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Application of Graph Theory to the Multicell Beam
Scheduling Problem
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Abstract—This paper applies combinatorial optimizations tech-
niques to improve the downlink transmission to multiple users
in a network with N cells where intercell interference is a
performance limiting factor. A fair distribution of the signal-to-
interference-plus-noise ratio (SINR) is desirable. A well known
technique to get a fair (balanced) SINR is max–min unicast
beamforming (MBF). However, in a multicell network there are
conditions where MBF can result in a low balanced SINR. This
happens if, e.g., two users are geographically close together and
served by two base stations from, e.g, two different interfering
sectors. Then, the mutual interference among the two links will
be large and the balanced SINR among all jointly optimized links
decreases. Therefore, the users must be scheduled such that these
situations are avoided.

The smart selection of active beams to avoid intercell inter-
ference is called beam scheduling in this paper and leads to
a combinatorial optimization problem. This paper proposes a
graph theory based problem that is closely related to the beam
scheduling problem. The proposed algorithms maximize the sum
rate or the minimum SINR among all users and slots. For the
two-cell case an optimal algorithm exists. In the N > 2-cell case,
the beam scheduling problem is proved to be NP-hard. Based
on the close relation between the beam scheduling problem and
the multidimensional assignment problem, this paper presents
suboptimal algorithms for N > 2 to maximize either the sum
rate or the minimum SINR among all users and slots. The
performance gain in terms of the mean sum rate or the minimum
SINR is significant compared to random scheduling.

Index Terms—Beamforming, beam scheduling, assignment
problem, bottleneck assignment problem

I. INTRODUCTION

IN multicell networks, intercell interference limits perfor-
mance if the frequencies are reused in adjacent cells.

An unfair distribution of the signal-to-interference-plus-noise
ratio (SINR) or a low overall sum rate may result. On the
other hand, frequency reuse factors larger than one reduce
the spectral efficiency. Upcoming standards as Long-Term
Evolution (LTE)-advanced desire a high spectral efficiency.
Therefore, fully coordinated networks with a single frequency
band are promising to increase the overall system throughput.
New standards as LTE-advanced allow the use of multiple
antennas techniques to mitigate intercell interference. Using
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multiple smart antennas at the base stations (BSs), a famous
technique to improve the fairness among users is max–min
beamforming (MBF).

However, MBF has the drawback of a low overall sum
rate in some cases. An unfavorable scheduling decision can
decrease the sum rate performance. Such a situation is caused
by a beam-collision. If two users are closely located and served
by different BS arrays and their antenna array (beamforming)
vectors are optimized with MBF, a low balanced SINR among
the users can be the result. Consequently, different and jointly
served links should be spatially separated, otherwise mutual
interference can decrease the overall sum rate. The avoidance
of these unfavorable scheduling decisions is called beam-
scheduling problem. The combination of MBF and beam
scheduling may result in a fair distribution of the SINR and
jointly in a sufficiently large sum rate of the system.

A. Scenario
This paper considers a fully coordinated multicell network

as depicted in Fig. 1. Each of the N base station (BS) arrays
uses NA correlated antenna elements to form beam lobes in
the direction of the scheduled users. The transmit power of
each antenna element is limited to a power constraint of PC .
Each user has a single antenna element. Coordination among a
large number of BSs will be difficult, if instantaneous channel
state information (CSI) [1], [2] is used, due to the increased
backhaul effort. However, using long-term CSI this effort is
reduced [1]. For transmit beamforming, this statistical CSI
is a practically relevant information to form beam lobes in
the direction of users, while considering the interference of
adjacent cells [3]. Based on long-term CSI, this paper proposes
a technique for the joint optimization of the beamforming
vectors, the power control, and the beam scheduling along
with multiuser scheduling.

B. Related work
Intercell interference mitigation based on multicell transmit

beamforming with joint power control has been investigated
intensively during the last ten years, [1], [4]–[6]. Coordinated
max–min beamforming achieves a fair balanced SINR among
all jointly scheduled users in a network while the transmit
power per antenna element or per antenna array is limited to
a power constraint [7], [8]. Iterative low complexity algorithms
for the MBF with per-antenna power constraints are proposed
in [7]–[9]. Hence, the joint optimization of transmit power and
beamforming vectors enables a fair distribution of the SINR
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among a set of scheduled users. A drawback of MBF is the
low sum rate that results in case of unfavorable scheduling
decisions. Consequently, a smart scheduling of the users is
required.

The work [10] discusses the information theoretical aspects
of multiuser scheduling and beamforming. The authors show
that in environments with slow fading, the diversity gain can be
improved with multiuser scheduling along with opportunistic
beamforming.

A problem related to beam scheduling is called channel
assignment problem (CAP). In addition to the exploitation of
multiuser diversity, interference mitigation is another impor-
tant issue, especially in multicell networks. The assignment of
channels to users or cells also influences the interference in
a network. In [11], the authors propose the CAP for cellular
networks. The aim was to allocate a number of channels to
cells such that certain constraints are satisfied.

Another possibility to improve the SINR is an optimized
beam scheduling, since beam lobes cause interference in adja-
cent sectors [12]. A first simple round-robin beam switching
approach to avoid these beam collisions is proposed in [13].
The articles [12], [14] propose optimized approaches which
take into account the channel quality information of the users
or the geographical data. However, these approaches consider
only small, e.g, 2-cell scenarios and do not jointly optimize
the beamforming vectors. The work [15] considers a spatial
scheduling with the objective to cancel the interference by, e.g.
zero-forcing. The previous work [16] uses max–min fairness
among the users as objective. In contrast to [12], [14], [15], the
work [16] uses long-term CSI in the form of spatial correlation
matrices to optimize the beam scheduling, beamforming, and
user scheduling jointly. The MBF optimization results in a
balanced SINR and these SINR values are used to compute a
cost function for the beam scheduling problem.

In contrast to [16], where the balanced mean SINR is used
for the objective function, the authors in [17] use so-called
interference constraints to define groups of beams which are
mutually interfered with each other. Hence, instead of the
SINR optimization, this scheme can be seen as an orthogonal
approach of finding non-interfering beams such that the overall
performance is maximized.

Instead of an interference avoidance, the authors of [18] pro-
pose a max–min fair antenna assignment scheme for a system
with geographically dispersed antenna ports. The selection of
antenna ports is optimized such that the SINR of the weakest
user is maximized. Instead of a simple optimization of the
assignment of stations (ports) to users [18], this paper proposes
optimization techniques to optimize the beamforming vectors
along with the temporal scheduling of users such that the sum
rate, or the minimum SINR is maximized. This paper shows
the close relationship between the multicell beam scheduling
problem and the NP-hard multidimensional assignment prob-
lem (MAP) [19], [20]. A straightforward approach for solving
the MAP is simulated annealing (SA) [21]. In addition to SA,
this paper proposes further algorithms with better performance.

Fig. 1: Scenario: The lobes show the orientation of the antenna
patterns. The triangles denote BSs. Each BS has three sectors. All BSs
are coordinated to enable a joint beamforming and beam scheduling.

C. Contributions

This paper is based on the previous work [16] and presents
the following contributions:

• Our previous work [16] uses the sum rate as an objective
function to get a higher system throughput. This approach
is reasonable for applications as, e.g., internet downloads.
However, in several applications, e.g, video conferences,
also fairness is desired, then the sum rate approach could
be not the best choice. Therefore, this paper presents a
novel problem formulation based on a graph theoretical
max–min problem which achieves a more fair distribution
of the mean SINR over the time. Previous works as
[12], [14], [15], [17] use predefined beamformers or zero-
forcing to avoid interference by a beam selection. This
paper uses the balanced SINR of a max–min beamformer
as cost function for a temporal user scheduling. The result
is an avoidance of a low balanced SINR which is a known
drawback of MBF.

• The schemes in [12], [14], [15], [17], [18] use instan-
taneous channel quality information (CQI). Furthermore,
the optimization is performed only for one time instant.
This paper generalizes this approach and optimizes the
beam scheduling over the stationary interval of the long-
term statistics of the channel [3]. Therefore, this paper
considers in addition to SINR fairness also temporal
fairness.

• This paper presents a graph theoretical framework for the
N -cell beam scheduling problem and proves the NP-
hardness of the problem. The earlier work [16] presents
a suboptimal approach for the N -cell scenario. This paper
additionally shows that the general beam scheduling
problem in the 2-cell scenario is equivalent to a linear
assignment problem which can be optimally solved by a
well known polynomial time algorithm.

• The N -cell beam scheduling problem has a close re-
lation with the multi-dimensional assignment problem
(MAP). Several heuristics can be used to find good
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suboptimal solutions. One commonly used approach for
NP-hard problems is SA. This paper presents a simple
SA based algorithm which finds good solutions for the
beam scheduling problem. SA is a randomized heuristic.
Additionally, this paper proposes alternative deterministic
dimension-wise optimization methods based on an exten-
sion of the optimal approaches for the 2-cell scenario. The
different methods are compared in terms of complexity,
sum rate performance, and max–min SINR fairness.

• In extension to the sum rate maximization approaches,
this paper shows a low complexity greedy algorithm with
less than half of the complexity compared to the other
algorithms. Additionally, the new approach can guarantee
a higher temporal fairness. Instead of a so-called quasi-
fair scheduling (QFS), where each user is scheduled
equally often, the greedy approach can guarantee so-
called opportunistic Round-Robin scheduling (ORRS)
fairness which is a temporal fair scheduling scheme
(further details are introduced in Section III-B1). Table I
depicts an overview of all proposed algorithms.

• Finally, a detailed analysis of all proposed algorithms
(depicted in Table I) concerning complexity, temporal
fairness, SINR fairness, and sum rate is presented.

D. Outline
Section II presents the system setup and the data model

of the investigated system depicted in Fig. 1. Section II-A
defines the MBF problem and the beam scheduling problem
and proves the NP-hardness of the general N > 2-cell
beam scheduling problem. Section III presents optimization
techniques to solve the beam scheduling problem. For N = 2

an optimal solution can be computed in polynomial time.
Two approaches, a fair and a sum rate maximizing approach,
are presented in Section III-A. Section III-B presents four
heuristics for the general N -cell case. Each algorithm has
different advantages, e.g., low complexity, temporal fairness,
SINR fairness, or high sum rate. Section IV gives a comparison
of the proposed algorithms and highlights the advantages of
each algorithm. This paper concludes with a summary and a
short discussion in Section V.

E. Notation
Lower case and upper case boldface symbols denote vectors

and matrices respectively. The nth element of a vector is
denoted with [a]n. The element with indices n,m of a matrix
A is denoted with [A]n,m. The mth column vector of a matrix
A is denoted with [A]:,m. Respectively, [A]n,: denotes the nth
row vector. The conjugate transpose of a matrix A is denoted
with AH . In atk t and k denote indexes. Finally, LCM{a, b}
denotes the lowest common multiple of a and b.

II. SYSTEM SETUP AND DATA MODEL

Regard a network with N cooperative BS arrays as depicted
in Fig. 1. In this network, M users are equally distributed. A
BS schedules one user per cell, hence, in a scheduling slot N
users are active.

The matrix S 2 NN⇥K defines the assignments of these
users to BSs and scheduling slots with index k. Each element
in S with index c, k is given by

[S]c,k = i; user i is scheduled by BS c in slot k (1)

The integer K denotes the total number of orthogonal slots.
Here, orthogonal means orthogonal in the temporal domain
or orthogonal scheduling slots. However, an application to
channels orthogonal in the frequency domain is also feasible.
An extension to a multi-carrier system is straightforward. Let
Cc 2 NKT⇥KF denote the matrix of all KT orthogonal time
and KF frequency slots of a BS c, then sc = vec(Cc) 2
N1⇥[KT ·KF ] denotes the vectorized version of this matrix and
corresponds to one row of the matrix S.

A user i = [S]c,k, equipped with one antenna element, in
cell c receives from its BS array of the cell in slot k the signal

ri,k = hH
i,i!i,ksi +

X

l2[S]:,k, l 6=i

hH
l,i!l,ksl + ni. (2)

The vector hl,i 2 CNA⇥1 is the multiple input single output
(MISO) channel between the BS antenna array serving user
l and user i. Each BS antenna array serving a user i uses
beamforming matrices !i,k 2 CNA⇥1 to form a beam lobe to
user i in slot k. The scalar ni denotes the interference plus
noise of adjacent networks with the assumption E{|ni|2} = �2

i

and E{ni} = 0. The desired signal transmitted to user i is
denoted with si with E{|si|2} = 1 and E{sls⇤i } = 0 if l 6= i.
With the instantaneous downlink SINR

�̂i,k =

|hH
i,i!i,k|2P

l2[S]:,k
l 6=i

|hH
l,i!l,k|2 + �2

i

, (3)

the achievable rate a user i achieves is given by

ˆRi,k = E{log(1 + �̂i,k)}. (4)

A global optimization based on instantaneous CSI over a large
number of slots in a large network with multiple users and BSs
is very difficult. An optimization based on the long-term CSI
is practically more relevant in a multicell scenario. Therefore,
as in [22], the ergodic capacity is approximated by

ˆRi,k = E{log(1 + �̂i,k)} ⇡ log(1 + �i,k) = Ri,k. (5)

The variable �i,k denotes the mean SINR

�i,k =

!H
i,kRi,i!i,kP

l2[S]:,k
l 6=i

!H
l,kRl,i!l,k + �2

i

(6)

with the definition of the spatial correlation matrices

Rl,i = E{hl,ih
H
l,i}. (7)

The rate Ri,k is an approximation of the achievable rate.
This paper uses the rate Ri,k as a performance measure.
All optimizations of the beamforming vectors !l,k and the
scheduling decisions are made based on the long term CSI
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TABLE I: Overview of the different algorithms

Algorithm Temporal fairness Objective Approach Complexity
A1: random RRS RRS - random solution low
A2: dim.-wise sum rate maximization QFS sum rate dimension-wise optimization high
A3: dim.-wise max–min optimization QFS max–min SINR dimension-wise optimization high
A4: greedy sum rate maximization ORRS sum rate greedy algorithm low
A5: sum rate based SA QFS sum rate randomized local search high

given in (7). For a fixed beamforming strategy (in this paper
MBF), the total sum rate over all scheduling slots K

R(S) =
KX

k=1

X

i2[S]:,k

log

0

B@1 +

!H
i,kRi,i!i,kP

l2[S]:,k
l 6=i

!H
l,kRl,i!l,k + �2

i

1

CA

(8)

is used as a cost function.

A. Problem Formulation

A promising method to mitigate interference among a set
of scheduled users and to achieve fairness is MBF. The result
is a balanced SINR among all jointly active users using the
same channel resource. However, an unfavorable scheduling
decision can result in a low balanced SINR among all jointly
scheduled users. In what follows, a network with global
knowledge of the long-term CSI is considered. The long-term
CSI in the form of spatial correlation matrices (7) can be either
transmitted to a central unit or by a distributed optimization at
each BS. In the centralized approach, a central unit will then
optimize the scheduling decisions and beamforming weights.
In the distributed approach, the computation of the scheduling
decisions and beamforming weights is performed locally at
each BS. In this case, the long-term CSI must be forwarded
to each cooperative BS. For both approaches, the scheduling
decisions and the beamforming weights can be reused as
long as the channel is stationary. Therefore, a low backhaul
overhead is the result. Fig. 2(a) depicts an example with a low
balanced SINR among the scheduled users. Users 1, 3, 6 and,
7 are jointly scheduled and located in the same geographical
region. Therefore, all beams (denoted with dashed lobes)
are directed in the same region. A consequence could be
a low balanced SINR among the users. Fig 2(b) shows a
better scheduling decision. In this figure, users 2, 3, 6, and
8 are jointly scheduled by their BSs. These users are located
more distributed. Less mutual interference and, therefore, a
higher SINR after the beamforming optimization can be the
consequence. The optimization presented in this paper can be
categorized in two parts. The first part is MBF (introduced
in Section II-A1) which is used for the computation of a
cost matrix for the beam scheduling problem. This section
is followed by Section II-A2 which introduces the beam
scheduling problem.

1) Beamforming Problem: It is desired to maximize the
lowest SINR �i,k of all jointly scheduled users i 2 [S]:,k in
slot k, where the power of each antenna element is subject to a
power constraint PC . This problem can be formally expressed
as a MBF problem with per-antenna array element power

MS 3

MS 4

MS 1

MS 2 MS 5

MS 6

MS 8

MS 7

BS 1
BS 3

BS 2

BS 4

(a) Low balanced SINR

MS 3

MS 4

MS 1

MS 2 MS 5

MS 6

MS 8

MS 7

BS 1
BS 3

BS 2

BS 4

(b) Higher balanced SINR

Fig. 2: Example: Beamforming based on scheduling decisions. A
column (slot) in the scheduling matrix (1) in case (a) is [S]:,1 =

[1, 3, 6, 7]T . In case (b) the scheduling decision is different and may
result in less mutual interference. The corresponding column (slot)
in the scheduling matrix is [S]:,1 = [2, 3, 6, 8]T .

constraints:

�k = max

⌦k

min

i2[S]:,k
�i,k (9)

s.t. |[!l]a|2  PC 8a 2 Al, 8l 2 [S]:,k.

The index set of antenna array elements of the BS assigned to
user i is denoted with Ai. For simplification each BS antenna
array uses the same number NA of array elements. The matrix
concatenated by the total set of beamforming vectors in slot
k is denoted with ⌦k = [!1,k, . . . ,!N,k]. The problem
(9) is non-convex in general. However, for special instances,
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R⌃ = max

⇡2,...,⇡N

KX

k=1

X

i2[[⇡T
1 ,...,⇡T

N ]T ]:,k

log

0

B@1 +

!H
i,kRi,i!i,kP

l2[[⇡T
1 ,...,⇡T

N ]T ]:,k
l 6=i

!H
l,kRl,i!l,k + �2

i

1

CA (10)

e.g., rank-1 spatial correlation matrices (rank(Rl,i) = 1)
the problem (9) is quasi-convex [4], [5]. The authors of [5]
present a globally optimal solution based on a second order
cone problem [23]. Later, [9] introduces a direct and a low
complexity solution.

2) Beam Scheduling Problem: A smart assignment of
jointly scheduled users increases the balanced SINR which
is the solution of the MBF problem (9). The main idea for the
optimization presented in this paper is now the avoidance of
unfavorable scheduling decisions such that the beamforming
vectors can achieve a higher balanced SINR which results in
a higher sum rate. The scheduling assignment is given by
the matrix (1). Hence, matrix S is beside the beamforming
vectors ⌦k k = 1, . . . ,K another optimization variable. To
simplify the following notations, each cell contains exactly K
active users. A straightforward optimization goal is the sum
rate maximization of the approximated rate defined in (5). To
define the sum rate maximization the following Definition is
helpful:

Definition 1: Let ⇡1 = [i1, i2, . . . iK ] 2 NK be an index
vector and let Pc 2 {0, 1}K⇥K be a permutation matrix,
with

PK
l=1[Pc]n,l = 1 and

PK
l=1[Pc]l,n = 1, 8n =

1, . . . ,K. A permutation ⇡c = (⇡1) of a index-vector
⇡1 = [i1, i2, . . . , iK ] is given by a permutation of the elements
of the vector: ⇡c = (⇡1) = ⇡1Pc.

With the assumption of an equal number of users per cell
and BS antenna array and with the set W = {⌦1, . . . ,⌦K} of
all feasible beamforming matrices, the optimization problem
can be stated as: Find the optimal permutations ⇡c of row
vectors of the scheduling matrix S such that the sum rate is
maximized. The permutation form of the scheduling matrix is
S = [⇡T

1 ,⇡
T
2 , . . . ,⇡

T
N ]

T . With the assumption of a fixed first
permutation ⇡1, the optimization of the scheduling matrix S
is defined by finding optimal permutations of ⇡2, . . . ,⇡N of
the row vectors [S]2,:, . . . , [S]N,: such that (10) is maximized.
Using long-term CSI in the form of spatial correlation matrices
(7), the solution of problem (10) gives the matrix S for an
optimized the beam scheduling. The beamforming vectors
stored in matrix ⌦k are optimized based on a MBF problem
given by Eq. (9). The problem (10) matches to a problem of
the graph theory:

Definition 2: Axial multidimensional assignment problem
(MAP) [24]: Having an N -partite graph G with parts X1 =

X2 = . . . = XN = {1, 2, . . . ,K}, find a set of K disjoint
cliques in G of the maximal total weight if every clique ek in
G is assigned a weight w(ek).
The axial MAP is NP-hard. In [25], the author proves that
the 3-dimensional (N � 3) axial assignment problem is NP-
hard. This is a special case of the MAP, hence the MAP is
NP-hard as well.

Proposition 1: Finding the optimal scheduling matrix max-

imizing the sum rate in problem (10) is NP-hard.
Proof: The proof of the NP-hardness is straightforward

and is proven by the relation of the beam scheduling problem
to the NP-hard axial MAP. This problem given in Definition 2
directly maps to a special case of the beam switching problem
(10). In the case of exactly K users per cell, the number
of scheduling slots assigned to the users is K. Then, each
cell c (row index of S) corresponds to a dimension of a N -
dimensional axial MAP with K elements per dimension. Note,
each user is assigned exactly once to a scheduling slot. The
goal is finding the optimal permutations of row vectors of the
matrix S, such that the costs (10) are maximized. The costs
of scheduling decisions [S]:,k correspond to the costs w(ek)
of cliques ek given by

w(ek) :=
X

i2[[⇡T
1 ,...,⇡T

N ]T ]:,k

Ri,k(⇡1, . . . ,⇡N )

with

Ri,k(⇡1, . . . ,⇡N ) = log

0

BBBB@
1 +

!H
i,kRi,i!i,kP

l2[[⇡T
1 ,...,⇡T

N ]T ]:,k
l 6=i

!H
l,kRl,i!l,k + 1

1

CCCCA
.

(11)

Thus, maximizing the sum rate of all slots k also solves the
axial N -dimensional MAP with K elements per dimension.

Example 1: Regard the example in Fig. 2b). Assume the
scheduling decision of a joint scheduling of users 2, 3, 6, and
8 in the first slot and the scheduling of users 1, 4, 5, and 7

in the second results in a maximized overall sum rate. The
optimal scheduling matrix is then given by:

Sexample =


2 3 6 8

1 4 5 7

�T
. (12)

Hence, there are K = 2 scheduling slots and N = 4 cells.
This corresponds to a 4-partite graph with K elements. The
problem of finding the maximum sum rate is equivalent to
a 4-dimensional MAP of finding 2 disjoint cliques with 4

elements. Fig. 3 depicts the equivalent graph representation
of the example.

III. BEAM SCHEDULING OPTIMIZATION

A. Optimal 2-Cell Scenario
To simplify the understanding of the investigations of the

general N -cell scenario of Section III-B, this section investi-
gates the simple 2-cell scenario at first. The 2-cell scenario is
part of the genereal N -cell scenario depicted in Fig. 1 where
only two adjacent cells are cooperative. The goal is to find
optimal scheduling decisions in the adjacent cells such that
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[W]k1(i1),k2(i2) = log

 
1 +

!H
i1
Ri1,i1!i1

!H
i2
Ri2,i1!i2 + �2

k1

!
+ log

 
1 +

!H
i2
Ri2,i2!i2

!H
i1
Ri1,i2!i2 + �2

i2

!
(13)

[W]k1(i1),k2(i2) = max

⌦
min { !H

i1
Ri1,i1!i1

!H
i2
Ri2,i1!i2 + �2

i1

,
!H

i2
Ri2,i2!i2

!H
i1
Ri1,i2!i2 + �2

i2

} (14)

s.t. |[!i1 ]a|2  PC 8a 2 Ai1 ,

|[!i2 ]a|2  PC 8a 2 Ai2 .

MS3 MS8MS6MS2

MS4 MS7MS5MS1

Slot 1

Slot 2

Fig. 3: Example of a scheduling graph with four cells and two slots.
The users (mobile stations (MS)) are denoted by nodes (circles). The
selected disjoint cliques are connected with edges. A part corresponds
to a cell. Each cell contains two users.
Costs of clique 1:
w(e1) = log(1+�2,1)+log(1+�3,1)+log(1+�6,1)+log(1+�8,1)
Costs of clique 2:
w(e2) = log(1+�1,2)+log(1+�4,2)+log(1+�5,2)+log(1+�7,2)

MS2 MS4MS3MS1

MS6 MS8MS7MS5

Cell 1

Cell 2

Slot 1 Slot 2 Slot 3 Slot 4

Fig. 4: Example of a 2-cell scheduling graph. The users are denoted
by nodes (circles). The selected disjoint cliques are connected with
edges. Each cell contains four users. Each clique corresponds to a
scheduling slot. In this example K = 4 disjoint cliques are selected.

the balanced SINR is improved. This section discusses two
approaches:

1) The first approach desires a maximized sum rate over
all scheduling slots (see Section III-A1). This approach
is useful for applications where a quality-of-service rate
is not desired, e.g., internet downloads.

2) The second approach improves the weakest SINR over
all scheduling slots. Consequently, the max–min fairness
is further improved (see Section III-A2). The outcome
of this approach is an increased worst SINR. Hence,
this approach can be applied in applications where each

user requires constantly the same rate, e.g, in video
conferences.

These two approaches for the 2-cell beam scheduling prob-
lem are formulated based on a simple bipartite graph model.
Assuming each cell contains K users. The users of each cell
correspond to a part of the bipartite graph. The problem of
beam scheduling is to find K pairs of users, where one user
is selected from both cells, so that the objective (sum rate
1) or minimum SINR 2) ) is maximized. Hence, K disjoint
cliques in the bipartite graph must be selected. Fig. 4 presents
an example for the 2-cell scenario. The following sections
present two methods to optimize the beam scheduling problem
according to the two presented objectives.

1) Linear Sum Assignment Problem: The first problem is to
find the optimal scheduling matrix S such that the max–min
fair beamforming problem (9) results in a higher sum rate.
One advantage of the 2-cell scenario is the efficient algorithm
which exists in this case. As already mentioned in Section
II-A, the N -cell beam scheduling problem maps perfectly to
the N dimensional assignment problem. In the 2-cell scenario,
this problem corresponds to a linear sum assignment problem.

Definition 3: Linear sum assignment problem (LSAP):
Having a bipartite graph G with parts X1 = {1, 2, . . . ,K}
and X2 = {1, 2, . . . ,K}, find a set of K disjoint cliques in G
of the maximal total weight if every clique ek in G is assigned
a weight w(ek).
In Fig. 4, a bipartite graph depicts a possible assignment of a
2-cell example with K = 4 users per cell. Let W be a cost
matrix with [W]k1,k2 = wk1,k2 2 R+, and X be a matrix of
assignments with [X]k1,k2 = xk1,k2 2 {0, 1} and let xk1,k2 2
{0, 1} k1, k2 = 1, . . . ,K, the LSAP can be also modeled as

max

=f0(W,X)
z }| {
KX

k1=1

KX

k2=1

wk1,k2xk1,k2 (15)

s.t.
KX

k2=1

xk1,k2 = 1 k1 = 1, . . . ,K,

KX

k1=1

xk1,k2 = 1 k2 = 1, . . . ,K.

Let k(i) denote the slot in which user i has been scheduled.
The mapping k(i) is bijective: there is exactly one user mapped
to one slot. Regarding the notation of the LSAP presented in
(15), the LSAP corresponds to the bipartite matching problem
where the weights wk1(i1),k2(i2) of the edges among all disjoint
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node pairs of the two parts X1 and X2 are maximized. The
variable xk1(i1),k2(i2) is equal to one if a user i1 in slot k1(i1)
of cell 1 is jointly scheduled with a user i2 in slot k2(i2) of
cell 2. The objective function f0(W,X) is then the sum rate
of all user pairs i1, i2 of the slots k1(i1), k2(i2). Using MBF,
the cost matrix for a maximized sum rate can be defined as
in (13). To simplify the notation the index k is removed at
the beamforming matrix and vectors. In this paper, the SINR
fairness is desired and the solution of a MBF problem is used
for the beamforming matrices ⌦. The LSAP can be solved
optimally in polynomial time. In [26], [27] the authors present
the first polynomial time algorithm that computes the optimal
solution of the LSAP based on a cost matrix W. The so
called Hungarian method [26] solves the LSAP in O(K4

).
Later, the work [28] presents an O(K3

) implementation of
the Hungarian method.

2) Linear Bottleneck Assignment Problem: Another objec-
tive function for the optimization of the scheduling matrix S
is a further improvement of the fairness. The idea is to find
scheduling decisions in the two cells such that the SINR of the
weakest slot is maximized. This corresponds to an additional
SINR balancing over all slots by an optimal assignment
of jointly scheduled users. The linear bottleneck assignment
problem (LBAP) of the graph theory matches perfectly to this
approach. It has a similar linear programming formulation as
the LSAP. The only difference is the objective function

f0(W,X) = min

1k1,k2K
wk1,k2xk1,k2 . (16)

The optimal value of the objective function is one of the
coefficients wk1(i1),k2(i2) of the cost matrix. The result is an
assignment such that the lowest costs are maximized. The
MBF (9) directly delivers the coefficients of the cost matrix
(14).

The LBAP can be solved with less complexity compared to
the LSAP. In [20, page 174], the authors propose an algorithm
that solves the LBAP with an K ⇥ K cost matrix W in
O(K2.5

p
log(K)). To find the optimal solution of the LBAP,

this paper uses the threshold algorithm presented in [20].

B. N > 2-Cell Scenario
The optimization of the beam scheduling problem in a

N > 2-cell scenario is NP-hard. No optimal polynomial time
solution exists, otherwise P = NP . The beam scheduling
problem is a graph theoretical problem. As explained in
Section II-A2, the optimization of the scheduling matrix S
corresponds to a MAP. An N = 4-cell scenario is presented in
Example 1. Each cell containts K = 2 users. The optimization
of the beam scheduling is to find K = 2 disjoint groups of
users where exactly one user out of each cell is selected, such
that a performance metric (e.g., sum rate) is maximized. This
group of users is served together in a slot. The graph theoretic
interpretation as an MAP is as follows: a slot corresponds to
a clique in the N -partite graph. Each user i is a node in this
graph. The set of users in a cell c corresponds to a part of
nodes Xc. Hence, the problem is the search for K disjoint
cliques in a N -partite graph, such that the costs of the each
clique are maximized. The costs are given by the total sum rate

(8). Using permutations ⇡1, . . . ,⇡N of the parts X1, . . . , XN

of an N -partite graph, the permutation form of the MAP is
given by [24]:

max

⇡2,...,⇡N

KX

i=1

w(i,⇡2(i), . . . ,⇡N (i)). (17)

Comparing (17) with (10) shows the perfect matching of the
beam scheduling problem with the MAP. The MAP or the
beam scheduling problem can be also seen as a generalized
(multidimensional) LSAP

max

KX

kj=1
j=1,...,N

wk1,...,kN
xk1,...,kN

(18)

s.t.
KX

kj=1
j=1,...,N j 6=1

xk1,...,kN
= 1, k1 = 1, . . . ,K,

· · ·
KX

kj=1
j=1,...,N j 6=N

xk1,...,kN
= 1, kN = 1, . . . ,K,

xk1,...,kN
2 {0, 1} k1, . . . , kN = 1, . . . ,K

with a multidimensional cost matrix

W 2 R

N timesz }| {
K ⇥K ⇥ · · ·⇥K
+ . (19)

The axial MAP is NP-hard, therefore, only suboptimal solu-
tions are feasible. In the next sections four different heuristics
are investigated.

In what follows, this paper proposes four algorithms, each
having different advantages. Each algorithm outperforms the
random Round-Robin scheduling (RRS). The comparison of
the heuristics must be fair, therefore, the following section il-
lustrates the investigated fairness constraints (QFS and ORRS)
assumed in this paper. The algorithms are based on differ-
ent search strategies. Therefore, Section III-B2 introduces
the so-called dimensionwise permutation and the so-called
p-exchange neighborhood. The section is followed by the
description of each algorithm. Table I depicts an overview of
all algorithms.

1) Scheduling Fairness: The previous sections always as-
sume an equal number of active users per cell. This is an
ideal scenario because usually the number of users is different
among adjacent cells. In addition to a fair distribution of
the mean SINR per user and slot, a fair allocation of the
scheduling slots to users is desired. Let Uc,0 be the set of
nc = |Uc| active users in cell c. To achieve an equal number of
users per cell, in cells with less than K users, a user index can
be inserted several times. However, all users must be scheduled
equally often. To guarantee a fair allocation of the scheduling
slots to users in each cell it is obvious that at least

K = LCM{n1, n2, . . . , nN} (20)

scheduling slots are needed. After K slots the scheduling
matrix S and the set of beamforming vectors W can be reused
as long as the long-term CSI is stationary.
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Example 2: Consider a small network with a cell c1 with
users Sc1 = {1, 2, 3} and a cell c2 with users Sc2 = {4, 5}.
The number of scheduling slots to achieve a fair allocation of
scheduling slots per user in a cell is K = LCM{2, 3} = 6.
Hence, a valid scheduling matrix could be

S1 =


3 3 2 2 1 1

4 4 5 4 5 5

�
. (21)

According to the scheduling matrix S1 in cell c1, each user
is scheduled twice and in cell c2 each user is scheduled three
times.
In some applications, besides the overall fair allocation of all
scheduling slots to users, temporal fairness is also important.
The delay between two consecutive transmissions should not
be too large. This paper uses two definitions of temporal
fairness:

Definition 4: In opportunistic Round Robin scheduling
(ORRS), the transmission time of each BS is divided to
rc = K/nc rounds, whereby each user in the cell must be
served once in every round without a fixed order. With this
scheme, the maximum time interval between two consecutive
slots allocated to a user equals to 2(nc � 1) scheduling slots.

Definition 5: In quasi fair scheduling (QFS), the users can
be arbitrarily assigned to the K time slots. With this scheme,
the maximum delay between two consecutive transmissions to
a user equals to (nc � 1)K/nc time slots. This constraint is
temporally unfair.

Example 3: The scheduling matrix (21) of example 2 satis-
fies the QFS criterion but violates the ORRS criterion, because,
e.g, in the first round of cell c1 the user 1 is not scheduled.
The following permutation of row vectors of matrix S given
by

S2 =


2 1 3 2 3 1

4 5 5 4 5 4

�
(22)

satisfies the ORRS fairness constraint.
2) Local Neighborhood and Solution Space: Many heuris-

tics for the axial MAP rely on the so-called local neighborhood
search. The heuristics in this paper use two different types of
local neighborhoods:

1) Local neighborhood with an permutation in s dimen-
sions

2) local p-exchange neighborhood

In the literature p = 2-exchange local neighborhoods are
often used [29]. However, the size of the dimension-wise
permutation neighborhood is larger. Therefore, a dimension-
wise algorithm can possibly find better solutions than an
algorithm based on a 2-exchange neighborhood. In what fol-
lows, different heuristic are proposed. At first, Section III-B3
introduces the first heuristic based on SA with a 2-exchange
neighborhood. This section is followed by dimension-wise
approaches (Section III-B4 and III-B5) outperforming the SA
technique. The SA and the dimension-wise algorithms satisfy
the QFS constraint. Therefore, Section III-B6 additionally
presents a low complexity greedy approach that satisfies the
ORRS temporal fairness constraint.

Algorithm 1 Sum rate maximization based on SA
Initialize: T0, T := T0, Create random solution S0, Sbest :=

S0 , Sa := S0

while T > 0 do
Take a randomly a cell c
Compute random neighboring solution : Sb := p̂(Sa, 2, c)
Solve the MBF problem (9) with S = Sb ! W
With W compute (8) ! R(Sb)

if R(Sb) � R(Sbest) then
Sbest := Sb

end if
if R(Sb) � R(Sa) then

Sa := Sb

else
Generate random number r uniformly in the range
(0, 1)
if r  Prob(T,R(Sa), R(Sb)) then

Sa := Sb

end if
end if
T := T � 1

end while
return Sbest, W

3) Simulated Annealing based sum rate maximization: In
[21], the authors propose a 2-exchange local search to solve a
MAP. A similar approach is applied in this paper for the N -cell
beam scheduling problem. The number of beamforming prob-
lems increases with the number of scheduling matrices. SA is a
local search algorithm and has less computational complexity
compared to, e.g., genetic algorithms where multiple solutions
(scheduling matrices) are required. The algorithm presented in
[21] is based on four simple steps and can be directly applied
to the scheduling matrix S:

1) Random selection of a cell c (dimension) of the initial
matrix Sa.

2) Random selection of two user indexes i and j of this
cell c.

3) Compute Sb by exchanging the two indexes i and j in
c.

4) If the new solution Sb has a higher sum rate (8) than S↵,
then accept the new solution. The search is continued
until some maximum number of iterations is reached.

A detailed outline of the final algorithm is presented in Alg. 1.
The algorithm starts with an initial solution S0 and returns the
best solution Sbest that is computed during the whole search.
In each iteration, two users are exchanged in two columns
(slots). Consequently, two beamforming problems of a network
with N users are solved. Local search algorithms can stay in
local optima. To escape from these suboptimal solutions, an
extension of the local search to a randomized algorithm like
SA is useful. At the first iterations, the SA algorithm takes with
some probability Prob(T,R(Sa), R(Sb)) a weaker solution Sb

with R(Sb)  R(Sa). With an increased number of iterations
this probability decreases, such that at the end only the strong
solutions are taken. To avoid the multiple computation of one
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[W]k,kc(ic) =

X

i2{[S]:,k[ic}

log(1 +

!H
i Ri,i!iP

l2{[S]:,k[ic}
l 6=i

!H
l Rl,i!l + �2

i

) (23)

[W]k,kc(ic) = max

⌦
min

i2{[S]:,k[ic}

!H
i Ri,i!iP

l2{[S]:,k[ic}
l 6=i

!H
l Rl,i!l + �2

i

(24)

s.t. |[!i]a|2  PC 8a 2 Ai, 8i 2 {[S]:,k [ ic}

Algorithm 2 Dimension-wise sum rate maximization

Initialize: S = [⇡T
1 ]

T

for c = 2 to N do
Select an adjacent cell c with the users with index ic
stored in Uc.
for all slots kc(ic) = 1, . . .K of users with index ic in
cell c do

for all slots k = 1 to K do
Compute the beamforming matrices ⌦k with (25)
With ⌦k determine the entry of the cost matrix (23)

end for
end for
Compute the optimal assignment for W with a LSAP
⇡c  LSAP.
S = [ST ,⇡T

c ]
T

end for
return S,W

Algorithm 3 Dimension-wise max-min optimization

Initialize: S = [⇡T
1 ]

T

for c = 2 to N do
Select an adjacent cell c with the users with index ic
stored in Uc.
for all slots kc(ic) = 1, . . .K of users with index ic in
cell c do

for all slots k = 1 to K do
Determine the entry of the cost matrix (24)

end for
end for
Compute the optimal assignment for W with a LBAP
⇡c  LBAP.
S = [ST ,⇡T

c ]
T

end for
return S,W

solution, the investigated SA heuristic never computes the
same 2-exchange solution again. Algorithm 1 depicts the used
SA heuristic.

4) Dimension-Wise Sum Rate Maximization: Compared to
a p-exchange neighborhood, a dimension-wise permutation
neighborhood is much larger and a heuristic using such a large
neighborhood can achieve better solutions at the expense of
an increased number of solutions which must be investigated.
This section presents a heuristic based on a dimension-wise
permutation heuristic for the N -cell beam scheduling problem

based on the following observations:
• A user i in a cell c mainly receives interference from its

two adjacent cells if a sector pattern as in Fig. 1 is used.
• In the case of N = 2, the MAP is a LSAP. In this case

the MAP can be solved optimally in O(K3
) as presented

in Section III-A1.
Due to the pattern and the property that most of the interfer-
ence is received from the two adjacent cells, a LSAP finds
near optimal solutions. Hence, the algorithm must investigate
a lower number of solutions. The dimension-wise heuristic
combines the two observations to reduce the number of
beamforming optimizations. The idea of the algorithm can be
summarized in the following steps:

• The algorithm starts in cell c = 1 and selects an adjacent
cell c = 2. For all users with index k1 of cell c = 1 and
all users with index k2 of cell c = 2 a cost matrix W
of a LSAP according to (14) is computed by solving the
beamforming problem (9) for all user combinations. The
first row of the final scheduling matrix is S = [⇡T

1 ]
T .

The result of the LSAP is the optimal permutation ⇡2.
The solution is then fixed and stored in the scheduling
matrix S = [⇡T

1 ,⇡
T
2 ]

T .
• With the fixed assignments stored in S, the algorithm

selects the next adjacent cell c and finds the optimal
permutation ⇡c of users with index ic in slot kc(ic)
in this cell to the previously fixed assignments based
on the 2-dimensional cost matrix, as in (14). The cost
matrix applied to this N > 2 case is given in (23).
The beamforming weights are given by the max–min
beamforming problem

⌦k = argmax⌦ min

i2{[S]:,k[ic}

!H
i Ri,i!iP

l2{[S]:,k[ic}
l 6=i

!H
l Rl,i!l + �2

i

s.t. |[!i]a|2  PC 8a 2 Ai,

8i 2 {[S]:,k [ ic}. (25)

The result is the optimal 2-dimensional assignment of the
users of the new cell c to all previous selected and fixed
assignments stored in S. Note, the overall assignment is
still suboptimal. However, the result of this dimension-
wise optimization is already quite good due to the fact
that the majority of the interference is caused by the
adjacent cells. To simplify the notation, the index k is
removed from the beamforming vectors !l. However, the
MBF algorithm optimizes in each step k the beamforming
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vectors of all selected cells and stores them in a matrix
⌦k.

• If all N cells are visited, the algorithm terminates and
returns the optimal scheduling matrix S and the set of all
optimized beamforming matrices W .

The dimension-wise heuristic optimizes the beamforming vec-
tors only for the already selected cells. In each iteration, the
beamforming problem grows by one cell. Especially, at the
beginning, the beamforming problems are small. Alg. 2 depicts
the details of the implementation.

5) Dimension-wise Max-Min Optimization: Beside the op-
timization of the sum rate, fairness is often desired. MBF
achieves a balanced mean SINR for a given scheduling slot k.
However, the mean SINR can vary among different scheduling
slots. An optimization of the sum rate is, therefore, not the best
strategy if fairness among the users is desired. An optimal
solution for a fair assignment is presented in Section III-A2
for the 2-dimensional case. This approach can be extended to
the N -dimensional generalized (multidimensional) LBAP:

max min

1k1,...,kNK
wk1,...,kN

xk1,...,kN
(26)

s.t.
KX

kj=1
j=1,...,N j 6=1

xk1,...,kN
= 1, k1 = 1, . . . ,K,

· · ·
KX

kj=1
j=1,...,N j 6=N

xk1,...,kN
= 1, kN = 1, . . . ,K,

xk1,...,kN
2 {0, 1} k1, . . . , kN = 1, . . . ,K.

In [25], the authors proved the NP-hardness of the 3-index
bottleneck assignment problem which follows from the NP-
completeness of the 3-dimensional matching problems with
cost in {0, 1}. Consequently, the multidimensional linear bot-
tleneck assignment problem is NP-hard as well.

The dimension-wise heuristic Alg. 2 can be simply modified
to solve a LABP by using the cost matrix (24). To achieve a
max-min fairness over all slots, the dimension-wise heuristic
based on a LBAP uses the MBF optimization (24) to balance
the mean SINR among users as in Section III-A2 (for the 2-
dimensional case). The dimension-wise max–min optimization
is similar to the algorithm presented in Section III-B4. The
heuristic stores fixed assignments in S and keeps them un-
changed. Then heuristic computes the costs of combinations of
the users ic of a new cell c to the previous assignments based
on the resulting mean SINR after MBF. The MBF optimization
results in max–min-fair mean SINR for a given slot k among
all active users in this slot k. The LBAP, on the other hand,
searches for an optimal assignment such that the mean SINR
over all scheduling slots k is balanced. Hence, fairness in
both directions, among the users and among the slots, can be
achieved. Alg. 3 depicts the details of the implementations.

6) Greedy based sum rate maximization: Straightforward
heuristics for NP-hard graph problems are based on a greedy
strategy. A greedy algorithm always takes the best decision for
the moment. It never reconsiders previous decisions, therefore,

it is only able to find suboptimal solutions. On the other
hand, due to the simple decisions, a greedy algorithm has
a low complexity. The greedy approach does not reconsider
its previous decisions. Therefore, these decisions should be
as good as possible. This approach results in the idea of the
developed greedy algorithm.

In a given slot k, the algorithm starts in a randomly selected
cell and selects randomly a user. The idea is similar to a
puzzle: Rotate the beampattern in an adjacent cell by a proper
user selection such that the mutual interference among the
selected users is minimized. Hence, the newly found user
along with the beam lobe of the BS serving this user perfectly
fits to the already selected users. The algorithm uses the
following steps.

• For a given slot k, the algorithm starts randomly in a cell
of the network and schedules randomly a user i0.

• The interference, a user receives, is caused almost ex-
clusively from its adjacent BSs. The algorithm continues
the search in an adjacent cell c (adjacent to the cells of
previous selected users). In the chosen adjacent cell, the
greedy algorithm selects the strongest user ibest from the
set of available unscheduled users.

• The strongest user is the user that maximizes the sum
rate achieved in slot k (greedy step).

• After the selection of the strongest user ibest in cell c,
the algorithm continues the search in the next adjacent
cell until all cells are visited. Then, the next slot k + 1

is optimized in the same way.
• The algorithm terminates until all slots are optimized.

The algorithm requires a set of free users Uc given for each
cell c. According to the QFS criterion, a user with index i
can appear several times in the set Uc, therefore, this set is
formally a defined as a multiset [30].

Definition 6: Assume the multiset A contains na times
the element a: A = {a, a, . . . a| {z }

na times

, b, c, . . .}. The set minus

operation A \ a applied to a multiset A results in the set
˜A = {a, a, . . . a| {z }

na � 1 times

, b, c, . . .}.

Definition 7: With Definition 6, the following update func-
tion

F (A,B, a) =
⇢A \ a if A \ a 6= ;

B if A \ a = ; (27)

for the greedy algorithm can be defined.
The function (27) will remove a selected element (user index)
a from multiset (or set of free users) A if A without a unequals
the empty set. Otherwise, the set is initialized with a new set B.
With the definition of the function (27), the greedy algorithm
achieves either QFS fairness or ORRS fairness with different
initializations of the matrices Uc.

• QFS: The set of free users is a multiset Uc. With K =

LCM{n1, n2, . . . , nN}, the multiset Uc contains each
user i exactly K/nc times. Therefore, the BS antenna
array of cell c serves each user equally often during the
K slots.

• ORRS: The set of free users is a simple set Uc and
contains each user only once. After nc slots, each user is
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Algorithm 4 Greedy based sum rate maximization
Initialize: Compute all Uc,0 8c = 1...N
Set Uc = Uc,0 8c = 1...N
for k = 1 to K do

C := ;
Randomly take a user i0 from Uc(i0)

[S]c(i0),k := i0
Update: Uc(i0) := F (Uc(i0),Uc,0, i0)
for c = 1 to N do

Find next cell c adjacent to the visited cells C
C := C [ c
for all ic 2 Uc do

Compute the beamforming matrices ⌦k with (25)
Compute
R⌃

ic =

P
i2{[S]:,k[ic}

log(1 +

!H
i Ri,i!iP

l2{[S]:,k[ic}
l 6=i

!H
l

Rl,i!l+�2
i
)

end for
ibest = argmax

ic2Uc

(R⌃
ic
)

[S]c,k := ibest
Update: Uc(ibest) := F (Uc(ibest),Uc,0, ibest)

end for
end for
return S, W

scheduled again. Therefore, this initialization results in a
ORRS fair scheduling.

The greedy algorithm is depicted in Alg. 4. The index c(i)
indicates the cell of user i. At the initialization, the sets
(ORRS) or multisets (QFS) Uc,0 are initialized for each cell.
If ORRS is desired, the set Uc,0 contains each user exactly
once. If QFS is desired, the set Uc,0 contains each user
K/nc times. The algorithm uses working sets or multisets
Uc = Uc,0. If a user is scheduled by the greedy approach, the
user will be removed from this set with the update function
(27). If, e.g., ORRS is desired, the user can not be scheduled
until all other users of the set are scheduled. One advantage
of the greedy algorithm is, therefore, the possibility of a
ORRS fair scheduling. Low delays between two consecutive
transmissions are guaranteed. Another advantage is the low
complexity.

7) Complexity Analysis: Regarding all beam scheduling al-
gorithms presented in Sections III-B3-III-B6, the computation
of the beamforming weights for the cost computation has
the largest complexity. The complexity of, e.g., the LSAP to
compute the assignments is low compared to the complexity
of the beamforming optimization to compute the cost ma-
trix. Therefore, the overall complexity is expressed in terms
of required beamforming optimizations. The beamforming
optimizations can have different sizes and their complexity
depends on the number of participating BS arrays. In what
follows, the complexity of a beamforming problem with a size
of n cells or BS arrays is denoted by OB(n).

Sum Rate based Simulated Annealing: To compute the costs
R(Sb) for the solution based on SA presented in Alg. 1,
the beamforming weights for the exchanged columns of the

scheduling matrix must be computed. Hence, problem (9) is
solved with Sb as a given scheduling matrix. In total two
beamforming problems of size N are solved. Let OB(N) be
the complexity of a MB problem with N BS arrays the total
complexity of the cost computation is given by 2 · OB(N).
Assuming the annealing process needs T0 iterations the total
complexity is

C = T0 · 2 · OB(N). (28)

Dimension-wise Optimization: The dimension-wise opti-
mizations presented in Sections III-B4 and III-B5 are based on
the computation of a cost matrix. The algorithm iterates over
all cells with index c. In each iteration, a new cell c is added
to the set of the visited cells. Therefore, the beamforming
problem grows in each iteration by one BS. Assuming the
current cell index is c, then c cells are added to the set
of visited cells C. With this assumption, the beamforming
algorithm in iteration c has a complexity of OB(c), the
computation of the cost matrix requires K2 beamforming
optimizations with a complexity of OB(c) to compute the
cost matrix in iteration c. In total the algorithm visits N cells,
therefore, the total complexity is

C = K2 ·OB(2)+ . . .+K2 ·OB(N) = K2 ·
NX

c=2

OB(c). (29)

Sum Rate Based Greedy Algorithm: The greedy algorithm
iterates over all slots K and in each slot with index k, the
algorithm iterates over all cells. For a given selected cell c,
the greedy algorithm searches the strongest user in this cell.
Assume each cell has K users, to determine the strongest user,
K beamforming optimizations are computed. Hence, the total
complexity of slot k = 1 is given by

C1 = K · OB(2) + . . .+K · OB(N). (30)

Then, the algorithm removes the strongest user from the set
Uc. In the next step k = 2 in cell c the algorithm searches the
strongest user out of the set of K�1 users and the complexity
in step k = 2 is

C2 = (K � 1) · OB(2) + . . .+ (K � 1) · OB(N)). (31)

In the last step just one user is left in each cell and the
complexity is simply

CK = OB(2) + . . .+OB(N) (32)

to compute the last beamforming vectors. The total complexity
is then C = C1 + . . . CK . Rearranging the sum, the overall
complexity is given by

C = OB(2) · (K + (K � 1) + . . .+ 1) + . . .

+OB(N) · (K + (K � 1) + . . .+ 1). (33)

Using the formula of the arithmetic serie, the final complexity
can be simplified to

C =

(K � 1) ·K
2

·
NX

n=2

OB(n). (34)

Comparison: For a large K, the greedy algorithm has
approximately half the complexity of the dimension-wise
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TABLE II: Simulation parameters

Number of users per user drop and cell 12
Transmit antenna arrays uniform linear array
Number of antenna array elements at BSs 4
Number of antenna array elements at users 1
Intersite distance 2000 m
Antenna spacing half wavelength
Path loss exponent 3.76
Power angular density Laplacian, 10�
Power constraint per BS array power constraint

optimization approaches in the sense of required beamforming
optimizations. The complexity of the SA approach depends on
the start temperature T0. This paper selects a start temperature
such that the complexity of the SA approach is as large
as the complexity of the two dimension-wise approaches.
Consequently, the equality

C = K2 ·
NX

c=2

OB(c) = T0 · 2 · OB(N). (35)

must hold. With

T0 = bK
2 ·PN

c=2 OB(c)

2 · OB(N)

c (36)

the complexity (28) of the SA approach is equal to the
complexity of the dimension-wise approaches.

IV. RESULTS AND DISCUSSION

A. 2-Cell Scenario

The results presented in this section are based on the 2-
cell scenario which corresponds to two adjacent cells of the
21-cell scenario depicted in Figure 1. Tab. II summarizes the
main simulation parameters. As in [31], in each user drop, the
users are uniformly distributed in the network. Based on the
location of users relative to the BS arrays (uniform linear), the
spatial correlation matrices are calculated with the assumption
of a Laplacian power angular density distribution. This is a
common assumption in outdoor scenarios [32].

Fig. 5(a) depicts the cumulative distribution functions
(CDFs) of the following algorithms:

• A1: MBF and random scheduling
• A2: MBF and optimized scheduling based on a LSAP

presented in Section III-A1
• A3: MBF and optimized scheduling based on a LBAP

presented in Section III-A2
As expected, algorithm A2, where a maximized sum rate
is desired, maximizes the overall sum rate with a marginal
impairment of the fairness. The fair LBAP improves the
fairness and is able to outperform the random solution also
for higher SINRs.

Figure 5(b) depicts the sum rate (8) gains of the algorithms
A2 and A3 relative to A1. As expected, A2 has the best
sum rate performance with nearly 20% performance gain.
However, even the max–min fair approach A3 can achieve
an improvement of the sum rate.
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Fig. 5: Performance (SINR and sum rate) of the 2-cell scenario.

These gains are marginal. The reason for these small gains
is the limited scenario. Only two cells are regarded. Conse-
quently, the degrees of freedom for a scheduling optimization
are limited compared to a scenario with a large number of
cells. Therefore, the following section presents an optimization
scenario with N = 21 cells. In this case, the beam scheduling
problem is NP-hard, however, the due to the large number
of cells, more degrees of freedom for an optimized beam
scheduling are available.

B. N > 2-Cell Scenario
The simulation parameters are the same as in Tab. II.

However, in this section N = 21 cells are optimized. For
a fair comparison of the SINR performance, all cells have the
same number of active users, therefore, all algorithms satisfy
the QFS constraint according to Definition 5. The CDFs of
the following algorithms are compared:

• A1: MBF and random scheduling
• A2: Dimension-wise sum rate maximization according to

Section III-B4
• A3: Dimension-wise max–min SINR optimization ac-

cording to Section III-B5
• A4: Greedy sum rate maximization according to Section

III-B6
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Fig. 6: Comparison of the SINR CDF of the different algorithms
A1-A5.

• A5: SA based sum rate maximization according to Sec-
tion III-B3

Figure 6(a) depicts the CDF of the mean SINR of all
algorithms A1-A5. As expected all algorithms outperform the
random ORRS (A1) concerning the performance of high SINR
values. The greedy algorithm (A4) is slightly weaker for the
low SINR region but achieves good results for a high SINR.
Regarding the high SINR values, the dimension-wise sum rate
maximization (A2) achieves the best result. The fair version
of a dimension-wise optimization (A3) is the best approach
in terms of the SINR fairness. However, as expected, the
strongest users do not gain as much from this approach.
The simple SA based approach (A5) is outperformed by all
approaches for the strongest 35% of the users. Only for the
weakest users, the simlated annealing approach achieves better
results than A4.

The new solution A3 has the advantage of an improved
SINR fairness compared to the sum rate based solution A2.
The weakest 45% of the users can gain compared to A5 and
compared to the random solution A1 all users can gain.

An often used indicator in multicell optimization is the
performance of the weakest 5% of the users. Figure 6(b)
shows the mean SINR of the weakest 5% of the users in
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Fig. 7: Comparison of sum rate performance and complexity of the
new algorithms.

all slots and simulation runs. Regarding fairness, the max–
min fair dimension-wise approach A3 achieves a significant
performance gain. Hence, this approach can be useful in
applications where fairness among the users is desired. The
greedy approach (A4) is very agressive in maximizing the
sum rate. In each slot, the best users are selected cell-by-cell.
Consequently, in the last slots only weak users are left which
result in low SINR values.

As it can be observed from Fig. 7(a), all proposed algo-
rithms outperform the random and SA approach in terms of
the sum rate performance. The new max–min fair scheduling
algorithm A3 achieves the best SINR fairness and a system
with the sum rate based dimension-wise approach will have
the best sum rate performace. Figure 7(b) depicts the relative
complexity of all algorithms. According to [33], the com-
plexity of the max–min fair beamforming approach grows
cubically in the number of users N . Hence, the complexity
of each beamforming problem of size N is in the order of
OB(N) = O(N3 ·KC). Here, KC denotes a constant factor.
Regarding the trade-off between complexity and sum rate
performance, the greedy approach A4 is the best approach. To
have a better comparison of the results, the initial temperature
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TABLE III: Summary of the advantages/disadvantages of the different algorithms regarding different properties
((++): very good, (+): good, (0): fair, (-): weak).

Algorithm Temporal fairness Sum rate SINR fairness Complexity
A1: random RRS (++) (-) (-) (+)
A2: dim.-wise sum rate maximization (0) (++) (+) (-)
A3: dim.-wise max–min optimization (0) (+) (++) (-)
A4: greedy sum rate maximization (+) (+) (-) (0)
A5: SA based sum rate maximization (0) (0) (0) (-)

of the SA algorithm A5 is chosen so that the order of the
complexity of the SA is equivalent to the dimension-wise
approaches A2 and A3. For a large number of users per
cell K, the greedy algorithm A4 requires the half number
of beamforming optimizations compared to A2, A3, and A5.
Additionally, A4 can guarantee the ORRS fairness constraint.
Therefore, this approach may be useful in systems where the
delay among two consecutive transmission to a users can not
be too large. The other approaches satisfy the QFS constraint1.
By definition of the algorithms, all scheduling heuristics are
guaranteed to converge to a local optimal solution. The SA
heuristic termitates if the temperature reaches zero (see Alg.
1) and the dimension-wise optimization based algorithms (Alg.
2 and 3) terminate when all cells are visited. However, due to
the NP-hard optimization problem, the solutions found by the
heuristics, are not guaranteed to be globally optimal. Table III
summarizes the results of the algorithms A1-A5 regarding
temporal fairness, sum rate performance, SINR fairness, and
complexity.

C. Different Numbers of Users per Cell

Fig. 8 shows the results for the case of different numbers of
users per cell. For this simulation, the cells contain 4, 6, and 12
users respectively. Due to the reduced multi-user diversity all
algorithms have a reduced performance compared to the case
where each cell contains 12 users (Fig. 6(a) and Fig. 7(a)). The
number of slots is given by LCM{4, 6, 12} = 12. The different
number of users per cell may result in different delays.
The algorithms A2, A3, A6 satisfy the QFS constraint. The
greedy algorithm A5 is able to satisfy the ORRS constraint.
However, this stricter temporal fairness constraint causes a
small performance loss compared to the case of an equal
number of users per cell. Therefore, the greedy approach loses
more performance compared to the other algorithms in the case
of a different number of users per cell.

V. SUMMARY

This paper presents the general graph theoretic background
of the multicell beam scheduling problem. It proves the NP-
hardness of the general N -cell beam scheduling problem
and presents three useful heuristics which achieve a higher
balanced SINR in a multicell scenario. A maximized sum
rate or optimized SINR fairness can be achieved. Additionally,
in the 2-cell scenario, optimal algorithms concerning fairness
and sum rate are presented. The proposed approaches jointly

1To achieve a lower delay a post-processing for the scheduling matrix
can reduce the delays. This can be done by rearranging the columns of the
scheduling matrix, without any effect on the SINR.
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Fig. 8: Mean SINR and sum rate performance of the new algorithms
for different numbers of users per cell.

optimize the beamforming vectors, multiuser scheduling, and
control the transmit power. Numerical results for the general
N -cell case show a large SINR performance gain for the
weakest users if the max–min fair approach used.
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• The power angular density in Table II was wrong. The value of the Laplacian distribution
is 10�.

• The Figures for the sum rate Fig. 5b, Fig. 7a, and Fig. 8b are wrongly calculated. Difference
to the IEEE version are marginal, however, to be correct we inserted the corret plots in this
version.
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