage and the EX stage) as well as program and vector
memory. The layout achieves the target frequency of 400MHz.
One clearly sees the high wiring effort on the top metal layer
(in turquoise) to connect the vector register file to the DC

Pinv
ol Pmul

ol Pllr
ol Pinv

it Pmul
it Pllr

it

4QAM m8 m7 m4 m5 m4 m4
16QAM m11 m10 m4 m8 m7 m4
64QAM m12 m11 m4 m11 m10 m4

TABLE IV: Precision requirements for open-loop and iterative
4× 4 MIMO detection

stage, as well as the strategic placement of the DC stage itself
in the middle of the design to facilitate vector bypassing from
all computational stages back to DC. Another contribution to
the dense wiring in the DC stage results from the flexible
operand acquisition logic described in Section II-B. Also the
register file is strategically located close to the DC stage for
operand loading as well as to the RED2 stage for operand
writeback.

The design presented in Fig. 11 contains a vector memory
for 512 vector words of length 152 bit, which is partitioned
into two memory banks. The instructions are fetched from
a dedicated program memory with space for 1024 words of
32 bit. Note that for the sake of flexibility and extendability,
the program memory size is significantly higher than the
number of instructions required for MIMO detection. Simi-
larly, the aforementioned detection implementations operate
on the register files exclusively and the vector memory is only
included to support further potential applications with higher
caching needs. The total design dimension (including memory
and power rings) is 965 µm by 1020 µm resulting in a total
area of 0.984mm2. The upper part containing the pipeline
and the register file measures 597 µm by 905 µm totaling an
area of 0.540mm2. Based on the post-layout model, energy
consumption was re-evaluated and found to be around 30 to
40% higher than for the topographical gate-level model.

D. Use case energy assessment
In the following, we assess the energy efficiency of

open-loop and iterative linear MIMO detection. The results
of this analysis are shown in Table V for precisions as in
Table IV and full precision as reference. As predicted, energy
consumption drops when switching to lower order constella-
tions with lower precision requirements. When comparing the
open-loop variant with iterative detection, the power consumed
by the former is notably higher. This can be explained by
the higher precision requirements in it-0 and by the fact that
the values themselves start converging in it-1, which reduces
switching activity. Due to the shorter runtime, the energy
consumption of open-loop detection is still less than for the
iterative variant, though.

It shall be noted here that there is not just one correct
precision and thus one energy number per use case. The
precisions shown in Table IV are only necessary for the coded
BERs to decay continuously down to the regions of 10−5

as in Fig. 10. Depending on the application, this kind of
algorithmic performance is potentially not required when a few
compromised bits do not diminish the overall user experience.
As a result, it makes sense to trade energy savings for quality
of service (QoS), e.g. in terms of coded BER, depending on
the application requirements. Table VI illustrates this tradeoff
for open-loop and iterative detection for 16QAM. It shows

4QAM 16QAM 64QAM full prec.

mW nJ mW nJ mW nJ mW nJ

it-0 119 23.8 134 26.8 138 27.6 143 28.6
it-1 86.9 24.3 105 29.4 117 32.8 124 34.7

TABLE V: Power and energy consumption of linear 4 × 4
MIMO detection on s1m12e6 napCore
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Fig. 12: Coded BER degradation with reduced numerical
precision (16QAM, it-1)

the reduction of numerical precision requirements for coded
BER targets T1, T2 and T3 in the range of 10−3, 10−4 and
10−5 respectively. The complete trajectory of the coded BER
for iterative detection subject to this precision reduction is
shown in Fig. 12. It is interesting to see that already for a
target coded BER of 10−4, the mantissa width can be reduced
from eight to five or less bits for iterative detection. This fact
might potentially be exploited by integrating a set of small
integer multipliers into the floating-point data path to handle
operations with less precision requirements. The gain of such
a measure can be approximated based on Fig. 8.

E. Efficiency comparison with state-of-the-art

To assess the efficiency of our design, we conduct a lit-
erature based comparison with state-of-the-art linear MMSE
MIMO detectors for a 4 × 4 antenna configuration, which is
summarized in Table VII. The implementation levels range
from synthesized via layouted down to silicon implementa-
tions. Since linear detectors operate on symbol vectors, we
define area and energy efficiency as processed symbol vectors
per second and gate equivalent (vec/s/GE) and processed
symbol vectors per unit of energy (vec/nJ), respectively. For
comparability with [10], we consider energy consumption
for the use of a 64QAM constellation. It is not straight-
forward how to include the silicon area of the memories
into the comparison, since neither of the two linear detection
algorithms requires caching in the vector memory. Also the

Target BER Pinv Pmul Pllr E [nJ]
Open-loop detection at 24 dB

T1 m8 m7 m3 23.8
T2 m9 m8 m3 24.8
T3 m11 m10 m4 26.8

Iterative detection at 19 dB
T1 m4 m3 m2 24.1
T2 m5 m4 m3 24.5
T3 m8 m7 m4 29.4

TABLE VI: QoS vs. energy, 4×4 MIMO detection (16QAM)

application size of the linear MIMO detection algorithms is
around 10% of the available program memory, which can
be considered negligible compared to the rest of the design.
Memory is therefore not included in the area comparison.
Energy efficiency is given including memories, though.

When assessing programmability and flexibility, different
architectures can be characterized by their programming in-
terface and data path reconfigurability. The tailored ASIC
designs [14] and [10] both have no programming interface
and are internally controlled by an FSM. The adaptive stream
processing engine (ASPE) [4] is programmed in a VLIW-like
fashion to configure the data flow through the functional units
before stream processing begins. Even though an up-front
configured data path supersedes accesses to the program
memory during execution, it limits potential applications to
those with a repetitive, regular data flow. Also, high through-
put can only be guaranteed if a sufficient number of func-
tional units is available to occupy the complete width of
the processing pipeline. Therefore, the architecture can be
considered moderately flexible. The remaining architectures
sequentially reconfigure their data path for each instruction. In
[15], an assembly-programmable array of multiply accumulate
elements is shown, but the authors explicitly mention the
limited flexibility of the data path. The reconfigurable ASIP
(rASIP) design in [3] contains a two-dimensional coarse
grained reconfigurable array (CGRA) configured by a RISC
core via a configuration memory. While the RISC core can
be easily programmed in assembly, the functional units of the
CGRA have to be programmed by a configuration bitstream,
which limits the ease of programming. Also the structure of the
CGRA is highly tailored to the target application. As a result,
the overall rASIP can be considered medium flexible and
medium programmable. The napCore, programmable by scalar
or SIMD assembly and equipped with a versatile instruction
set, is clearly the simplest but also the most flexible and easy
to use among the presented alternatives.

In terms of area efficiency, our design outperforms flexible
designs [4] and [15] by a factor of three or four respectively.
The comparison with [15] is particularly interesting, since
both are floating-point designs with comparable hardware
complexity. Nevertheless, our architectural measures described
in Section II that maximize the utilization of the functional
units within the vector data path result in a clear advantage
in area efficiency. Despite the application specific, highly
parallel structure of [3], our lightweight design still has a 27%
higher area efficiency. The non-programmable ASIC solution
in [14] is only superior by a marginal factor of 1.08, since it
implements fixed-point matrix inversion by a series of Rank1
updates resulting in a comparably long runtime. The most
efficient ASIC design [10] makes use of LU decomposition
combined with a block floating-point number format, which
allows a faster and more efficient matrix inversion. Hence, [10]
is superior by a factor of 3 in terms of area efficiency. Energy
efficiency is generally harder to compare since it depends
on stimuli, test conditions, and the implementation level.
Nevertheless, it should be mentioned that the tailored ASIC in
[10] is 5.9 times more energy-efficient than our layout when
operating at full precision for 64QAM. The gap decreases
when switching to less dense constellations or trading QoS
for energy efficiency.
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ASIC [14] ASIC [10] ASPE [4] ARRAY [15] rASIP [3] napCore

Number format fixed-pt. block floating-pt. fixed-pt. floating-pt. fixed-pt. floating-pt.
Implementation synth. silicon silicon synth. layout layout
Matrix inversion algorithm Rank1 LU DnQ DnQ Rank1 DnQ
Iterative no yes no no no yes
Includes SINR calculation no yes no no no yes

CMOS technology [nm] 250 90 180 65 65 90
Clock frequency [MHz] 167 568 250 400 400 400
Area [kGE] 89 410 383 120 482 123
Area [mm2] N/A 1.5 3.7 N/A 1.4 0.54
Cycles per detection 102 18 83 204 17a 69 / 80 / 112b

Scaled clock frequency [MHz]c 464 568 500 289 289 400
Energy efficiency [vec/nJ] N/A 0.183d N/A N/A N/A 0.031
Area efficiency [vec/s/GE] 51.1 86.3d 15.7 11.8 37.1d 47.1 / 40.7 / 29.0b

a One cycle added as opposed to [3] to complete equalization.
b Given for open-loop algorithm without and with SINR computation and iterative algorithm with SINR calculation.
c Clock frequency scaled linearly with feature size.
d Impact of LLR block and symbol/variance remapping was subtracted, since it is not part of the other architectures.

TABLE VII: Comparison with state-of-the-art 4× 4 linear MIMO detectors

V. CONCLUSION

In this paper, we illustrated the potential as well as the
limitations of a fully programmable floating-point processor
core to compete with significantly less flexible architectures
in terms of area and energy efficiency. We described a bundle
of architectural measures that make our core a flexible and
efficient target for algorithms based on complex-valued vector
arithmetic. A versatile instruction set for complex vector
arithmetic fosters high throughput. An optimized operand
acquisition scheme including smart bypassing as well as vector
arithmetic affine permutation units further improves the ar-
chitectural throughput and hence the achieved area efficiency.
Energy efficiency can be optimized by means of numerically
aware processing for floating-point arithmetic, which allows
the programmer to adapt the numerical precision at runtime
to the application requirements to reduce switching activity
and thereby energy consumption.

For a practical analysis, we chose 4 × 4 linear MIMO
detection as a case study. We partitioned the detection algo-
rithms into distinct sections with different numerical precision
requirements, which again are different for each modulation
scheme. Based on this analysis, we presented the resulting
energy consumption using a post-layout model, where we saw
the potential of numerically aware processing in conjunction
with floating-point arithmetic. As an example, the relaxed
precision requirements of the less dense 4QAM constellation
allow the reduction of the used wordwidth and thereby the
energy per MIMO detection by 17% (open-loop) or 30%
(iterative) as opposed to full precision. We also showed
how numerical precision and energy efficiency can be traded
gradually for quality of service. An exemplary raise of the
target coded bit error rate from 10−5 to 10−4 enabled a 17%
decrease in energy consumption for iterative detection.

Compared to tailored MIMO detector implementations that
provide less programmability and flexibility, we still found
our design to be more efficient. Non-programmable ASIC
implementations like [14] and [10] provide superior efficiency,
but the difference is less than one order of magnitude. Our
main contribution is therefore the reduction of the ASIC-ASIP
efficiency gap while maintaining a high degree of flexibility
and programmability.
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