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∗The Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

{dartmann, ascheid}@ice.rwth-aachen.de
†Wireless Communications Research Laboratory, Istanbul Technical University, Turkey

{irmakoz, gkurt}@itu.edu.tr

Abstract—This paper targets the joint optimization of the
signal-to-interference-plus-noise ratio (SINR) and secrecy in
wireless networks. Although the optimization of the SINR with
beamforming in wireless networks is well known, the joint
optimization of the secrecy and the SINR of the users is a new
problem which gets a high relevance recently. The optimization
problems investigated in this paper are based on the joint
optimization of the beamforming vectors and transmit powers.

This paper presents closed form solutions for two optimization
approaches for a simple power control scenario with a single user
and a single eavesdropper. Two approaches are distinguished:
beamforming without artificial interference (AI) and beamform-
ing with AI. For both approaches, this paper investigates a max–
min based beamforming problem and a minimum eavesdropper
SINR problem with an SINR constraint for the legitimate
receiver.

Index Terms—Max-min beamforming, secrecy, power control.

I. INTRODUCTION

Beamforming is a well investigated field regarding interfer-
ence mitigation in a multiuser scenario [1], [2]. In addition
to the interference minimization in multiuser networks, beam-
forming has drawn a lot of attention in networks with increased
secrecy requirements. Here, a legitimate user Bob gets secret
information from its legitimate transmitter Alice. A passive
eavesdropper Eve jointly receives the signal transmitted by
Alice. With beamforming the signal transmitted to Bob can be
maximized while jointly minimizing the signal power received
by the eavesdropper, Eve.

A. Related Work

Already in 1975, Wyner [3] observed that the capacity of
a system consisting of a legitimate user Bob and an eaves-
dropper Eve, is the difference between the capacities of these
two channels. This capacity is called the secrecy capacity.
Using smart antennas, an improved secrecy capacity can be
achieved with beamforming. Two beamforming approaches are
investigated in the literature: the first approach only considers
beamforming to increase the received signal power at the le-
gitimate user while jointly reducing the received signal power
at the eavesdropper. The authors in [4] investigate the problem
of a maximized secrecy capacity such that the target secrecy
capacity for a given secrecy outage probability is maximized.
Authors in [5] investigate the Gaussian broadcast channel in
the presence of a passive eavesdropper with assuming the

presence of full channel state information (CSI) knowledge of
all links. They show that the general multiple input multiple
output (MIMO) rate maximization is non-convex, however the
simplified multiple input single output (MISO) case can be
solved with an efficient algorithm. The maximization of the
relative signal-to-interference-plus-noise ratio (SINR), which
is given by the ratio of the legitimate user’s SINR divided by
the eavesdropper SINR, is investigated in [6].

In addition to beamforming, the second approach addition-
ally uses artificial interference (AI) to reduce the SINR of the
eavesdropper. In [7], [8], an additional helping user (Hugo)
generates interference for the eavesdropper. The authors show
that zero forcing (ZF) is nearly optimal for high SNR. In [9]–
[11], the authors investigate the power minimization problem
(PMP). As in the case without secrecy, a minimized total
transmit power for a given quality-of-service (QoS) constraint
for the users is desired. Here additionally an SINR constraint
for the eavesdropper is guaranteed as well. In [9], the authors
consider minimization of Eve’s SINR (rate) subject to an SINR
constraint for Bob, and also a maximization of Bob’s SINR
given an eavesdropper SINR constraint. For both problems,
convex semi-definite programming based reformulations are
presented. Having multiple eavesdroppers, a max–min fair
approach is also reasonable. The authors in [12] have proved
that the max–min fair optimization of the secrecy capacity with
beamforming has an equivalent semi-definite programming
form with a rank-1 solution.

B. Contribution

In general it is diffcult to get channel state information
of Eves channel, therefore, this paper considers beamforming
approaches based on channel statistics. These statistics can be
obtained based on a priori measurements of environment. This
paper compares the two beamforming approaches (beamform-
ing with AI and without AI) with two optimization problems:
The first one is called max–min fair beamforming problem
(MBP) approach where a joint maximization of the inverse
eavesdropper SINR and the SINR of the legitimate user is
desired. For the case without AI, the problem is proved to
be equivalent to the relative SINR maximization, as presented
in [6]. The second problem is called minimum eavesdropper
SINR problem (MEP). Here, the SINR of the eavesdropper,
given a QoS constraint for the legitimate user, is minimized.
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It is proved, that both problems are equivalent if the QoS of
the MEP is equal to the optimal balanced SINR of the MBP.
For both problems and both approaches, simple closed form
solutions are derived and illustrated via numerical results.

C. Notation:

Lower case and upper case boldface symbols denote vectors
and matrices, respectively. The conjugate transpose of a matrix
A is denoted with AH and I denotes the identity matrix.

II. SIGNAL MODEL

The system consist of a single base station (Alice) with
a smart antenna array of NA correlated antenna elements, a
legitimate receiver (Bob) with a single antenna and an unau-
thorized receiver (Eve) eavesdropping with a single antenna.

The channel vector between Alice (the BS) and Bob is
denoted by h ∈ CNA×1. The linear precoding vector of BS
is denoted by ω =

√
pu, with the domains U = {u ∈

CNA×1 : ||u|| = 1} and P = {p ∈ R : p ≥ 0}. The
artificial interference vector is denoted by z with the domain
Z = {z ∈ CNA×1 : ||z|| = 1}. The thermal noise ν of the
user Bob and Eve is assumed to be zero mean, Gaussian and
circular symmetric with a variance of σ2. Furthermore, the BS
transmits a superposition of signals:

x = ωs+ zf (1)
with E{|s|2} = 1 and E{|f |2} = 1. Here the signal s
corresponds to the useful information which is intended for
Bob. The signal f is the artificial interference transmitted to
Eve. The signal Bob receives is given by:

r = h
H(ωs+ zf) + ν. (2)

With the definition of R = E{hhH} in the case of long-term
channel state information (CSI) or R = hhH in the case when
instantaneous CSI is available, the SINR of the users is defined
by:

γ(ω, z) =
ω

HRω

zHRz+ σ2
. (3)

The eavesdropper has the ability to receive the signals from
every BS in the network. Consequently, the received signal of
the eavesdropper is:

re = h
H
e (ωs+ zf) + ν. (4)

The vector he ∈ CNA×1 denotes the channel between BS and
the eavesdropper. Similar to the SINR of Bob, the SINR of
Eve is given by:

γe(ω, z) =
ω

HReω

zHRez+ σ2
. (5)

Here, Re = E{heh
H
e } denotes the spatial correlation matrix

of Eve in the case of long-term (CSI) or Re = heh
H
e in the

case when instantaneous CSI is available.

Two channel models can be distinguished: The first one
is the so-called instantaneous far-field line-off-sight (LOS)
scenario with a uniform linear array (ULA) at the BS as in
[13]. With φ = sin(θ) the channel vectors of Bob and the
eavesdropper are given by:

h(φ) = [1, e−j2πdφ, e−j2πd2φ, . . . , e−j2πd(NA−1)φ]T , (6)

where d is the normalized antenna spacing. The angle between
the BS and Bob is denoted by θ and the angle between the BS
and the eavesdropper is denoted with θe. Assuming channel
knowledge of the directions θ and θe, the correlation matrices
R(φ) = h(φ)hH(φ) and R(φe) = h(φe)hH(φe) are Toeplitz
matrices. The second approach is based on long-term CSI.
In this case, the channel matrix is calculated based on a
superposition of Np incoming waves in the case of a ULA
as follows:

R =

Np
∑

p=1

aph(φp)h
H(φp). (7)

The scalar ap denotes the path power.

III. OPTIMIZATION PROBLEMS

This paper compares two optimization approaches based on
beamforming:

• Beamforming, without AI (z = 0) as defined in Eq. (2)
• Beamforming with AI as defined in Eq. (4)

For each of these two approaches, two optimization problems
are investigated:

• Max–min beamforming problem (MBP) which desires
the maximization of the worst SINR. To combine the
two SINR constraints in the objective function, the max-
imization of the worst inverse SINR of the eavesdropper
is desired.

• Minimum eavesdropper SINR problem (MEP) which
desires the minimization of the eavesdropper SINR, while
jointly guarantee a quality-of-service (QoS) SINR for
Bob.

A. Beamforming without AI

This section considers the approach without AI (z = 0).
The MBP desires the maximization of the worst SINR. To
achieve a minimization of the eavesdropper SINR, the inverse
SINR should be maximized. The MBP can be stated as:

γ∗ = max
u∈U ,p∈P

min {γ(p,u), γ−1
e (p,u)}.

In the scenario without AI the SINR is reduced to a signal-
to-noise ratio (SNR). First, we prove that the optimization of
the SINR does not depend on the power control. To prove
this property we first assume fixed beamforming vectors and
we consider only the power p as a variable. With the effective
channel of Bob given by g = uHRu and the effective channel



of the eavesdropper h = uHReu, the SNRs of Bob and Eve
are given by:

γ(p) = p
g

σ2
, γe(p) = p

h

σ2
, (8)

respectively. The MBP can be stated as:

γ̂ = max
p≥0

min {γ(p),
1

γe(p)
}. (9)

With these assumptions, we can state the first proposition:
Proposition 1: The optimal balanced SNRs of problem (9)

are the results:

γe(p) =

√

h

g
and γ(p) =

√

g

h
. (10)

Proof: The proof is straightforward. At the optimum, both
SNRs are balanced, hence, γ−1

e (p) = γ(p). This results in the
following quadratic equation:

p
g

σ2
=

σ2

p · h
⇔ p2 =

σ4

g · h
.

The transmit power p is non-negative, p ≥ 0, hence, the

solution is p = σ2

√
g·h . Inserting this solution in (8), the SNRs

(10) are the results.
As we can see in this simple scenario, the SNRs of the
eavesdropper and Bob only depend on the effective channel.
Consequently, the transmit power p has no effect on the SNRs
and, therefore, also on the secrecy.

As a consequence, we can decouple power control and
beamforming optimization. Now we consider an optimization
of the effective channels g = uHRu and h = uHReu. This
idea results in the second proposition:

Proposition 2: In the case of higher rank spatial correlation
matrices, the optimal beamforming vector maximizing the
SNR of Bob and minimizing the SNR of Eve is given by:

u
∗ = argmax

u∈U u
H
R

−1
e Ru (11)

and the optimal SNR is then given by:

γe(u
∗) =

√

1

λ∗ and γ(u∗) =
√
λ∗ (12)

where λ∗ denotes the largest eigenvalue of R−1
e R.

Proof: With (10) and g = uHRu and h = uHReu, the
optimal SNR as function of u is given by:

γe(u) =

√

uHReu

uHRu
and γ(u) =

√

uHRu

uHReu
. (13)

Now it is obvious that the joint maximization of γ(u) and
γ−1
e (u) can be achieved by finding the largest eigenvalue:

λ∗ = max
u∈U

u
H
R

−1
e Ru (14)

where u∗ denotes the corresponding eigenvector.
A similar result for instantaneous MIMO channels is observed
for the MEP in [14].

Observe, in the case θ = θe and d = de, the SNR of Bob
and the eavesdropper are the same due to R = Re ⇒ λ∗ = 1.
This situation corresponds to the worst case, where Bob and
Eve are at the same position.

Furthermore, observe that the MBP is also equivalent to the
relative SINR maximization problem [6]:

γ∗ = max
u∈U ,p∈P

γ(p,u)

γe(p,u)
= max

u∈U ,p∈P

uHRu

uHReu
. (15)

This problem is optimally solved with the same beamforming
vector as given in (11).

In a scenario with an eavesdropper, another optimization
problem can be considered as well. We call this problem
minimum eavesdropper SINR problem (MEP). This problem
can be stated as follows:

γ∗
e = min

u∈U ,p∈P
γe(p,u) (16)

s.t. γ(p,u) ≥ γQ.

We will show that the MEP and the MBP are also related
problems. In the simplified single user scenario with a fixed
beamformer, the MEP can be stated as:

γ̂e = min
p≥0

γe(p) (17)

s.t. γ(p) ≥ γQ.

As for the MBP also for the MEP, the optimal SNR is given
by a closed form solution:

Proposition 3: The minimal SNR of the eavesdropper in
problem (17) is given by:

γe(p) =
γQ · h
g

(18)

Proof: The proof is as simple as the proof of Propo-
sition 1. At the optimum, the SNR of Bob is γ(p) = γQ.
Consequently,

γ(p) =
p · g
σ2

= γQ (19)

holds. Hence, the optimal solution for p is p = γQ·σ2

g
. Inserting

p in the eavesdropper SNR of (8) results in (18).

Also for the MEP, we can observe that SNR only depends on
the effective channels. In addition, there is also a dependency
on the quality-of-service SNR γQ. Based on the previous
observations we can see the equivalence of the MBP and
MEP in the case both problem have the same feasible SINR
γ∗ = γQ.

B. Beamforming with Artificial Interference

Now AI is considered as an additional optimization variable.
We again begin with the MBP:

γ∗ = max
u∈U ,p∈P,z∈Z

min {γ(p,u, z), γ−1
e (p,u, z)}.

Similar to the approach without AI, we first prove that we can
decouple the optimization of p and and the beamforming vec-
tors. Using the effective channels g = uHRu, h = uHReu,
q = zHRz, and r = zHRez, SINRs of Bob and Eve are given
by:

γ(p) = p
g

q + σ2
, γe(p) = p

h

r + σ2
, (20)



Then the MBP, can be stated as in (9). With these assump-
tions, we can state the following proposition corresponding to
Proposition 1 in presence of AI:

Proposition 4: The optimal balanced SINRs of problem (9)
with the SINRs (20) are:

γe(p) =

√

(q + σ2) · h
(r + σ2) · g

and γ(p) =

√

(r + σ2) · g
(q + σ2) · h

(21)

Proof: The proof is similar to the proof of Proposition 1.
At the optimum, both SNRs are balanced, hence, γ−1

e (p) =
γ(p). As in the proof of Proposition 1, the following quadratic
equation

p
g

q + σ2
=

r + σ2

p · h
⇔ p2 =

(r + σ2) · (q + σ2)

g · h
results. Inserting the non-negative value of p =
√

(r+σ2)·(q+σ2)
g·h in (20), the SINRs of (21) are the results.

Proposition 4 proves that the optimization of the SINRs can
be decoupled from the optimization of the transmit power and
the beamforming vectors. Hence, the equivalent of Proposition
2 in presence of AI can be formulated:

Proposition 5: In the case of higher rank spatial correlation
matrices, the optimal beamforming vectors maximizing the
SINR of Bob and minimizing the SINR of Eve is given by:

u
∗ = argmax

u∈U u
H
R

−1
e Ru (22)

and

z
∗ = argmax

z∈Z z
H(R+ σ2

I)−1(Re + σ2
I)z (23)

and the optimal SINR is then given by:

γe(u
∗, z∗) =

√

1

λ∗µ∗ and γ(u∗, z∗) =
√

λ∗µ∗ (24)

where λ∗ denotes the largest eigenvalue of R−1
e R and µ∗

denotes the largest eigenvalue of (R+ σ2I)−1(Re + σ2I)
Proof: With (21) and the definitions of g, h, q, and r, the

optimal SINR γ(p,u, z) = γ−1
e (p,u, z) as function of u and

z is given by:

γ(u, z) =

√

zH(Re + σ2I)z

zH(R+ σ2I)z
·
uHRu

uHReu
(25)

A joint maximization of γ(p,u, z) and γ−1
e (p,u, z) can be

achieved by finding the largest eigenvalues:

λ∗ = max
u∈U

u
H(Re)

−1
Ru (26)

and
µ∗ = max

z∈Z
z
H(R + σ2

I)−1(Re + σ2
I)z (27)

where u∗ and z∗ denote the corresponding eigenvectors.
The MEP can be also decoupled in a power and beamforming
optimization. The MEP with power optimization is stated in
(17). Similar to Proposition 3, we can formulate the following
proposition.

Proposition 6: In the case of AI, the minimal SNR of the
eavesdropper in Problem (17) is given by:

γe(p) = γQ
(q + σ2) · h
(r + σ2) · g

. (28)
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Fig. 2: MBP with and without AI: Numerical results of the SNR
given in (13).

Proof: The proof is similar to the proof of Proposition 3.
At the optimum, the SNR of Bob is γ(p) = γQ. Consequently,

γ(p) =
p · g

q + σ2
= γQ (29)

holds. Hence, the optimal solution for p is p = γQ·(q+σ2)
g .

Inserting p in Eve’s SINR (20) results in (28).

IV. NUMERICAL RESULTS

To visualize the derived propositions, we present some
numerical results based on different angles between Bob and
Eve. The spatial correlation matrices have higher rank and are
calculated based on (7). We assume a Laplacian power angular
distribution [15] of the incoming paths powers ap with a power
angular deviation of 15◦. The BS is equipped with a ULA
with NA = 4 antenna elements with an antenna spacing of
d = de = 1/2. To simplify the investigations, we consider the
approximation σ2 = 0.1. This assumption is reasonable in the
case when the interference is much larger than the noise level.

The dashed lines in Figure 2 show the SNR of Bob and the
eavesdropper based on the MBP. Bob and the eavesdropper
have the same distance to the BSs. The position of the
eavesdropper is assumed to be fixed at θe = 0◦. The position
of Bob varies from θ = 1◦ to θ = 90◦. As expected, the
SNR of Bob γ is maximized when the angular distance is
maximized. At θ = 0◦ the ratio between the SNRs becomes
equal to one.

Figure 3 depicts the SNR of the eavesdropper based on
the MEP for different values of γQ. The constant lines depict
different levels of γQ. The larger γQ, the larger is also the
SNR of the eavesdropper. As given in (18), the SNR of the
eavesdropper grows proportionally with the γQ. The solid lines
in Figure 2 depict the SINR of Bob and Eve when AI is
considered as well. The separation of the SINRs is larger
compared to the case without AI. The SINR of the MEP with
AI is depicted in Figure 4. Also this figure shows a better
reduction of Eve’s SINR.

V. DISCUSSION

Table I, presents a comparison of the different approaches
derived in this paper. The MBP has the advantage that SINR
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Fig. 3: MEP without AI: Numerical results of the SNR given in (18)
for different values of γQ ∈ {1, 2, . . . , 7} in linear scale given by
the dashed lines.
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Fig. 4: MEP with AI: Numerical results of the SNR given in (28)
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TABLE I: Comparison of the four different approaches inves-
tigated in this paper.

MBP MEP

without AI preserves secrecy γe ≤ 1 secrecy depends on γQ
γ =

√
λ∗ γ = γQ

one eigenvalue problem one eigenvalue problem
with AI preserves secrecy γe ≤ 1 secrecy depends on γQ

γ =
√
λ∗µ∗ γ = γQ

higher secrecy higher secrecy
two eigenvalue problems two eigenvalue problems

of the eavesdropper is always γe ≤ 1. This is not given for the
MEP. For large values of γQ the SINR of the eavesdropper will
be larger than 1 if the eavesdropper is close to Bob (in presence
of spatially correlated channels). At the optimal position of
Bob compared to the eavesdropper, the distance between the
eavesdropper SINR γe and Bob’s SINR γ is maximized. The
approach with artificial interference has much better perfor-
mance. This is due to the additional optimization variable z.
Comparing the SINRs of the two approaches, we can see
that the SINR without artificial interference γ =

√
λ∗ is a

factor
√
µ∗ smaller than the SINR with artificial interference

γAI =
√
λ∗µ∗. As we have a transmit power given by, e.g.,

p = σ2

√
g·h , large noise levels compared to g · h may result in

high transmit powers. A simple constraint as p = σ2

√
g·h ≤ P

can be used to constrain the peak transmit power below some
level. In our future research, we will investigate possible closed
form solutions with additional power constraints at the base
station. For a scenario with multiple users, methods based on
convex solvers already exists. A future research topic could be
the investigation of less complex iterative algorithms for the
multi-user case.
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