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Abstract— Modern wireless communication standards define
new high throughput use cases like 8x8 multiple-input, multiple-
output (MIMO) antenna setups and a 256-QAM constellation
alphabet in the case of IEEE 802.11ac. Baseband precoding at
the transmitter is a key technique to achieve the corresponding
data rates at a reasonable signal-to-noise ratio (SNR). Multi-
mode capability, (i.e., the ability to support multiple MIMO
setups) is crucial for legacy compatibility or for the adapta-
tion to the individual configurations of mobile stations. This
paper presents an application-specific integrated circuit (ASIC)
template for singular value decomposition (SVD) based linear
precoding supporting multi-mode MIMO. A two-sided cyclic
Jacobi algorithm is applied to decompose the SVD computation
exclusively into 2x2 vector arithmetic units. A fixed computation
pattern is executed iteratively on the input data. Iteration control
allows a graceful trading of communication performance for a
reduction of computational complexity. As a proof-of-concept, the
architecture template is configured to support 2x2, 4x4, 6x6, and
8x8 MIMO and is layouted for 90 nm CMOS with a core area
of 1.34 mm2 and a clock frequency of 752 MHz. The achieved
throughput is 188, 15.7, 6.27, and 1.68 million SVDs per second,
respectively.

Index Terms—Precoding, MIMO, SVD, multi-mode, ASIC,
IEEE 802.11ac

I. INTRODUCTION

Modern wireless communication standards introduce new
use cases (e.g., spatial multiplexing with more antennas,
higher code rates, denser constellation alphabets) to achieve
higher data rates than established standards. IEEE 802.11n
[1] wireless LAN, for example, employs spatial multiplexing
with up to MT =MR = 4 transmit and receive antennas and a
64-QAM constellation. The recent IEEE 802.11ac standard [2]
supports spatial multiplexing for setups up to MT = MR = 8
and a 256-QAM constellation alphabet. To achieve the high
data rates promised by IEEE 802.11ac at a reasonable signal-
to-noise ratio (SNR), additional processing is required. The
computational complexity of multiple input, multiple output
(MIMO) detection algorithms like sphere detection rises expo-
nentially with the number of transmit streams and the number
of bits per constellation label [3]. Therefore, it is infeasible
to burden the potentially battery-powered receiver with higher
computational complexity. Instead, part of the computational
load should be moved to the transmitter. Linear precoding
based on singular value decomposition (SVD) is a viable
solution to this problem.

The remainder of Section I introduces the basics of SVD-
based linear precoding, gives an overview of existing linear
precoding algorithms and architectures, and motivates the need
for the more versatile architecture presented in this paper.
This work follows a divide-and-conquer approach, both, on an
algorithmic and architectural level. The underlying principle is
to compute the SVD of bigger size channel matrices based on
2×2 vector arithmetic only, instead of designing a circuit that
is specific to one particular MIMO setup. Therefore, Section II

starts by introducing a suitable algorithm and an architecture
for 2×2 SVD which are then extended to N×N in Section III.
Numerical precision requirements and achievable communi-
cation performance are discussed in Section IV. Section V
presents a prototype layout and efficiency benchmarks of the
architecture when configured to support up to 8 × 8 MIMO.
Section VI concludes this paper.

A. Problem Formulation

A MIMO transmission over a frequency-flat, wireless chan-
nel can generally be modeled as

y = Hs + n (1)

with transmit vector s ∈ CMT×1, receive vector y ∈ CMR×1,
channel matrix H ∈ CMR×MT containing the fading coeffi-
cients between each transmit and receive antenna pair, and
additive noise vector n ∈ CMR×1. SVD-based precoding
decomposes the channel matrix so that (1) can be rewritten
as

y = UΛVHs + n. (2)

The diagonal matrix Λ ∈ RMR×MT contains the singular
values of H. Matrices U ∈ CMR×MR and V ∈ CMT×MT

are both unitary. Left multiplying (2) by UH and substituting
s̃ = VHs and ỹ = UHy leads to

ỹ = Λs̃ + ñ (3)

with ñ = UHn. Since Λ in (3) is diagonal, the MIMO trans-
mission from (1) is transformed into rank(H) parallel single
input, single output (SISO) transmissions. The accumulated
data rate of these transmissions is maximized by dividing
the available transmit power among the SISO transmissions
according to the waterfilling algorithm [4]. Therefore, SVD-
based precoding first assigns power to MS ≤ rank(H) SISO
streams comprised by vector x ∈ CMS×1 and then multiplies
the result by unitary matrix V so that

s = VPx, (4)

where the diagonal power allocation matrix P ∈ RMT×MS

contains the square roots of the assigned power levels.

B. Related Work

Hardware implementations for SVD have been a subject
to very large scale integration (VLSI) research for several
decades. Most implementations can be divided into one of two
groups, depending on the underlying decomposition algorithm.
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1) Jacobi-Based Implementations: In 1960, Forsythe and
Henrici described the cyclic Jacobi method [5] that computes
the SVD of a complex-valued m × n matrix (m,n ∈ N+)
based on left and right multiplications (therefore called two-
sided) of the input matrix by a series of unitary transformation
matrices (UTMs). These UTMs are identity matrices except
for four scalar elements at positions (p, p), (p, q), (q, p), and
(q, q) with p, q ∈ N. The algorithm iterates over the input
matrix in a series of sweeps, where in each sweep, all viable
p and q are selected in a cyclic fashion. In 1982, Brent and
Luk [6] proposed the implementation of the SVD of a real-
valued m × n matrix (m ≥ n) on a linear multiprocessor
array as well as on a two-dimensional array. The underlying
algorithm was based on one-sided plane rotations. A particular
contribution of [6] was to exchange the cyclic processing
scheme of [5] for a new scheme called parallel ordering.
This scheme partitions the SVD process into dn/2e inde-
pendent sub-processes which operate on disjunct sections of
the input matrix. The two-dimensional processing architecture
mentioned in [6] was developed further in [7], using a two-
sided Jacobi algorithm to calculate the SVD of an n × n
matrix. The potential for computing m × n SVDs by first
calculating the QR factorization and then decomposing the
R-matrix was also briefly discussed. In 1992, Hemkumar [8]
used the parallel ordering scheme for the computation of SVDs
of complex-valued, square matrices. As in [7], the associated
algorithm is based on the two-sided Jacobi algorithm and it
was implemented on a two-dimensional systolic array.

2) Golub and Kahan Based Implementations: In 1965,
Golub and Kahan [9] suggested a numerically stabilized
algorithm to compute SVDs in a two-step approach. First,
the input matrix is transformed to a bidiagonal form (e.g.,
by a series of Householder transformations [10]). Then, the
intermediate matrix is diagonalized, delivering the singular
values on the diagonal of the resulting matrix. The architecture
proposed in [11] calculates SVDs according to [9] for 4 × 4
complex-valued matrices based on Givens rotations [12]. Since
the QR factorization of a complex-valued matrix can also
be calculated using Givens rotations and QR factorization is
required for other baseband processing tasks (e.g., prepro-
cessing for sphere detection [3]), the design in [11] can be
reconfigured to calculate QR factorizations instead. A version
of [11] tailored to SVD only is presented in [13]. Designs [11]
and [13] have a relatively small hardware complexity of around
40 kilo gate equivalents (kGE). Throughput requirements of
standards like IEEE 802.11n are supposed to be achieved by
entity duplication. Authors distance themselves from systolic
architectures like [8], [14], claiming that while these types
of architectures achieve a high throughput, the penalty in
hardware complexity is too high, leading to poor hardware
efficiency.

C. Contribution
With the advent of new communication standards, the

number of use cases that have to be supported by the precoding
hardware increases steadily. While the high computational
complexity of SVD calls for an ASIC solution, the approach of
designing a decomposition architecture for only one antenna
configuration (e.g., 4×4 in [11], [13]) is not viable anymore for
a progressive architecture. Instead, this work presents a design

that is highly tailored to SVD but at the same time versatile in
terms of supported use cases. A related aspect to the support of
multiple use cases is numerically aware processing [15]. It is
intuitive that numerical precision requirements vary depending
on the use case. Therefore, our versatile architecture is not
only flexible with respect to use cases but also regarding the
employed numerical precision.

Authors of [11], [13] discard systolic architectures due to
their high hardware complexity. However, the Jacobi-based
algorithms in [5], [6], [8] should not be neglected, particularly
due to their seamless scalability to different matrix sizes.
Therefore, the concepts of [5], [6], [8] are retargeted in this
work to a different kind of target architecture. The complex-
valued, two-step, two-sided 2×2 SVD is computed by a fully
pipelined accelerator. This accelerator is combined with two
multiplication engines and two register files to realize the full-
size two-sided unitary transformations and the computation of
the precoding matrix. Due to its support for numerically aware
processing, the architecture is dubbed napSVD.

II. 2X2 ALGORITHM AND ARCHITECTURE

This section discusses the 2×2 SVD algorithm and presents
the resulting SVD architecture. Section II-A introduces the
CORDIC algorithm, whereafter Section II-B describes how the
2×2 SVD can be composed of CORDIC and vector arithmetic
operations as suggested by [8]. The hardware architecture
implementing that algorithm is shown in Section II-C.

A. CORDIC Algorithm
The coordinate rotation digital computer (CORDIC) al-

gorithm [16] computes trigonometric functions with limited
hardware resources. A two-dimensional vector v0 = [x0, y0]

T

is rotated by an angle Φ, resulting in a vector vL = [xL, yL]
T .

The rotation by angle Φ can be expressed as a series of L
micro-rotations by angles αi, i ∈ {0, . . . , L− 1} so that

Φ =

L−1∑
i=0

σiαi, σi ∈ {+1,−1} . (5)

The bipolar variable σi controls the direction of the i-th micro-
rotation. The values αi are chosen so that

tanαi = 2−i ⇔ αi = arctan
(
2−i
)

(6)(
xL
yL

)
= κ

L−1∏
i=0

(
1 −σi2−i

σi2
−i 1

)(
x0

y0

)
(7)

κ =

L−1∏
i=0

cosαi. (8)

The correction factor κ has to be applied once after the last
iteration. The iteration for each scalar element is given by

xi+1 = xi − σi 2−iyi
yi+1 = yi + σi 2

−ixi

zi+1 = zi − σi arctan 2−i, (9)

where zi corresponds to the rotation angle including an initial
offset z0. The choice of z0 and the computation scheme for
σi stipulate the CORDIC mode. The two modes relevant for
this work are vectoring and rotation.

2
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1) Vectoring: The input vector is rotated so that the y-
component converges to zero. Due to the limited range of
the CORDIC rotation, a preprocessing step that rotates input
vector ṽ0 = [x̃0, ỹ0]

T and phase z̃0 into the first quadrant
of the Cartesian coordinate system is required. The output of
preprocessing, v0 and z0, then serves as input to (9).

(x0, y0, z0) =


(+x̃0, +ỹ0, 0) x̃0 ≥ 0, ỹ0 ≥ 0

(+ỹ0, −x̃0, π/2) x̃0 < 0, ỹ0 ≥ 0

(−x̃0, −ỹ0, π) x̃0 < 0, ỹ0 < 0

(−ỹ0, +x̃0, 3π/2) x̃0 ≥ 0, ỹ0 < 0

(10)

The micro-rotation direction is chosen according to

σi = − sign(yi). (11)

2) Rotation: The input vector is rotated by a specific angle
Φ. If the requested rotation angle exceeds the maximum
angular range of the CORDIC algorithm, an additional prepro-
cessing step is required to obtain a modified starting vector in
the first quadrant of the Cartesian coordinate system. Two-
dimensional vector v and phase z0 as required by (9) are
obtained from the arbitrary inputs ṽ and z̃0 = Φ according
to

(x0, y0, z0) =


(+x̃0, +ỹ0, z̃0) 0 ≤ z̃0 < π/2

(+ỹ0, −x̃0, z̃0 − π/2) π/2 ≤ z̃0 < π

(−x̃0, −ỹ0, z̃0 − π) π ≤ z̃0 < 3π/2

(−ỹ0, +x̃0, z̃0 − 3π/2) 3π/2 ≤ z̃0 < 2π
(12)

for micro-rotation directions

σi = sign(zi). (13)

B. SVD Algorithm

A two-sided unitary transformation of a matrix M ∈ C2×2

can generally be expressed as

Vl(Φ, θα, θβ)M Vr(Ψ, θγ , θδ) =(
cΦe

iθα −sΦeiθβ
sΦe

iθα cΦe
iθβ

)
M

(
cΨe

iθγ sΨe
iθγ

−sΨeiθδ cΨe
iθδ

)
(14)

with unitary matrices Vl,Vr ∈ C2×2. Variables cΦ and sΦ
denote the cosine and sine of angle Φ, and cΨ and sΨ denote
the cosine and sine of angle Ψ . The remaining transforma-
tion parameters are given by θα, θβ , θγ , θδ ∈ [0 . . . 2π[. The
algorithm in [8] calculates the SVD of a 2× 2 matrix by two
unitary transformations based on (14). The first transformation
generates an upper triangular matrix

M̃ = Vl1MVr1 = Vl(Φ1, θα1
, θβ1

)M Vr(Ψ1, θγ1 , θδ1) (15)

with Φ1, θα1
, θβ1

, Ψ1, θγ1 , θδ1 given by [8]

Φ1 = 0

θα1
= θβ1

= −θm22 + θm21

2

Ψ1 = tan−1

(
|M21|
|M22|

)
θγ1 = −θδ1 =

θm22
− θm21

2
. (16)

Prep.
IT

Postp.
x0
y0
z0

xL
yL
zL

Fig. 1: Schematic of CORDIC architecture template.

Variable θmij denotes the azimuth of scalar element Mij of
matrix M. The second transformation delivers a real-valued
diagonal matrix

M̄ = Vl2M̃Vr2 = Vl(Φ2, θα2 , θβ2) M̃ Vr(Ψ2, θγ2 , θδ2) (17)

that contains the singular values of M. The corresponding
transformation parameters Φ2, θα2 , θβ2 , Ψ2, θγ2 , θδ2 based on
M̃ are given by [8]

θα2 = −θm̃12 + θm̃11

2

θβ2
= θγ2 = −θδ2 =

θm̃12 − θm̃11

2

tan(Φ2 ± Ψ2) = −

(
|M̃12|

|M̃22| ∓ |M̃11|

)
. (18)

Note that the complex-valued phase terms as well as the cosine
and sine in (14) can be generated by the CORDIC algorithm
in rotation mode. The polar representation of M and M̃ as
well as the trigonometric functions in (16) and (18) can be
derived using a CORDIC in vectoring mode. The diagonal
matrix containing the singular values is given by

Λ = Vl2Vl1 M Vr1Vr2 . (19)

C. Architecture

Section II-C1 describes the architecture of the CORDIC unit
which is used to realize a 2×2 UTM generator (Section II-C2).
Four of these generators are required to implement the two-
step, two-sided unitary transformation that generates a 2 × 2
SVD (Section II-C4).

1) CORDIC: The CORDIC architecture template is de-
picted in Figure 1. It is designed to perform one CORDIC
operation (i.e., vectoring or rotation) in multiple cycles,
reusing the same hardware. Therefore, the elements within
the template are controlled by a finite state machine (FSM)
and adapted to the current processing cycle. The preprocessing
block (Prep.) implements the rotation of the input vector to the
first quadrant of the Cartesian coordinate system (see (10),
(12)). The preprocessed input is then forwarded within the
same clock cycle to the iterator block (IT). The iterator block
consists of a chain of CORDIC micro-rotation units as in (9).
The output of the chain can be fed back to the input multiple
times (e.g., depending on numerical precision requirements).
After finishing the iteration phase, the result is routed to the
postprocessing block (Postp.) in the subsequent clock cycle.
The postprocessing block multiplies the scalar elements of the
post-iteration vector by correction factor κ according to (8).

The architecture template supports runtime-adaptable pa-
rameters to tune the numerical precision of the CORDIC
operation to the numerical precision requirements of the

3
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Fig. 2: Schematic of left-hand side 2×2 unitary transformation
matrix (UTM) generator.

surrounding application. By doing so, switching activity in the
circuit is minimized, which reduces the energy consumption
per CORDIC operation.

• Adapting CORDIC iteration cycles configures the num-
ber of micro-rotations on the granularity level of iterators
in the IT block.

• Adapting the iterator chain length by bypassing a con-
figurable number of iterators adapts the number of micro-
rotations on the granularity level of a single rotation.

• A configurable bitmask, applied to a certain number of
least significant bits (LSBs) prior to each micro-rotation
and the postprocessing unit, implements an adaptive
number format.

2) 2x2 UTM Generation: The schematic of the unitary
transformation matrix generator for left-hand side matrix
Vl(Φ, θα, θβ) is shown in Figure 2. Inputs and outputs of
CORDIC units are ordered according to Figure 1. For all
following schematics, unlabeled inputs are supposed to be
zeroed. The UTM generation circuit is divided into two coarse-
grained computational stages (St.). Each computational stage
performs its respective task in a maximum of CS clock cycles
before passing the result to the next state. The time corre-
sponding to CS clock cycles is referred to as a computational
cycle. The computation of the left-hand and right-hand unitary
matrices Vl(Φ, θα, θβ) and Vr(Ψ, θγ , θδ) in (14) requires the
sines and cosines of Φ and Ψ . These trigonometric functions
are generated in the first computational stage by a CORDIC
unit in rotation (rot.) mode, passing 1 and 0 to x0 and y0,
respectively, and Φ or Ψ to z0. At the output of the CORDIC
unit, the cosine and sine are available at ports xL and yL.
These values are then passed to the second computational stage
and assigned to the real-valued components of the complex-
valued inputs of four CORDIC units in rotation mode, while
the imaginary components are set to zero. Forwarding θα and
θβ (for Vl(Φ, θα, θβ)) or θγ and θδ (for Vr(Ψ, θγ , θδ)) to the
corresponding z0 ports generates the desired transformation
matrices.

3) Transformations Q1 and Q2: The 2 × 2 SVD of input
matrix M is realized by two transformations: Q1 and Q2,
whereof each requires two UTM generators.

The schematic of Q1 is illustrated in Figure 3. The circuit is
spread across four computational stages. The first two calculate
the transformation parameters from (16) and the last two
generate the UTMs. The first stage calculates amplitudes and
phases of scalar components M21 and M22 of input matrix
M, utilizing two CORDIC units in vectoring mode (vec.).
From these results, the second stage computes Ψ1 based on the

vec.
cordic

M21 M22 θm22

θm21

1
2

θα1

1 Vl1

−1
Vr2

M M

θγ1 UTM

St.1 St.2 St.4St.3

Ψ1

vec.
cordic

vec.
cordic

rot.
cordic

Fig. 3: Schematic of Q1 transformation unit.
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M̃22

θα2

θβ2

Vr2

M̃
Vl1
Vr1
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cordic

vec.
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vec.
cordic

vec.
cordic

vec.
cordic

Fig. 4: Schematic of Q2 transformation unit.

amplitudes of M21 and M22. Phases θα1
and θγ1 are calculated

using θm21
and θm22

according to (16). In the next two
stages, the 2×2 transformation matrices of Q1 are computed.
Due to Φ1 = 0, the non-diagonal parts of Vl(Φ1, θα1

, θβ1
)

are zero as well. Furthermore, θα1
= θβ1

means that the
two diagonal elements are equal. Thus, the computation of
Vl(Φ1, θα1 , θβ1) can be reduced to a single CORDIC operation
in rotation mode. As a result, the left transformation matrix
is already available in the third computational stage, while
the computation of the right matrix is finished in stage four.
In addition, the input matrix is stored in a first-in, first-out
(FIFO) buffer that samples its input every CS-th clock cycle.
The delayed value of M is used to calculate M̃ as in (15).

The structure of the Q2 block is shown in Figure 4. The
parameters for UTM generation according to (18) are calcu-
lated in the first two computational stages. The last two stages
generate the transformation matrices themselves. The first
stage computes amplitudes and phases of the scalar elements
M̃11, M̃12, and M̃22 of matrix M̃. Since the operand to the
tangent in (18) is a fraction of amplitude terms, there is no
need for CORDIC postprocessing in the preceding CORDIC
unit, because the correction factor κ cancels out. As a result,
sums |M̃22| ∓ |M̃11| can be calculated in the last cycle of
the first computational stage. The second stage computes θα2 ,
θβ2 , θγ2 , and θδ2 , as well as the phases Φ2 and Ψ2. For the
latter two, the design exploits the fact that the phase output
of the CORDIC operation does not require postprocessing,
so Φ2 and Ψ2 are computed in the last cycle of the second
computational stage. Stages three and four take the previously
calculated parameters as inputs and generate the left and right-
hand UTMs Vl(Φ2, θα2

, θβ2
) and Vr(Ψ2, θγ2 , θδ2). Q2 also

buffers the transformation matrices generated by Q1 in a FIFO,
so they can be combined with the results of Q2 to derive the

4
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Fig. 5: Schematic of 2× 2 SVD generator.

overall transformation matrices.
4) 2x2 SVD: The architecture of the 2 × 2 SVD block is

illustrated in Figure 5. The 2× 2 SVD generator contains one
instance of Q1 and Q2, and a 2× 2 matrix multiplication unit
(MMU) to compute M̃ from (15) and the final left and right-
hand unitary matrices

Jl(M) = Vl2Vl1

Jr(M) = Vr1Vr2 , (20)

meaning the multiplication unit has to perform a total of four
matrix multiplications per 2×2 SVD. Allocating one cycle per
matrix multiplication motivates the choice of CS = 4, so that
the 2× 2 SVD generator computes one SVD every four clock
cycles. To achieve a competitive clock frequency, the matrix
multiplier has an additional pipeline register between the real-
valued scalar multipliers and the subsequent adders. Whilst
increasing the clock frequency, this pipelining introduces a
potential data hazard. The MMU has a budget of CS = 4
clock cycles to compute matrix M̃ which is required as input
to Q2, and for output matrices Jl and Jr (see (20)). Since
the computation of one matrix multiplication has a latency
of two clock cycles, the calculation of M̃ alone introduces a
latency of four cycles. However, Vl2 and Vr2 depend on M̃,
so all calculations in the MMU that use these two matrices
have to be scheduled after the calculation of M̃ but within
the same computational cycle. With a latency of four cycles
for the computation of M̃, this constraint cannot be fulfilled.
To overcome this issue, the design exploits the fact that
Vl1 is available CS clock cycles prior to Vr1 . Consequently,
the intermediate result Vl1M is computed one computational
cycle prior to the computation of M̃ and stored in a clock-
gated register until it is used in the next computational cycle.
The assignments of multiplications to clock cycles i within
computational cycle k is given by

Mout =


(
Vk

l1 Mk
)
Vk

r1 i = 1

Vk+1
l1 Mk+1 i = 2

Vk
l2 Vk

l1 i = 3

Vk
r1 Vk

r2 i = 4 .

(21)

III. N ×N SVD ALGORITHM AND ARCHITECTURE

The Jacobi method allows the computation of the SVD of
an N ×N matrix based on two-sided unitary transformations.
Section III-A introduces the underlying algorithm from [5]
which is then transferred into a representation entirely based
on 2×2 arithmetic. Section III-B describes how the previously

Algorithm 1: Cyclic Jacobi algorithm for SVD of N ×N
matrix [5].

1 Λ ← M
2 V ← IN
3 for s ← 1 to NSW do
4 for p ← 1 to N − 1 step 2 do
5 for q ← p+ 1 to N do
6 Λ ← Ja

l

(
Λ(p,q)

)
Λ Ja

r

(
Λ(p,q)

)
7 V ← V Ja

r

(
Λ(p,q)

)
8 end
9 end

10 end

introduced 2 × 2 SVD architecture can be embedded into a
bigger circuit where it is used to implement N × N SVDs.
Control flow and address generation of the N×N architecture
are designed to guarantee full utilization of the 2×2 SVD unit.

A. Algorithm
The cyclic Jacobi method [5] for SVD of matrix M ∈

CN×N in its original form is shown in Algorithm 1, where
IN denotes an N ×N identity matrix. The singular values of
M are computed in an iterative fashion based on 2× 2 SVDs
and N × N matrix-matrix multiplications. To that end, the
input matrix is multiplied by a series of augmented left and
right-hand transformation matrices Ja

l and Ja
r . These matrices

are identity except at four positions: (p, p), (p, q), (q, p), (q, q)
with p < q ≤ N and p ∈ {2n + 1, n ∈ N}. At these four
positions, Ja

l and Ja
r are defined by Jl(Λ

(p,q)) and Jr(Λ
(p,q)).

Here, Λ(p,q) ∈ C2×2 denotes a matrix composed of four
elements of Λ at the aforementioned positions. The scalar
elements for row i and column j of Ja

l and Ja
r are given by

J a
l,ij

(
Λ(p,q)

)
=



1 i=j ∧ i6=p ∧ j 6=q
Jl,11(Λ

(p,q)) i=p ∧ j=p
Jl,12(Λ

(p,q)) i=p ∧ j=q
Jl,21(Λ

(p,q)) i=q ∧ j=p
Jl,22(Λ

(p,q)) i=q ∧ j=q
0 else

(22)

J a
r,ij

(
Λ(p,q)

)
=



1 i=j ∧ i6=p ∧ j 6=q
Jr,11(Λ

(p,q)) i=p ∧ j=p
Jr,12(Λ

(p,q)) i=p ∧ j=q
Jr,21(Λ

(p,q)) i=q ∧ j=p
Jr,22(Λ

(p,q)) i=q ∧ j=q
0 else

(23)

For each iteration s, which is also referred to as a sweep,
Algorithm 1 iterates over all pairs (p, q) to update matrices
Λ and V. After a sufficient number of sweeps NSW, matrix
Λ contains the singular values of M on its diagonal and V
converges to the precoding matrix from (4).

Algorithm 1 can be optimized by exploiting the fact that
a sweep over all pairs (p, q) contains N − 1 groups of N/2
pairs that can be processed in parallel without interfering with
each other [6]. The corresponding rearrangement of pairs (p, q)

5
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is called parallel ordering. The pairs can be generated in
a hardware-friendly fashion by a register bank and a fixed
permutation mesh between the inputs and outputs of the bank.
The register contents are initialized with increasing integers
from 1 to N . For each following clock cycle, the circuit
generates a new set of independent pairs. Figure 6 shows the
generation of all pairs for an 8 × 8 SVD. The preliminary
values (p̃, q̃) from the register bank have to be postprocessed
according to

(p, q) =

{
(p̃, q̃) p̃ < q̃

(q̃, p̃) q̃ < p̃.
(24)

Since the parallel ordering pairs are disjunct, Algorithm 1 can
be rewritten so the left and right-hand multiplication matrices
from Line 6 are not based on just one pair from the current
parallel ordering permutation but on all N/2 of them. This
step facilitates a high throughput hardware implementation
by enabling the computation of more transformations on the
input matrix without having to wait for the results of previous
transformations which first have to pass through the entire
processing pipeline. From the disjunct pairs (pv, qv), v ∈
{1, . . . , N/2} of the current parallel ordering permutation,
the combined left-hand transformation matrix Jc

l ∈ CN×N

is given by

J c
l,ij =



Jl,11(Λ
(pv,qv)) i=pv ∧ j=pv

Jl,12(Λ
(pv,qv)) i=pv ∧ j=qv

Jl,21(Λ
(pv,qv)) i=qv ∧ j=pv

Jl,22(Λ
(pv,qv)) i=qv ∧ j=qv

0 else

(25)

for all v. Similarly, based on all disjunct pairs (pu, qu), u ∈
{1, . . . , N/2}, the combined right-hand matrix Jc

r ∈ CN×N is

J c
r,ij =



Jr,11(Λ
(pu,qu)) i=pu ∧ j=pu

Jr,12(Λ
(pu,qu)) i=pu ∧ j=qu

Jr,21(Λ
(pu,qu)) i=qu ∧ j=pu

Jr,22(Λ
(pu,qu)) i=qu ∧ j=qu

0 else

(26)

for all u. The resulting matrices have exactly two non-zero
entries in each row. Also, pairs of two rows in each matrix
have their non-zero entries in the same columns. This means
that the right-multiplication of matrix Λ by Jc

r corresponds
to N/2 independent multiplications of submatrices of Λ by
the 2× 2 matrices Jr(Λ

(pu,qu)) for all u. The submatrices of
Λ are constructed from two columns indicated by (pu, qu).
Similarly, the left multiplication of Λ by Jc

l corresponds
to N/2 independent multiplications of the 2 × 2 matrices
Jl(Λ

(pv,qv)) by two rows of Λ indicated by (pv, qv) for all
v. Therefore, the multiplication in Line 6 of Algorithm 1 can
be rewritten based on 2 × 2 arithmetic. This is particularly
attractive when designing a flexible circuit for N ×N SVD,
since the core arithmetic functionality remains the same and
only the surrounding control flow changes. The resulting
processing scheme based on parallel ordering is illustrated
in Algorithm 2, where n iterates over all parallel ordering
permutations, and v and u iterate over all pairs of the current
permutation for the left and right-hand side factors Jl and Jr.
Access to matrix V is described by V(v,p,q) which denotes

Algorithm 2: Jacobi algorithm with parallel ordering for
SVD of N ×N matrix.

1 Λ ← M
2 V ← IN
3 for s ← 1 to NSW do
4 for n ← 1 to N − 1 do
5 Compute next set of pairs (p1, q1), .., (pN/2, qN/2)
6 for u ← 1 to N/2 do
7 for v ← 1 to N/2 do
8 Λ(pv,qu) ← Jl(Λ

(pv,qv))Λ(pv,qu)Jr(Λ
(pu,qu))

9 V(v, pu,qu) ← V(v, pu,qu)Jr(Λ
(pu,qu))

10 end
11 end
12 end
13 end

(1,2) (3,4) (5,6) (7,8)

(1,4) (2,6) (3,8) (5,7)

(1,6) (4,8) (2,7) (3,5)

(1,8) (6,7) (4,5) (2,3)

(1,7) (8,5) (6,3) (4,2)

(1,5) (7,3) (8,2) (6,4)

(1,3) (5,2) (7,4) (8,6)

Fig. 6: Generation of parallel ordering pairs (p̃, q̃) for 8 × 8
SVD (see (24)).

a 2 × 2 submatrix from consecutive rows 2v − 1 and 2v at
colums p and q of V.

B. Architecture
The structure of the N×N SVD architecture implementing

Algorithm 2 is shown in Figure 7. In the following, the
main components are introduced. The IO register file (IO
reg) acts as a local cache. It is accessible from the outside
to write the input matrices M and read out the result, once
M has been iteratively transformed to Λ. To the inside, it
provides 2 × 2 submatrices of the current version of Λ as
input to the 2 × 2 SVD block to compute Jl(Λ

(pv,qv)) and
Jr(Λ

(pu,qu)). It also provides Λ(pv,qu) to the Λ multiplication
engine (Λ mul). The result produced by the multiplication
engine (i.e., the left side of Algorithm 2, Line 8) is fed
back to the IO register file to update the Λ-matrix. After
all sweeps have been processed, the register file contains the
final matrix Λ. To match the access pattern of Algorithm 2,
the register file accepts four scalar inputs and delivers four
scalar outputs at each clock cycle. The storage elements are
organized in a two-dimensional grid, whereof two rows can
be addressed simultaneously via two row indices. Out of these
two rows, two columns are selected by two column indices.
The resulting multiplexing and demultiplexing complexity is
significant enough to prolong the critical path. Therefore, there
is an additional pipeline register in front of the demultiplexing
network from the input of the register file to the actual storage
cells. Also, all computational elements connected to the output
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IO reg
SVD

Jl buf
Λ mul

Jr buf

IO-SVD
AGU

IO-Λ mul
AGU

addr. out

addr. in

da
ta

ou
t

da
ta

in V reg

Vreg-Vmul
AGU

2x2 V mul

Fig. 7: Schematic of N ×N SVD generator.

of the IO register file have their inputs directly connected
to a pipeline register so there is a sufficient time budget for
the multiplexing network at the output of the IO register file.
Additional pipeline registers are inserted at the same positions
in the register file holding matrix V.

The access pattern described by the two for-loops in Line 6
and 7 of Algorithm 2 can only be realized if all N/2 matrices
Jl and Jr of the current parallel ordering permutation have
been computed. However, the 2×2 SVD block computes these
matrices successively. Therefore, two buffers (Jl buf, Jr buf)
are placed in front of the Λ multiplication engine. They delay
the computation of Line 8 until the 2 × 2 SVD block has
delivered enough matrices Jl and Jr of the current parallel
ordering permutation, so that once the buffers are filled,
the Λ multiplication engine can run at the highest possible
utilization. The third input to the multiplication engine is
matrix Λ(pv,qu), the middle-factor from Algorithm 2, Line 8.
In case of v = u, this input comes from the 2×2 SVD engine
through which it passed via a FIFO. For all remaining clock
cycles of the current computational cycle, the IO register file
can supply data to the Λ multiplication engine directly.

The V multiplication engine (V mul) generates the N ×N
precoding matrix V from the 2× 2 output matrices Jr of the
2× 2 SVD. The computation follows Line 9 of Algorithm 2.
The intermediate version of the precoding matrix is stored in
the V register file (V reg). Since Algorithm 2 operates on
consecutive rows of V, the register file can be simplified as
opposed to the Λ register file. While still providing random
access to two columns, the row-access is now controlled by a
single address so that the content of one row in the register
file matches two consecutive rows of matrix V.

1) Control Flow & Address Generation: The control flow
of the N × N SVD block is mainly defined by the way
the design steps through the loops in Algorithm 2 and the
corresponding accesses patterns to the IO register file. In
addition to the flow presented in Algorithm 2, the hardware
implementation also interleaves the processing of a certain
number of matrices to enable full utilization of the 2×2 SVD
pipeline. The overall access pattern and the corresponding
address generation is composed of a number of nested control
loops that are introduced in the following from the inside to
the outside of the loop hierarchy of Algorithm 2.

• Serial access control refers to the serialization of parallel
ordering permutations so data can be transferred from
and to the Λ and V register files whose interfaces are
designed for a single 2× 2 matrix per access.

• Matrix access control decides which of the input matri-

ces in the IO register file is processed. Every time one
serial access cycle is completed, the control flow switches
to the next matrix where the same serial access pattern
with the same parallel ordering permutation is used.

• Parallel access control manages the iteration through the
parallel ordering permutations. Once all serial accesses of
the current parallel ordering permutation have been used
on all matrices, the next parallel ordering permutation is
generated.

• Sweep control keeps track of what sweep the architecture
is in to know when the SVD computation is finished.
After completion, the design switches into an IO state,
so results can be read out and the matrices for the next
set of SVDs can be written in.

The address generation units (AGUs) in Figure 7 follow the
above control flow. Runtime configuration of the input matrix
sizes is implemented by excluding a configurable number of
registers from the parallel ordering pair generation in Figure 6.
To reduce control overhead, the AGU for the data flow from
the IO register file to the Λ multiplication engine (IO-Λ mul
AGU) and the AGU between the V register file and the V
multiplication engine (V reg-V mul AGU) buffer the gener-
ated read addresses for the inputs to the multiplication engines
in two FIFOs to reuse the same addresses for writeback.

2) Latency Analysis and Circuit Dimensioning: To effi-
ciently utilize the N ×N SVD architecture, all computational
stages should be kept busy at all times. Since Algorithm 2
performs SVD in an iterative fashion, the result of one
iteration has to be computed by the 2 × 2 SVD unit and the
multiplication engines, and then be written back to the IO
register file before the next iteration can start. Parallel ordering
allows the independent processing of N/2 SVDs of size 2×2
without updating the input matrix. However, the architecture
in Figure 7 consists of more than N/2 computational stages,
which means that the design cannot be fully utilized when
operating on one input matrix only. This problem can be
mitigated by processing MI input matrices in an interleaved
scheme, as indicated in Section III-B1.

Since handling a bigger number of matrices results in
increased storage requirements for both register files, it is
desirable to reduce interleaving to the smallest degree that
enables maximum utilization of all functional units. To that
end, the previously introduced architecture and its data flow
have to be analyzed with respect to latency (i.e., the total
number of computational stages). The 2× 2 SVD block itself
causes a latency of nine computational cycles; four from Q1,
another four from Q2, and one from the 2×2 MMU. Buffering
of Jl and Jr causes an additional latency of two computational
cycles. Finally, the two cascaded matrix multipliers in the
Λ multiplication engine cause another delay corresponding
to one computational cycle. Therefore, the overall latency of
the processing pipeline equals LT = 12 computational cycles,
meaning the processing pipeline has to be fed with at least
LT + 1 inputs for 2 × 2 SVD calculation before operating
again on the first input matrix. Since each parallel ordering
permutation contains N/2 independent pairs, the number MI
of interleaved matrices has to satisfy

MI ≥
⌈
2(LT + 1)

N

⌉
=

⌈
26

N

⌉
. (27)

7



TO APPEAR IN IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I

The associated storage requirement in terms of complex-
valued scalars based on (27) is

SI =MIN
2 =

⌈
2(LT + 1)

N

⌉
N2 =

⌈
26

N

⌉
N2. (28)

In line with the IEEE 802.11ac standard, 8 × 8 MIMO is
defined as the maximum antenna setup and the N ×N SVD
template is configured accordingly. Based on (27) and (28),
we see that N = 8 has a storage requirement of MI = 4,
SI = 256, so the IO register file is designed to hold four 8×8
matrices arranged in 32 rows and 8 columns.

Next, the multiplication engines for Λ and V are dimen-
sioned so they can handle the throughput generated by the
2 × 2 SVD block which always operates at full utilization.
Based on Algorithm 2, there are

M pp
mul = N2/4 (29)

three-factor matrix multiplications required per parallel order-
ing permutation. The matrix factors stem from N/2 SVDs
of size 2 × 2, each taking CS = 4 clock cycles to compute,
totaling in an SVD execution cycle count of

Cpp
svd = 2N (30)

for one parallel ordering permutation. For the multiplication
engine to match the throughput of the SVD block, it has a
cycle budget of

Cpp
mul =

Cpp
svd

M pp
mul

=
8

N
(31)

per two-sided matrix multiplication which is one for the
maximum use case of N = 8. This means the multiplication
engine has to be designed to deliver a throughput of one three-
factor matrix multiplication per clock cycle. Therefore, the
Λ multiplication engine is composed of two cascaded matrix
multiplication units whereof the second takes the output of the
first as its left-hand input. The same argumentation applies to
the dimensioning of the V multiplication engine with respect
to one-sided matrix multiplications, so the corresponding block
contains a single, pipelined 2× 2 matrix multiplier.

IV. NUMERICAL PRECISION ANALYSIS

This section discusses the numerical precision requirements
of N×N SVD precoding using the napSVD architecture. The
results are summarized in Table I. The maximum requirements
are considered achieved when the communication performance
(i.e., FER) is indistinguishable from the performance deliv-
ered by a reference implementation using double precision
floating-point arithmetic. The napSVD has three configuration
parameters for numerical precision: number of sweeps, scalar
wordwidth, and number of CORDIC iterations. All three
influence energy consumption and FER. Reducing CORDIC
iterations and scalar wordwidth below the configuration for
floating-point equivalence causes significant FER-impairments
while offering comparably small reductions of energy con-
sumption. Therefore, both parameters are fixed to the use case
requirements in Table I. In contrast, the number of sweeps is
directly proportional to energy consumption, so the trade-off of
energy consumption and FER is considered in the following.

Figure 8a to 8c show the FERs for a 4× 4, 6× 6 and 8× 8
antenna setup for a varying number of sweeps NSW. The anal-
ysis is based on extensive Monte Carlo simulations of an i.i.d.

Antenna setup 2× 2 4× 4 6× 6 8× 8

CORDIC iterations 4 5 5 6
Scalar wordwidth 10 12 12 13
Number of sweeps 1 2 2-3 3-4

TABLE I: Precision requirements for SVD precoding.

Rayleigh slow fading channel with additive white Gaussian
noise (AWGN) according to the TGn-C model [17]. The frame
structure conforms with the IEEE 802.11ac standard with
an up-front block preamble. Each frame contains 2,304 byte
of uncoded information, which corresponds to the maximum
size of a MAC service data unit (MSDU) in IEEE 802.11ac
(excluding the directional multi-gigabit (DMG) beamforming
mode). All setups use LDPC channel coding according to
IEEE 802.11 for the highest codeword length of 1944 bit, the
highest code rate of 5/6 and the densest symbol constellation
alphabet: 256-QAM. MIMO detection is performed by a low-
complexity non-iterative linear MMSE algorithm [18].

The analysis shows that the precision requirement in terms
of sweeps changes between antenna configurations but also
within a single configuration when using a different number of
eigenmodes/streams MS. For a 4×4 transmission, two sweeps
deliver double floating-point equivalent communication per-
formance. For a target FER of 1 %, the offset when using
one sweep is around 3 dB when using all four eigenmodes
and circa 1.4 dB and 0.7 dB for three or two eigenmodes,
respectively. A 6 × 6 transmission requires three sweeps
for floating-point equivalent communication performance for
MS ∈ {5, 6}, and two sweeps otherwise. For MS = 5,
switching from three sweeps to two causes a degradation
of 0.7 dB. For MS = 6, the gap for switching from three
sweeps to two is significantly larger: around 3 dB. Applying
one sweep only is not even feasible, since the target FER
is not achieved for realistic SNR values. The 8 × 8 setup
needs four sweeps for floating-point equivalent communication
performance at MS = 8 and three sweeps when using less
eigenmodes. The gap in communication performance when
using two sweeps instead of three varies from an almost
negligible degradation for small MS up to a 1.3 dB offset
for seven modes. When reducing further to one sweep, the
gap widens to slightly above 1 dB for small MS via 4 dB for
seven eigenmodes up to an impractically high SNR for eight
modes.

The execution time of the SVD algorithm scales linearly
with the number of sweeps, and energy consumption scales
linearly with execution time. For this reason, the number of
sweeps is considered the primary parameter to trade commu-
nication performance for reduced computational complexity
and energy consumption. Depending on the use case and
SNR, this trade-off can be very attractive. Consider a 4 × 4
MIMO transmission with MS = 2 as in Figure 8a, for
example. At 20 dB, a transmission at around 99.8 % of the
theoretically achievable maximum data rate can be exchanged
for a transmission at 99 % whilst reducing the computational
complexity and energy consumption of precoding by 50 %.

V. IMPLEMENTATION RESULTS

The N × N napSVD architecture template is design-time
configurable with respect to the maximum supported N by
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Fig. 8: Impact of number of sweeps on FER. Code rate: 5/6. Constellation alphabet: 256-QAM.

setting the number of registers in the parallel ordering pair
generation (Figure 6) of the AGUs, the size of the register
files holding matrices Λ and V (see (28)), and the maximum
throughput of both multiplication engines (see (31)). The
architecture was layouted for N = 8 for a 90 nm CMOS
technology with 1V supply voltage. The wordwidth was
chosen according to the maximum precision requirements for
the SVD of an 8 × 8 matrix, meaning 13 bit per real-valued
scalar inside the IO register file (wordwidth varies within
the ASIC) and 12 bit per angular value. Figure 9 shows
the resulting layout. The post-layout design achieves a clock
frequency of fclk = 752MHz. The design footprint is 1219 µm
by 1214 µm including–and 1159 µm by 1154 µm excluding–
power rings, which results in a die area of 1.48mm2 and a
standard cell area of 1.34mm2.

Within the coherence time Tco = c/(8fcv
max
trx ) [4] of an

IEEE 802.11ac channel at carrier frequency fc = 5GHz, the

napSVD can compute the 8× 8 precoding matrices for

N8×8
cl =

⌊
c fclk

8fc v
max
trx MF,u C

8×8
svd

⌋
= 5 (32)

wireless clients for the maximum 160MHz channel with
MF,u = 484 used subcarriers, maximum relative transmitter-
receiver velocity vmax

trx = 5ms−1, speed of light c, and SVD
computation cycle count C8×8

svd = 448. In conclusion, our
architecture is IEEE 802.11ac real-time capable for multi-user
scenarios.

Table II provides a breakdown of power consumption and
hardware complexity of the napSVD architecture when per-
forming 8 × 8 SVD. The 2 × 2 SVD accelerator is the most
significant source of power consumption (49.7 %), followed
by the two 2 × 2 matrix multiplication engines for Λ and
V matrices (26.6 and 8.3 %). Despite a significant share of
19.6 and 12.3 % in hardware complexity, the IO and V-matrix
register files only consume 7.2 and 2.8 % of the overall power.
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Functional unit kGE % mW %

SVD 2x2 133.0 37.1 383.0 49.7
Λ mul 70.5 19.7 205.0 26.6
IO reg 70.2 19.6 55.4 7.2
V mul 26.1 7.3 63.7 8.3
V reg 44.0 12.3 21.7 2.8
Misc 14.9 4.2 41.2 5.4

Total 358.7 770.0

TABLE II: Hardware complexity and power consumption of
8× 8 napSVD architecture (fclk = 752MHz, 90 nm CMOS).

IO reg

V reg

J reg J reg
V mul

SVD 2x2

napSVD

Λ mul

Fig. 9: Layout of 8×8 napSVD architecture in 90 nm CMOS.

Even though the two register files have the exact same storage
capacity, the IO variant has a higher hardware complexity
than the V-matrix register file. The underlying cause is the
more complex addressing scheme of the IO register file that
allows reading and writing of a 2× 2 submatrix specified by
two row-indices and two column-indices. This requires a more
complex multiplexing and demultiplexing network than for the
V-matrix register file, which provides random column access
but always delivers data from two adjacent rows.

A. Use Case Energy Benchmark
This section assesses the power and energy consumption of

the napSVD architecture when executing different use cases.
The analysis is based on the precision requirements from
Table I for 2 × 2, 4 × 4, 6 × 6 and 8 × 8 SVD precoding.
Table III presents power consumptions P svd

2×2, Pmul
Λ , Pmul

V and
PΣ of the 2 × 2 SVD block, the multiplication engines to
generate matrices Λ and V, and the overall napSVD design.
Furthermore, the energy Esw per sweep and the energy Eclk
per clock cycle are listed. The energy is derived from a time-
based power analysis in Synopsys PrimeTime, based on a
simulation of the post-layout netlist with realistic stimuli from
a channel simulator. There is a significant drop of 175mW
in power consumption when switching from 8 × 8 down to
the 4 × 4 antenna configuration. Several factors contribute
to this behavior. Smaller antenna configurations can operate
numerically stable with less CORDIC iterations and a narrower
wordwidth than the 8 × 8 setup (see Table I). The strong
reduction in power consumption for the multiplication units
(i.e., 49 % for the calculation of Λ comparing N = 8 and
N = 4) also results from the multiplicative calculation scheme

Antenna P svd
2×2 Pmul

Λ Pmul
V PΣ Esw Eclk

setup [mW] [mW] [mW] [mW] [nJ] [nJ]

2× 2 318 - - 402 2.14 0.534
4× 4 363 104 36.1 595 19.0 0.791
6× 6 367 155 48.1 673 53.7 0.895
8× 8 383 205 63.7 770 115 1.027

TABLE III: Power and energy benchmark of SVD on post-
layout napSVD model with fclk = 752MHz.

for Λ and V shown in Algorithm 2. While the 2 × 2 SVD
accelerator is always operating under full load, the utilization
of the multiplication engines depends on the size of the input
matrix. In addition, Table III compares the energy consumption
per SVD sweep among different matrix sizes. Due to the
difference in cycle counts per sweep and in base power
consumption, one sweep for an 8×8 matrix consumes around
six times more energy than for 4×4. Considering that a 4×4
SVD requires up to two sweeps, and an 8× 8 SVD demands
up to four sweeps, the total energy per SVD is up to 12 times
higher for the 8× 8 use case than for 4× 4.

B. Comparison with State-of-the-art

This section puts the napSVD design into perspective by
comparing it with other SVD architectures from the literature.
For a fair comparison, all designs are scaled to 90 nm CMOS
technology and a core voltage of 1V. Results are summarized
in Table IV. Note that energy consumption is difficult to com-
pare among different works due to different implementation
levels and simulation approaches. For this reason, we only
list energy for works based on tape-outs or with a detailed
description of how the results were obtained1. The matrix
decomposition units MDU1 and MDU2 from [11] compute
the SVD or QR factorization of 4 × 4 matrices. SVD is
performed based on the Golub-Kahan (GK) algorithm. Both,
bidiagonalization and diagonalization are expressed entirely
based on Givens rotations. The slim core arithmetic unit con-
sists of one two-dimensional CORDIC unit and one multiply-
accumulate unit only. The main difference between MDU1
and MDU2 is that the latter can adapt the number of CORDIC
micro-rotations at runtime. MDU1 and MDU2 have a small
size of 42.3 and 38.1 kGE at a clock frequency of 133 and
272MHz, respectively. The small hardware complexity per
MDU is penalized by a high cycle count of 1,539 and 4,306
per SVD. For 4 × 4 MIMO, the napSVD architecture has a
significant advantage in hardware efficiency of a factor of 10.7
and 13.2 over MDU1 and MDU2. In the light of this significant
gap, it should be noted that the napSVD architecture does
not support QR factorization. The architecture in [13] is
based on [11] but tailored to 4 × 4 SVD only. Still, the
napSVD has a hardware efficiency advantage factor of 3.1

1The variance of simulated energy consumption is significant among differ-
ent simulation approaches. To demonstrate this effect, the energy consumption
of the napSVD design was evaluated using a simple but common approach
based on fixed toggle rates at the input ports. These toggle rates are then
propagated through the design and switching activity is derived accordingly.
This approach delivered an energy consumption 20 times lower than the results
obtained from the setup described above. Even for taped-out designs like
the MIMO detector from [19], a change of stimuli alone caused a sixfold
difference in energy consumption.
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over [13], in addition to supporting multiple matrix dimensions
efficiently. One contribution to the efficiency advantage of
the napSVD over [11] and [13] comes from its beneficial
numerical properties. Even for 8 × 8 MIMO, the two-sided
Jacobi scheme from Algorithm 2 operates numerically stable
on a 13-bit fixed-point data format using CORDIC units with
a maximum of six micro-rotations. The GK-based designs in
[11] and [13], on the other hand, contain memory with 16-
bit per real-valued scalar, and [13] mentions that the internal
wordwidth widens up to 19 bit. Also, the design in [13]
requires nine CORDIC micro-rotations for numerically stable
operation. Authors of [14] use a systolic array for generalized
triangular decomposition with SVD as a special case for up to
8×8 MIMO. Inefficiencies associated with systolic arrays [11],
[13], particularly hardware underutilization, give the napSVD
architecture a 25-fold advantage in terms of area efficiency
for 8 × 8 channel matrices. Since [14] supports smaller size
matrices by disabling processing elements in the array, the
napSVD, that always fully utilizes its core 2 × 2 SVD unit,
has a 100-fold area efficiency advantage for 4× 4 MIMO.

Authors of [20] compute SVDs up to 4×4. The underlying
algorithm called SL-SVD (superlinear convergence) relies on
the ordered singular values σ1 ≥ σ2 ≥ σ3 ≥ σ4 being different
enough so that σn1 � σn2 � σn3 � σn4 is fulfilled for a
sufficiently high n ∈ N. The authors performed simulations
for one channel scenario and claim that n = 8 is sufficient. All
further efficiency assessments are based on that claim. Note
that the choice of n is highly dependent on the channel char-
acteristics and will be higher if the singular values lie closer
together. This becomes more and more problematic for bigger
size channel matrices. In the corner case for two or more
singular values being equal, the algorithm never converges.
A channel with equal singular values is the optimum case that
maximizes channel capacity [4], though. The aforementioned
assumption buys the design in [20] an advantage of 25 % over
the napSVD in terms of area efficiency for 4× 4 SVD.

ASIP design [21] provides an interesting comparison with
a programmable solution. The architecture of [21] is rather
generic with a data path composed of four floating-point
units for multiplication and addition, and four accelerators for
square root calculation. Similar to the napSVD architecture,
the ASIP can also compute SVDs of different size matrices.
However, in the case of [21], this flexibility is penalized by
a high execution time. Therefore, the napSVD has a 188-fold
advantage in area efficiency over [21] for 8× 8 SVD.

VI. CONCLUSION

This paper presented the napSVD ASIC template for SVD-
based linear MIMO precoding for high throughput applications
(e.g., IEEE 802.11ac). The algorithmic and architectural focus
of the design is on versatility to support multi-mode (i.e.,
multiple antenna setups) MIMO precoding. To that end, the
entire SVD is based on 2×2 matrix arithmetic operations that
can be combined to form SVDs of bigger size matrices by
application of the two-sided Jacobi method [5]. Therefore, the
main computational units are a CORDIC based 2 × 2 SVD
accelerator and two 2× 2 matrix multiplication engines. The
2×2 data path is mainly controlled by address generation units
that employ parallel ordering [6]. The data access scheme is
repeated on the input data for multiple iterations/sweeps until

the result converges to the actual singular value decomposition.
To adapt to the numerical precision requirements of different
matrix sizes, the ASIC is configurable in terms of used
fixed-point wordwidth, number of CORDIC iterations in the
2× 2 SVD accelerator, and number of conducted sweeps.

As a proof-of-concept, the template was design-time con-
figured to support up to 8 × 8 MIMO. The resulting archi-
tecture has a hardware complexity of 359 kGE and achieves a
clock frequency of 752MHz using 90 nm CMOS technology
with 1V core voltage. A layout was conducted, occupying
1.34mm2 of standard cell area. Numerical precision require-
ments for 2 × 2, 4 × 4, 6 × 6 and 8 × 8 MIMO in terms
of wordwidth, CORDIC iterations and sweeps were evaluated
by extensive Monte-Carlo simulations. Additionally, it was
explored how the number of sweeps can be used to trade
communication performance in terms of low frame error
rate against energy efficiency. This trade-off is particularly
attractive, since the energy consumption per SVD is directly
proportional to the number of sweeps. When operating at full
precision, the resulting area efficiencies of the napSVD are
140, 11.7, 4.68 and 1.25 Mmat/s/mm2. The post-layout energy
efficiency is 468, 26.3, 9.31 and 2.91 mat/µJ.

Comparable ASICs from the open literature typically only
support up to 4 × 4 MIMO and are often limited to that
configuration exclusively, which is a significant loss of versa-
tility compared to the napSVD. Aided by favorable numerical
properties, the napSVD has a hardware efficiency advantage
of a factor around three to 13 over the well-known designs
in [11], [13] and achieves similar performance to [20] despite
being more flexible, both in terms of supported antenna setups
and wireless channel types. The ASIC-ASIP efficiency gap to
[21] spans two orders of magnitude.

The main contribution of this work is to demonstrate that
an ASIC implementation for a computationally demanding
application like MIMO precoding can still be versatile in
terms of supported use cases by following a systematic divide-
and-conquer approach in algorithm and architecture design.
Achieving superior or similar efficiencies compared to other
designs from the literature, our design also proves that versa-
tility and efficiency do not need to be contradicting.
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