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Abstract—Multicast downlink transmission in a multi-cell net-
work with multiple users is investigated. Max–min beamforming
(MB) enables a fair distribution of the signal-to-interference-
plus-noise-ratio among all users in a network for given power
constraints at the base stations of the network. The multicast
MB problem (MBP) is proved to be NP-hard and non-convex in
general. However, the MBP has an equivalent quasi-convex form
and can be optimally solved with an efficient algorithm for special
instances, depending on the structure of the available channel
state information (CSI). This paper derives the equivalent quasi-
convex form of the MBP for the practically relevant scenario of
long-term CSI in the form of Hermitian positive semi-definite
Toeplitz matrices and per-antenna array power constraints.
The optimization problem is then given by a convex feasibility
check problem with finite auto-correlation sequences (FASs) as
optimization variables. Using FASs the MBP can be expressed as
a quasi-convex fractional program. Based on the theory of quasi-
convex programming, this paper proposes a fast root-finding
algorithm with super-linear convergence.

Index Terms—Multicast beamforming, max–min beamforming,
spectral factorization, fractional programming

I. INTRODUCTION

THIS paper regards a multicell network with multiple base
stations (BSs) with the capability of beamforming. Each

BS serves multiple users, each equipped with one antenna. In
a given time slot, a BS transmits the same content to all users
inside the cell which corresponds to the multicast scenario. If
only one user per cell is scheduled, a unicast transmission is
possible as well. The optimization of the beamforming vectors
is based on available long-term channel state information
(CSI). A global adaptation of the beam pattern can be achieved
by closed loop multicast max–min beamforming (MB) based
on the available CSI of all links in the considered network.

A. Related Work:
Multicell beamforming was intensively investigated since

1998. First works [1], [2] regard the unicast beamforming
problem where each user gets different content. The multi-
cell unicast max–min beamforming problem (MBP) has an
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equivalent quasi-convex (QC) form and recent works have pre-
sented an optimal low complexity algorithm based on uplink–
downlink duality [3], [4], [5]. The multicast beamforming
problem (BP) contains the unicast BP as a special case where
all multicast groups contain exactly one user. The multicast
BP has no equivalent dual uplink problem and is NP-hard in
general.

In 2004, Sidropoulos et al. [6] proposed the multicast power
minimization problem (PMP) defined by a minimization of
the total transmit power given a minimal signal-to-noise ratio
(SNR). The authors further introduce the generalization of
PMP called multicast MBP defined by the maximization of
the minimum SNR given a total power budget. These so-called
single group multicast beamforming problems are proved to be
NP-hard in general by the same authors in [7]. The work [8]
extends the work [7] to the case of multiple multicast groups
with interference among different groups in a single cell. The
authors propose a semi-definite relaxation technique to find
local optimal solutions.

Recent works on multicast beamforming regard approxima-
tions of the optimal solutions of the multicast BP [9], [10],
[11], [12]. These works find near optimal solutions with less
complexity than convex solver based methods. Although the
multicast BPs are NP-hard and non-convex in general, QC or
convex equivalent forms for special instances may exist. A first
case of the multicast MBP with an equivalent QC form was
presented in 2007 by Karipidis et al. [8]. The authors derived
an equivalent convex form for the PMP and an equivalent QC
form of the MBP if the BS uses uniform linear arrays (ULAs)
and far-field line-of-sight propagation conditions are given.

B. Contribution:

In multi-cell networks, instead of instantaneous CSI, the
usage of long-term CSI in the form of higher rank spatial
correlation matrices is more realistic. Therefore, this paper
regards the multicast MBP based on long-term CSI with per-
antenna array power constraints.

• This paper extends the work of [8] and proves the
existence of a rank-1 solution of the relaxed semi-definite
feasibility check problem of the MBP in the case of long-
term CSI in the form of Hermitian positive semi-definite
Toeplitz (HPST) matrices. This paper regards a multicell
scenario where a joint optimization of all beamforming
vectors given per-antenna array power constraints is pre-
sented.
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• Furthermore, this paper presents the equivalent QC form
for the multicast MBP for long-term CSI in the form of
HPST matrices and per-antenna array power constraints.
This QC form uses FASs as optimization variables and
the optimal beamforming vectors are recovered by spec-
tral factorization.

• The equivalent QC form can be solved with a sim-
ple bisection based algorithm with linear convergence.
Besides this standard solution, this paper proposes an
algorithm with super-linear convergence based on a so-
called parametric program of the equivalent QC fractional
program of the MBP.

II. SYSTEM SETUP AND DATA MODEL

The most important notations are given in Table I below.

TABLE I: Overview of the notations.

a scalar
a⇤ conjugate complex
a vector
A matrix
[a]n nth element of a vector
[A]n,m element with indices n,m of a matrix A
[A]:,m mth column vector of a matrix A
AH conjugate transpose of a matrix A
IN identity matrix of dimension N ⇥N
0N zero matrix of dimension N ⇥N
< matrix inequality on a cone of non-negative definite matrices
Tr(A) trace operation on a square matrix A

A multiuser multicell network is considered with a set S of
NC cooperating BSs equipped with NA antennas each, serving
a set U of M users, each equipped with a single antenna. A
group of users is served by one BS c(i), e.g., NC  M . The
signal ri received at a time instant by a user i is given by

ri = h

H
c(i),i!c(i)sc(i) +

X

c2S, c 6=c(i)

h

H
c,i!csc + ni, (1)

where hc,i 2 CNA⇥1 is the channel vector from the cth
BS to the ith user. The transmit beamforming vector at BS
c is !c = [!c(0), . . . ,!c(NA � 1)]

T 2 CNA⇥1, sc is the
information symbol transmitted by BS c. The symbols have
unit power E{|sc|2} = 1 and are uncorrelated E{scs⇤k} = 0 if
c 6= k. The variable ni ⇠ CN (0,�

2
i ) is the complex additive

Gaussian noise with E{ni} = 0 and variance E{|ni|2} = �

2
i .

The beamforming matrix is given by ⌦ = [!1, . . . ,!NC ].
Instead of instantaneous SINR �̂i(⌦), long-term CSI is

often used in a multi-cell optimization due to its longer
stationary interval and, therefore, reduced required CSI feed-
back rate. The approximation of the ergodic capacity ˆ

Ri =

E{log(1 + �̂i(⌦))} ⇡ log(1 + �

D
i (⌦)) = Ri [13] results in

the mean SINR

�

D
i (⌦) =

!

H
c(i)Rc(i),i!c(i)P

c2S
c 6=c(i)

!

H
c Rc,i!c + 1

(2)

which is an often used metric in multicell beamforming [2].
Here, an additional expectation over the channel realizations

H is made. The result is the spatial correlation matrix given
by

Rc,i =
1

�

2
i

EH{hc,ih
H
c,i}.

Note the spatial correlation matrices are normalized by the
noise power. Considering a ULA with NA antenna ele-
ments and an antenna spacing � (d = �/�, where � is
the wave length) at the BS, the spatial correlation ma-
trix is given by a Toeplitz matrix and can be decomposed
to Rc,i = A(✓c,i)Pc,iA(✓c,i)

H [14]. Using this nota-
tion, the spatial correlation is observed as a combination
of NP uncorrelated waves with directions of arrival given
by ✓c,i = [✓c,i,1, . . . , ✓c,i,NP ] and path powers given by
Pc,i = diag(qc,i,1, . . . , qc,i,NP ) 2 RNP⇥NP . The matrix

A(✓c,i) = [a(✓c,i,1), . . . ,a(✓c,i,Np)] 2 CNA⇥Np

is a Vandermonde matrix containing the steering vec-
tors: a(✓c,i,p) = [1, exp(⇣ sin(✓c,i,p)), . . . , exp(⇣(NA �
1) sin(✓c,i,p))]

T
, ⇣ = j2⇡d. The formulation of the long-term

CSI can be rewritten as:

Rc,i =

NPX

p=1

qc,i,pa(✓c,i,p)a(✓c,i,p)
H
. (3)

The matrix in (3) is a HPST matrix which is a reasonable
assumption if ULAs are used at the BSs [15], [16]. In practice,
there exists different methods to approximate the Toeplitz
matrices based on finite noise sequences, e.g., the method in
[17].

In a multicell scenario a sum power constraint as in, e.g., [8]
is not a practically relevant assumption. Then per-BS antenna
array power constraints are practically more relevant. In this
case, each antenna array c of a BS will be subject to a total
power budget Pc. The convex cone of beamforming vectors
fulfilling the per-BS antenna array power constraints is given
by

P = {⌦ 2 CNA⇥NC
: !c = [⌦]:,c, !

H
c !c  Pc 8c 2 S}.

(4)

III. OPTIMIZATION PROBLEM

It is desired to improve the worst SINR of the currently
scheduled users. Therefore, the MBP can be stated as

�

D
= max

⌦2P
min

i2U
�

D
i (⌦). (5)

A balanced SINR can be the result. The problem (5) is
non-convex in general because of the non-convex objective
function f(⌦) = mini2U �

D
i (⌦). However, this problem can

be relaxed to a QC problem. It is desired to maximize f(⌦),
hence, the objective function must have an equivalent quasi-
concave form to prove that the MBP has an equivalent QC
form.

Definition 1: [18] A function f(x) defined on a convex set
F is quasi-concave if every upper level set S↵ = {x 2 F :

f(x) > ↵} of f(x) is convex for every value of ↵.
The non-convex optimization problem (5) can always be
relaxed to QC problem with a semi-definite program as a
feasibility check problem. With semi-definite matrices Xc =
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!c!
H
c and X = [X1, . . . ,XNC ], the downlink SINR is given

by

�

D̃
i (X) =

Tr{Xc(i)Rc(i),i}P
c2S,c 6=c(i) Tr{XcRc,i}+ 1

. (6)

Removing the non-convex rank-1 constraint rank(Xc) =

1 8c 2 S , the MBP (5) with per-antenna array power
constraints can be relaxed to

�

D̃
= max

X

min

i2U
�

D̃
i (X) (7)

s.t. Tr{Xc}  Pc, Xc ⌫ 0 8c 2 S. (8)

Let F be defined by (8). The constraints are convex and for a
fixed �, therefore, the upper level sets of the objective function
given by S� = {X 2 F :

˜

f(X) = mini2U �

D̃
i (X) > �} are

convex, hence, problem (7) is QC. It can be solved by convex
feasibility check problems in the form of semi-definite pro-
grams (SDPs) [18]. A bisection algorithm can iterate arbitrarily
tightly to the value of the global optimum. This solution is a
standard method of solving the MBP and is used as a reference
in this paper. The work of Karipidis et al. proved that Problem
(7) has rank-1 solution if instantaneous CSI in the form of
Vandermonde channel vectors is given. In this paper, we proof
the existence of a rank-1 solution in the case of long-term
CSI in the form of HPST matrices, which is a practically
more relevant assumption in multicell scenarios. We state this
observation by the following proposition:

Proposition 1: In the case of long-term CSI in the form of
matrices Rc,i given by (3), there exists a solution for the MBP
(7) with all matrices Xc 8c 2 S having rank-1.

Proof: The proof is presented in Appendix A.
Remarkably, a rank-1 solution also exists in the case of long-
term CSI and ULAs at the BSs. Consequently, an optimal
solution can be obtained in a multicell multicast scenario based
on long-term CSI in the form of HSTP matrices. However,
problem (7) is not guaranteed to always yield solutions with
rank-1. The work of [8] describes the same observation for
Vandermonde channels where also a rank-1 solution exists
but the proposed semi-definite relaxation does not consistently
yield rank-1 solutions. Therefore, the next part of this section
proposes an equivalent QC form of the MBP (5). The derived
solution yields quasi-optimal beamforming vectors based on
an equivalent QC formulation of the original problem with
FASs. The technique of convex optimization with FASs [19] to
derive an equivalent QC form of the MBP as in [8] is extended
in this paper to higher rank correlation matrices according to
(3) with coefficients

[Rc,i]k,l =[

NPX

p=1

qc,i,pa(✓c,i,p)a(✓c,i,p)
H
]k,l

=

NPX

p=1

qc,i,pe
j2⇡d(k�l) sin(✓c,i,p)

. (9)

With (9) and n = k � l, the coefficients of the HPST matrix
are given by

rc,i(n) =

NPX

p=1

qc,i,pe
j2⇡n sin(✓c,i,p) 8n = 0, . . . , NA�1. (10)

The idea of optimization with FASs is based on the following
definitions and Lemma 1 of [19]: With ˜

Ek 2 {0, 1}NA⇥NA

denoting the matrix which has zero entries except on the
kth sub-diagonal where it has only ones, k 2 {�NA +

1, . . . , 1, 0, 1, . . . , NA � 1}, observe that (3) can be rewritten
as [20]

Rc,i =

NA�1X

k=�NA+1

rc,i(k)
˜

Ek. (11)

A representation of variables by finite auto-correlation se-
quences results in convex or quasi-convex problems. With the
shift matrix E

k which is the kth power of the matrix E which
has zero entries except on the 1st lower sub-diagonal where it
has only ones, the auto-correlation sequence is defined by

x(k) = u

H
E

k
u = Tr{Ek

uu

H}, (12)

k 2 {0, . . . ,K � 1} with vectors u 2 CK⇥1. The matrix
E

k has zeros everywhere, except on the k-th sub-diagonal.
Equation (12) is non-convex because of the rank-1 constraint.
Remarkably, the same set as in the definition of the FAS given
by (12) can be described with the relaxed rank-1 constraint.

Lemma 1: [19] Using some positive semi-definite matrix
U ⌫ 0 such that x̂(k) = Tr{Ek

U}, k = 0, ..., N, x̂(k)

describes the same set as x(k) = u

H
E

k
u = Tr{Ek

uu

H}.
Using Lemma 1, the non-convex MBP (5) can be expressed
as a QC problem, where the optimization variables are con-
verted to FASs. The reformulation leads to additional convex
constraints. The optimal beamforming vectors can be obtained
by spectral factorization techniques, e.g. [21]. In the work of
Karipidis et al. [8], an equivalent QC form of the multicast
MBP for the single cell Vandermonde channel scenario is
presented. The Toeplitz property of the used long-term CSI
also leads to an equivalent QC form of the multicast MBP. In
this paper, we derive the QC form of the multicast MBP in
the case of long-term CSI in the form of HPST matrices. We
summarize the derivation in the following proposition:

Proposition 2: In the case of long-term CSI in the form
of matrices Rc,i given by (11), and variables in the form
of xc = [xc(0), . . . , xc(NA � 1)]

T
, 8c 2 S , semi-definite ma-

trices Uc ⌫ 0 stored in U = [U1, . . . ,UNC ], the vectors
rc,i = [rc,i(0), . . . , rc,i(NA � 1)], and using the following
matrix as in [8]

˜

INA =


1 01⇥NA�1

0NA�1⇥1 2INA�1

�
2 NNA⇥NA

, (13)

the equivalent QC form of the original problem (5) is given
by

max

�,x,U
� (14)

s.t.
Re{rc(i),i˜INAxc(i)}P
c2S

c 6=c(i)
Re{rc,i˜INAxc}+ 1

� � 8i 2 U , (15)

xc(0)  Pc 8c 2 S (16)
xc(k) = Tr{Ek

Uc}, Uc ⌫ 0

8c 2 S 8k = 0, . . . , NA � 1. (17)

Proof: The proof is presented in Appendix B.
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The Toeplitz property of long-term CSI in the case of a ULA
offers, therefore, also a possibility to find optimal solutions
for the multicast MBP. This new QC form is practically more
relevant in multicell scenarios where per-BS antenna array
power constraints are given and where only long-term CSI
is available.

IV. SOLUTION BASED ON FRACTIONAL PROGRAMMING

In the previous section, a QC form of the multicast MBP is
derived. This QC form can be solved with a simple bisection
based algorithm. These algorithms have a linear convergence
behavior. The QC form of the MBP can be also seen as a
so-called generalized fractional program (FP). For these QC
optimization problems, a super-linear converging algorithm is
feasible. If long-term CSI in the form of HPST matrices is
available, the equivalent QC form of the multicast MBP is
given in Proposition 2. This QC form can be expressed as a
QC FP:

Let fi : CN ! R be a continuous and convex function and
let gi : CN ! R be a continuous and concave function on the
convex set X , consider the following QC problem:

¯

⇥ = min

x2X
max

i2I
fi(x)

gi(x)
(18)

where I is a finite set of integers. This QC program can be
solved with the following parametric program [22]:

F (⇥) = min

x2X
max

i2I
{fi(x)�⇥gi(x)}. (19)

The idea of the algorithm presented in this section is based
on searching the root of F (⇥) = 0. If the parametric program
(19) is very close to zero, the solution is near optimal and the
solution of the parametric program is also a solution for the
original generalized FP [22].

Proposition 3: The parametric program of the equivalent
QC form (14) of the multicast MBP (5) is given by

F (�) = min

x2X
max

i2U
{�Re{rc(i),i˜INAxc(i)}
��(

X

c2S
c 6=c(i)

Re{rc,i˜INAxc}+ 1)}. (20)

Proof: The proof is presented in Appendix C.
In [23], the authors propose a fast algorithm with super-
linear convergence to solve a QC FP. The algorithm exploits
results of [23, Theorem 2.1] which gives connections among
the QC FP and its parametric program (20). According to
[23, Theorem 2.1], if the parametric program (20) results in
F (�) = 0, the optimal SINR is found.

Proposition 4: If F (�) = 0 a root finding Dinkelbach
algorithm finds the optimal solution.

Proof: It is straightforward to show that X is compact.
As already shown in [23], if X is compact and F (�) = 0,
then x achieves the optimal value.
As it can be observed from the numerical results, a root finding
algorithm as in [22] always iterates to F (�) ⇡ 0.

TABLE II: Simulation parameters.

Number of user drops 4000
Number of users per user drop 15
Number of BSs drop 3
Number of users per group drop 5
Transmit antenna arrays ULA
Number of antenna array elements at BS 8
Number of antenna array elements at MS 1
Intersite distance 500 m
Antenna spacing half wavelength
Path loss exponent 3.76
Available CSI long-term CSI
Power angular density Laplacian [24], 15�
Power constraint per-BS

V. NUMERICAL RESULTS

Table II presents the main simulation parameters of the
simulated multicell network. The scenario is assumed to be
interference dominated. Two algorithms are compared in this
section:

• A1: Conventional bisection method to solve problem (7).
• A2: Root finding algorithm with parametric program (20).

For the generation of the statistics, in total 4000 user drops
are randomly generated. In each user drop, the long-term CSI
in the form HPST matrices is generated based on the location
of the users and BSs.
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Fig. 1: Cumulative distribution function (CDF) of the SINR of the
new algorithm based on the Dinkelbach iteration presented in Section
IV (red) and the conventional SDP based bisection based method for
the problem (7) (black).

Figure 1 shows the cumulative distribution function (CDF)
of the SINR for a precision of ✏ = 10

�5. Comparing both
CDFs, the new algorithm A2 outperforms the conventional
SDP based bisection A1 especially for the weakest users.
The new algorithm A2 achieves a higher minimum SINR.
The multicast beamforming problem (7), has a solution where
all matrices Xc 8c 2 S have rank 1. However, problem (7)
is not guaranteed to always yield solutions with rank 1 [8].
There are cases where the feasibility check problem of (7)
has higher rank solutions. Figure 2 presents the CDF of the
number of iterations algorithms A1 and A2 required for the
given precision ✏ = 10

�5. As it can be observed from this
figure, A2 requires less iterations than A1 due to its super-
linear convergence in multiple cases (95%). However, in a few
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Fig. 2: Cumulative distribution function (CDF) of the number of
iterations for a precision ✏.
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Fig. 3: Cumulative distribution function (CDF) of the solution of the
parametric program.

cases (5%), the new algorithm converges more slowly. In these
cases, the algorithm aborts after 45 iterations and takes the
solution of the last iteration. Finally, Figure 3 shows the value
of F (�) of the parametric program. As it can be observed from
this figure, the solution of the parametric program is nearly
optimal and in more than 95% percent of the simulation runs
F (�) is smaller than the precision interval of ✏ = 10

�5.

VI. CONCLUSIONS

This paper investigates the multicast max–min beamforming
problem with per-antenna array power constraints. The max–
min beamforming problem can be solved with a convex
feasibility check problem with linear convergence in the form
of a semi-definite program. This paper proves the existence
of a rank-1 solution if long-term CSI in the form of positive
semi-definite Hermitian Toeplitz matrices is available.

Furthermore, this paper proposes an equivalent problem
based on convex programming with finite autocorrelation
sequences. The resulting equivalent problem is a QC FP which
can be solved by a root finding algorithm. The new method
is also based on a semi-definite program, however, it finds
optimal solution values and has super-linear instead of merely
linear convergence. A future work could be an extension to
large multicast groups consisting of multiple BSs.

APPENDIX A
PROOF OF PROPOSITION 1

An optimal solution Xc of the SDP is assumed. In general,
this solution has rank ⇢c = rank(Xc) larger than one. Thus Xc

can be decomposed to Xc =
P⇢c

r=1 !̂c,r!̂
H
c,r. Next it is shown

that a rank-1 solution  c = !c!
H
c can achieve the optimum.

The signal power received at a user i from BS array c is given
by

Tr(XcRc,i) =Tr(

⇢cX

r=1

!̂c,r!̂
H
c,rRc,i)

=

⇢cX

r=1

Tr(!̂c,r!̂
H
c,rRc,i).

Using the decomposition of positive semi-definite Toeplitz
matrices according to (3), the received signal can be simplified
to:

Tr(XcRc,i) =

⇢cX

r=1

Tr(!̂c,r!̂
H
c,r

NPX

p=1

qc,i,pa(✓c,i,p)a(✓c,i,p)
H
)

=

NPX

p=1

qc,i,p

⇢cX

r=1

|a(✓c,i,p)H!̂c,r|2. (21)

Now the proof follows the same idea as in [8]: the non-negative
complex trigonometric polynomial

P⇢c

r=1 |a(✓c,i,p)H!̂c,r|2 �
0 is positive for any value of ✓c,i,p 2 [0, 2⇡). the
Riesz-Féjer theorem [25], we can find a vector !c which
does not dependent on ✓c,i,p such that for all ✓c,i,p

[8]
P⇢c

r=1 |a(✓c,i,p)H!̂c,r|2 = |a(✓c,i,p)H!c|2 holds. Inserting
this in (21) results in

Tr(XcRc,i) =

NPX

p=1

qc,i,p|a(✓c,i,p)H!c|2

=Tr(!c!
H
c

NPX

p=1

qc,i,pa(✓c,i,p)a(✓c,i,p)
H
)

=Tr(!c!
H
c Rc,i).

Thus, an equivalent rank-1 positive semi-definite matrix Xc =

!c!
H
c exists, which results in the same receive power at the

user i, consequently, the convex feasibility check problem of
the MBP (7) has a solution X with all matrices Xc 8c 2 S
having rank 1.

APPENDIX B
PROOF OF PROPOSITION 2

The objective function f(⌦) can be proved to have an
equivalent quasi-concave form if the upper level sets of the
objective function are convex. With (11) as in [20], the signal
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power received at a user i by the ULA c is given by

!

H
c Rc,i!c =!

H
c (

NA�1X

k=�NA+1

rc,i(k)
˜

Ek)!c

=

NA�1X

k=�NA+1

rc,i(k)!
H
c
˜

Ek!c

=

NA�1X

k=�NA+1

rc,i(k)xc(k). (22)

Furthermore, xc(k) = !

H
c
˜

Ek!c = Tr{˜Ek!c!
H
c } is an FAS

[19], consequently, (22) is a linear function over xc(k) 2 C
with the coefficients rc,i(k). It is evident that the sequences are
conjugate symmetric rc,i(�k) = rc,i(k)

⇤
, xc(�k) = xc(k)

⇤.
Therefore, (22) can be rewritten as in [8] as:

!

H
c Rc,i!c = xc(0)rc,i(0) + 2

NA�1X

k=1

Re{xc(k)rc,i(k)}. (23)

The received power (23) can be simplified to !

H
c Rc,i!c =

Re{rc,i˜INAxc}. Besides the received power, also the per-
BS antenna array power constraints can be rewritten with
the use of FASs !

H
c !c = !

H
c E

0
!c = xc(0). With x =

[x1,x2, . . . ,xNC ] and the set of positive semi-definite auxil-
iary matrices {Uc, 8c 2 S}, with Uc 2 CNA⇥NA , the set

X = {x : xc(k) = Tr{Ek
Uc}, xc(0)  Pc,

Uc ⌫ 0 8c 2 S 8k = 0, . . . , NA � 1} (24)

is convex. Due to Lemma 1, the constraint xc(k) =

Tr{Ek
Uc} describes the same set as xc(k) = Tr{˜Ek!c!

H
c }.

Due to convexity of X , the upper level sets

S�,i = {x 2 X :

Re{rc(i),i˜INAxc}P
c2S

c 6=c(i)
Re{rc,i˜INAxc}+ 1

� �} (25)

are also convex. The constraints (15)-(17) are convex con-
straints [19]. For a fixed �, the final problem (14)-(17) is
equivalent to (5) and is an SDP [8], which is known to be
convex. Hence, the original problem (5) has an equivalent
QC form in the case of long-term CSI in the form of HPST
matrices.

APPENDIX C
PROOF OF PROPOSTION 3

The proof is straightforward. With the negative affine func-
tions

fi(x) = �Re{rc(i),i˜INAxc(i)}
and the positive affine functions

gi(x) =

X

c2S
c 6=c(i)

Re{rc,i˜INAxc}+ 1,

the equivalent FP is �̄ = �min

x2X maxi2U
fi(x)
gi(x)

which is
equivalent to (14)-(17).
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