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Abstract—This paper considers a downlink unicast transmis-
sion in a multi-cell network with multiple users. In a network
with frequency reuse-1, inter-cell interference is a limiting factor.
The max–min beamforming (MB) technique enables a balancing
of the signal-to-interference-plus-noise ratio among all users in
a network under a power budget. Thus, a fair distribution of
the achievable rate can be achieved. The MB problem (MBP) is
non-convex in general. However, if instantaneous channel state
information is available, the MBP has an equivalent quasi-convex
form and can be optimally solved with an efficient algorithm
based on a convex solver.

In addition to this convex solver based solution, this paper
considers a so-called surrogate dual problem of the MBP with,
per-antenna and per-antenna array power constraints. The
surrogate dual problem combines multiple power constraints
to a single power constraint. Furthermore, the surrogate dual
problem can be efficiently solved for long-term channel state
information (CSI) in the form of spatial correlation matrices.
Strong duality is proved for instantaneous CSI and long-term
CSI in the form of higher rank spatial correlation matrices. With
the surrogate dual problem, a fast algorithm for the MBP is
presented. The convergence issue is discussed. Numerical results
verify the convergence and the performance of the proposed
algorithm.

Index Terms—Multiuser, max–min beamforming, quasi convex,
duality, surrogate dual problem, long-term CSI

I. INTRODUCTION

IN a multi-cell wireless network with frequency reuse-1,
interference (intra-cell and inter-cell) is a limiting factor.

Especially users far away from their serving base station (BS)
are subject to strong interference of adjacent BSs. The result is
an unfair distribution of the signal-to-interference-plus-noise-
ratio (SINR) among the users in the network. The use of
smart antennas at the BSs allows mitigation of interference
and, therefore, the improvement of the SINR of cell edge
users. This can be achieved by closed loop beamforming, i.e.,
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by an optimization of the weighting factors of each antenna
element based on the available channel state information (CSI)
of all links in the considered network. This paper considers
two different cases of generally available CSI:

1) Instantaneous CSI requires a fast CSI feedback mecha-
nism. Especially in a large network with multiple BSs,
a fast backbone network based on fiber is essential to
update the CSI of all users in the network.

2) Long-term CSI in the form of spatial correlation matri-
ces requires an update in the order of the length of each
local stationary interval, which is less frequent compared
to the use of instantaneous CSI.

A promising optimization technique to improve the fairness
based on CSI is called max–min beamforming (MB). The MB
problem (MBP) is non-convex in general [1]. However, in the
case of instantaneous CSI an equivalent quasi-convex form
is known. In this context, a quasi-convex optimization means
that the maximization problem has a quasi-concave objective
function and convex constraints. Therefore, a global optimal
value exists and, e.g, a bisection algorithm can converge
arbitrarily closely to this optimal value if the bisection interval
is correctly chosen [2]. In [3], a equivalent quasi-convex form
of the unicast MBP is derived for instantaneous CSI and
per-antenna power constraints. If a sum power constraint is
given, the problem is proved to be optimally solvable for both,
instantaneous CSI or arbitrary long-term CSI and a sum power
constraint [4]. An open question is whether the MBP can be
solved optimally in the case of long-term CSI given by higher
rank spatial correlation matrices and subject to more general
power constraints.

Related work: Transmit beamforming has been investigated
intensively since 1998. A central aspect of this field is the
uplink–downlink duality in unicast beamforming. First works
regarding this aspect are [5], [6]. They regard the power
mimization problem (PMP) as well as the MBP. Various
publications generalize their work or give further proofs and
extensions. An overview of these publications is given in
Tab. I. A deep information theoretic background concerning
the duality of the Gaussian broadcast channel is studied in [7].

Unicast beamforming is non-convex with general power
constraints and if long-term CSI is used [1]. However, several
equivalent quasi-convex or even convex forms are currently
identified for some special cases. Table II gives an overview
of all related problems.

Based on long-term CSI, the unicast beamforming problem
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of minimization of the sum power subject to individual SINR
constraints was investigated in [1]. This problem is called
PMP. In [1], the authors showed that the non-convex PMP
can be relaxed to a convex semidefinite program which has
no relaxation gap. The unicast PMP and the unicast MBP
are reciprocal problems [8]. In [4], the authors presented an
optimal solution for the MBP based on long-term CSI and a
sum power constraint. The convergence of the iterative low
complexity algorithm is later proved in [9].

The framework of the Lagrangian duality theory was intro-
duced to solve the unicast multiuser beamforming problem in
the work of [8] and [12]. In the case of instantaneous CSI,
the PMP has an equivalent convex form, as opposed to the
MBP which has a merely quasi-convex form. The authors in
[12] propose a fast direct solution for the minimization of
the maximum power margin over all antennas subject to per-
antenna power constraints and individual SINR constraints.
The authors of [19] extended the work to the multi-cell case.
The PMP requires a properly chosen SINR. The MBP is more
flexible and overcomes this complication. The MBP allows
finding the highest SINR constraint such that the problem
is feasible. In [15], the authors investigated the max–min
weighted SINR problem with individual power constraints.
The authors derived a fast algorithm based on the non-linear
Perron Frobenius theory. In [3], the authors presented an
equivalent quasi-convex form of the unicast MBP with per-BS
antenna array power constraints for the case of instantaneous
CSI. Similar to [8], the authors presented an approach in
the form of a feasibility check problem given as second
order cone problem (SOCP). The work [20] presented a fast
direct solution for the MBP with long-term CSI and per-BS
antenna array power constraints based on the framework of
the Lagrangian duality theory. This scenario is not proved to
have an equivalent convex form, hence, strong duality is not
given in general. In [21], the MBP based on instantaneous CSI
was investigated and the solution is extended to per-antenna
power constraints.

Contributions: This paper considers the duality of the MBP
with per-antenna or per-antenna array power constraints.

• This paper presents an approach involving an equivalent
dual uplink problem for the MBP with multiple power
constraints based on the surrogate dual problem. If instan-
taneous CSI is available, an equivalent quasi-convex form
of the MBP exists and strong surrogate duality can be
directly proved with a duality theorem for quasi-convex
programming [22]. The surrogate dual problem is proved
to be quasi-convex, hence, it can be solved efficiently.

• If only long-term CSI in the form of higher rank spatial
correlation matrices is available no equivalent quasi-
convex form is known and the surrogate duality theorem
of [22] can not be applied. An additional proof is pre-
sented to show strong duality also in this more general
case.

• The surrogate dual problem of the MBP can be proved
to be equal to the Lagrangian dual problem of the MBP
and, at the optimum, the combined power constraint of
the surrogate dual problem is satisfied with equality.

• The surrogate dual problem of the MBP leads to an

iterative low complexity algorithm. The convergence of
the proposed algorithm is discussed.

Outline: Section II gives a detailed description of the
system model for unicast downlink beamforming. Section III
introduces the MBP. Furthermore, this section derives an
equivalent quasi-convex form of the MBP with multiple power
constraints given that instantaneous CSI is available (Sec-
tion III-B). Finally, Subsection III-C presents the surrogate
dual problem of the primal downlink MBP and gives a proof
for strong duality. Section IV presents a fast algorithm for
the unicast MBP with per-antenna power constraints based on
the surrogate dual problem. Finally, the paper underlines the
performance of the presented iterative solution in Section V
with some numerical results and concludes with a summary
in Section VI.

Notation: Lower case and upper case boldface symbols
denote vectors and matrices, respectively. The ith element of
a vector is denoted by [a]i. The element indexed n,m of a
matrix A is denoted by [A]n,m. The matrix IN denotes the
identity matrix of dimension N ⇥N . The conjugate transpose
of a matrix A is expressed as AH . The cardinality of a set
S is given by |S|. The notation diag(A1, . . . ,AN ) denotes
the block-diagonal matrix of matrices Ai and i = 1, . . . , N .
The relation symbol < denotes the matrix inequality on a cone
of nonnegative definite matrices. The operator Tr(A) denotes
the trace operation on a square matrix A. The space of non-
negative real numbers is denoted by R+.

II. SYSTEM SETUP AND DATA MODEL

The network has N cooperating BS arrays, each equipped
with NA antennas. At each time instant, N users of the index
set U , each equipped with a single antenna, are jointly served
in this network. At a time instant one user per cell is scheduled;
thus, there is one beamforming vector per cell or BS antenna-
array. In unicast transmission, there is always one scheduled
user per antenna array. A user i receives the signal:

ri = hH
i,i!isi +

X

l2U,l 6=i

hH
l,i!lsl + ni. (1)

Here, ni is the interference plus noise of adjacent net-
works. The signal transmitted to user i is given by si with
E{|si|2} = 1 and E{sls⇤i } = 0 if l 6= i. The channel between
the BS array of user l and user i is given by hl,i 2 CNA⇥1. The
beamforming vector of the lth antenna array with NA antenna
elements is denoted by !l = [!l(0),!l(1), . . . ,!l(NA�1)]

T .
With the assumption of Gaussian noise with E{|ni|2} = �2

i

and E{ni} = 0, the instantaneous downlink SINR is

�D
i (⌦) =

|hH
i,i!i|2P

l2U
l 6=i

|hH
l,i!l|2 + �2

i

. (2)

In what follows, we define the downlink SINR distinguishing
two different cases of CSI.

If instantaneous CSI is used, the following matrices nor-
malized to the noise power, will be used:

Rl,i =
1

�2
i

hl,ih
H
l,i i, l 2 U . (3)
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TABLE I: Overview of related work since 1998.

Year Author Problem Power constr. CSI Theory, Solution
1998 Rashid-Farrokhi et al, [5] PMP - instantaneous Perron Frobenius theorem
1998 Yang, Xu, [6] MBP sum power instantaneous Perron Frobenius theorem
2001 Bengtsson, Ottersten, [1] PMP - long-term semidefinite programming
2002 Boche, Schubert, [10] MBP sum power long-term Perron Frobenius theorem
2005 Song, Cruz, Rao, [11] PMP - instantaneous Linear programming duality
2006 Wiesel, Eldar, Shamai, [8] MBP sum power instantaneous second order cone programming
2007 Yu, Lan, [12] PMP per-antenna instantaneous Lagrangian
2008 Tölli, Codreanu, Juntti, [3] MBP per-antenna instantaneous second order cone programming
2009 Tan, Chiang, Srikant [13], [14] MBP sum power instantaneous non-linear Perron Frobenius theo.
2009 Tan, Chiang, Srikant [15] MBP per array instantaneous Non-linear Perron Frobenius theo.
2011 Cai, Quek, Tan, Low, [16], [9], [17] MBP per array instantaneous Non-linear Perron Frobenius theo.
2011 Negro, Cardone, Ghauri, Slock, [18] MBP per array instantaneous Bisection over convex PMPs

TABLE II: Overview of related problems.

Problem Objective Power Constraints CSI Convexity / Strong Duality
PMP sum power - long-term or instantaneous CSI strong duality
PMP sum power per-antenna power long-term or instantaneous. CSI convex form
MBP min. SINR sum power long-term or instantaneous CSI strong duality
MBP min. SINR per-antenna instantaneous CSI quasi-convex form

Long-term CSI is often used in a multi-cell optimization
due to the reduced CSI feedback rate. The assumption of this
long-term CSI implies that only the mean SINR is considered.
Here, an additional expectation over the channel realizations
H is taken. The result is the spatial correlation matrix given
by:

Rl,i =
1

�2
i

EH{hl,ih
H
l,i} i, l 2 U . (4)

Downlink SINR: Using the definitions of the spatial cor-
relation matrices (3) or (4), the SINR is then defined by:

�D
i (⌦) =

!

H
i Ri,i!iP

l2U
l 6=i

!

H
l Rl,i!l + 1

. (5)

Note the spatial correlation matrices (4) are normalized by the
noise power.

Uplink SINR: In addition to the downlink (DL) SINR
(5), the uplink (UL) SINR can be defined as follows: let the
UL receive beamforming vectors of a BS array be given by
vi 2 CNA⇥1, with kvik = 1. Then with the UL power �i � 0,
the dual UL SINR of user i is defined by:

�U
i (µ,�,vi) =

�ivH
i Ri,ivi

vH
i (Mi +

P
l2U
l 6=i

�lRi,l)vi
. (6)

The diagonal matrix Mi ⌫ 0, called UL-scaling matrix in
this paper, depends on three power constraints and is defined
below. The definition of the UL SINR can be used to solve
the surrogate dual problem of the MBP in Section III-C.

Power constraints: Let ⌦ = [!1, . . . ,!M ] be the matrix
containing all beamforming vectors, this paper considers three
different power constraints:

• In the case of a sum power constraint, the total power
of all transmitting stations is limited by P . The convex
cone of beamforming vectors satisfying the sum power
constraint is given by:

F = {⌦ 2 CNA⇥M
:

X

l2U
!

H
l !l  P}. (7)

• If per-BS antenna array power constraints are used,
each antenna array l of a BS will be subject to a total
power budget Pl. This constraint is stricter and practically
more relevant. The convex cone of beamforming vectors
satisfying the per-BS antenna array power constraints is
given by:

F = {⌦ 2 CNA⇥M
: !

H
l !l  Pl 8l 2 U}. (8)

In the definition of the UL SINR (6), the UL-scaling
matrix Mi = µiINA

for some µi � 0 is used.
• If Per-antenna power constraints are given, the power

of each antenna element with index a of the total set of
A is limited. It is assumed each BS array l has the same
number NA of antenna elements given by the set Al.
The power of each antenna element a of BS array l is
constrained by Pl,a.
The convex cone of beamforming vectors satisfying the
per-antenna power constraints is given by:

F = {⌦ 2 CNA⇥1M
: |[!l]a|2  Pl,a 8a 2 Al 8l 2 U}.

(9)
In the definition of the UL SINR (6), the UL scaling
matrix Mi = diag(µ1,i, . . . , µi,NA

) for all µi,a � 0 is
used.

III. OPTIMIZATION PROBLEM AND THE
UPLINK–DOWNLINK DUALITY

We desire to improve the worst SINR of the currently
scheduled users. The MBP can be stated as

�D
= max

⌦2F
min

i2U
�D
i (⌦). (10)

The beamforming matrix is given by ⌦ = [!1, . . . ,!M ]. A
balanced SINR can be the result. However, such an approach
requires a smart selection of the set U of active users,
otherwise a single bad user can degrade the performance
of all jointly active users. Different scheduling techniques
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discussed in [23] can avoid such a situation. The problem can
be simplified by using an additional slack variable �:

�D
= max

⌦2F, �2R+

� (11)

s.t. �D
i (⌦) � � 8i 2 U .

A. Semidefinite Relaxation
The MBP is non-convex for arbitrary spatial correlation

matrices Rl,i and using general power constraints as per-BS
antenna array power constraints (8). However, for all of these
non-convex cases, the MBP can be relaxed to a quasi-convex
program. The resulting convex feasibility check problem is a
semidefinite program (SDP) [2]. A bisection over � can iterate
arbitrarily tightly to the optimal value if the bisection interval
is correctly chosen. This approach is a standard method of
solving the MBP and is used as a reference in this paper.

With X = [X1, . . . ,XN ] consisting of semidefinite matri-
ces Xl = !l!

H
l , dropping the non-convex rank-1 constraint

rank(Xl) = 1 8l 2 U , and fixing �, the SDP is given by [24]:

find X, (12)

s.t. � 1

�
Tr{XiRi,i}+

X

l2U,l 6=i

Tr{XlRl,i}+ 1  0,

Xi ⌫ 0, Tr{Xi}  Pi, 8 i 2 U . (13)

In the case of a sum power constraint
P

l2U Tr{Xl} = P
instead of (13), the resulting matrices are proved to all have
rank 1 and are, therefore, optimal [1]. With a per-BS antenna
array or per-antenna element power constraints and arbitrary
spatial correlation matrices, the solution has not been proved
to be globally optimal in the literature.

B. Equivalent Quasi-Convex Form in the Case of Instanta-
neous CSI

In general, the problem (10) is non-convex because of the
non-convex objective function over ⌦:

f(⌦) = min

i2U
!

H
i Ri,i!iP

l2U
l 6=i

!

H
l Rl,i!l + 1

. (14)

Note f(⌦) is a continuous function because the point-wise
minimum of continuous functions is also continuous. However,
if instantaneous CSI is available at the BSs, the MBP has
an equivalent quasi-convex form for a sum power constraint,
for per-antenna array and for per-antenna power constraints
(see Proposition 1). It is desired to maximize (14); hence, the
objective function must have an equivalent quasi-concave form
to prove that the MBP has an equivalent quasi-convex form.

Definition 1: [2] A function f(x) defined on a convex set
F is quasi-concave if every upper level set

S↵ = {x 2 F : f(x) � ↵} (15)

of f(x) is convex for every value of ↵.
Proposition 1: Let �D denote the solution of the MBP (10).

Then the MBP (10) has an equivalent quasi-convex form with
an optimal solution �⇤D for the given power constraints (7)-
(9) and in the case of instantaneous CSI and matrices Rl,i

defined in (3). Consequently �D
= �⇤D holds.

Proof: The point-wise minimum of a quasi-concave func-
tion is quasi-concave [2]. Therefore, only the upper level sets

S�,i = {⌦ 2 F :

!

H
i Ri,i!iP

l2U
l 6=i

!

H
l Rl,i!l + 1

� �} (16)

must be convex. The same idea as, e.g., in [1], [12] is used to
prove the convexity of the SINR constraint

1

�
!

H
i Ri,i!i �

X

l2U ,l 6=i

!

H
l Rl,i!l + 1. (17)

An arbitrary phase rotation of the beamforming vectors does
not affect the SINR [1], if instantaneous CSI is given. Hence,
the constraint (17) can be rewritten as in [1]:

1

p
��i

hH
i,i!i �

s X

l2U ,l 6=i

!

H
l Rl,i!l + 1, (18)

with Im{hH
i,i!i} = 0, hH

i,i!i � 0, (19)

if Rl,i is given by (3). The constraint (18) is a second order
cone constraint [2] for a fixed parameter �. With the SINR
constraint (18) and per-antenna power constraints, the MBP
(10) can be rewritten as a convex SOCP.
For a fixed (constant) �, the feasibility check problem of
the MBP can be expressed as a SOCP. The upper level sets
of the equivalent form of the objective function are convex.
Consequently, the objective function has an equivalent quasi-
concave form. With the convex form of the SINR constraint
(18) the MBP can be solved with the following convex
feasibility check problem:

find ⌦ (20)

s.t.
1

p
�
hH
i,i!i �

s X

l2U,l 6=i

!lRl,i!l + �2
i

|[wi]a|2  Pi,a 8i, a.

A bisection over � can iterate arbitrarily closely to the global
optimal value if the bisection interval is correctly chosen. In
the case of per-antenna array power constraints, the feasibility
check problem can be analogously derived. Note the convexity
of the SINR constraints (17) for a given parameter � is only
proved for instantaneous CSI or spatial correlation matrices
with rank 1. If arbitrary long-term CSI is used, the spatial
correlation matrices (4) will have a higher rank. Therefore,
this technique can not be used straightforwardly to prove the
transformation to an equivalent quasi-convex problem.

C. Surrogate Duality for the MBP

This section introduces a new framework for a dual UL
problem that is equivalent to the original MBP (10) if both,
instantaneous CSI, or arbitrary long-term CSI in the form of
higher rank spatial correlation matrices is available.

Section III-B illustrates that the MBP has equivalent quasi-
convex form if instantaneous CSI is available. A quasi-convex
problem can be solved directly by using the convex feasibility
check problem of the primal problem. A simple bisection over
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multiple convex feasibility check problems can be calculated
to iterate as long as a precision1 of ✏ is reached [2].

In [18], the authors propose a similar way to solve the
unicast MBP. However, instead of the feasibility check prob-
lem of the primal problem, the dual UL problem of the PMP
is used which is equivalent to the MBP for a given SINR
�. In [20], a direct solution based on the dual UL problem
was proposed. The proposed iterative algorithm is derived
based on the Lagrangian dual problem, which provides an
upper bound of optimal solution. However, the MBP with
more general power constraints, e.g., per-BS antenna array
power constraints has merely an equivalent quasi-convex form.
Therefore, the strong duality of the Lagrangian dual problem
can not be proved so easily in this case. This section proposes
an alternative and simpler framework for UL–DL duality based
on the work on surrogate duality in quasi-convex programming
of D. Luenberger [22].

Several publications on quasi-convex programming exist
(e.g., [22]), and several dual problems have been proposed.
Let E ⇢ Zn where Zn is an Euclidian space, in the case of a
maximization problem [25], [26]

t0 = max

x2E
f(x) (21)

s.t. gi(x)  0 i = 1, . . . , N

D. Luenberger [22] proposed a solution based on a so-called
surrogate dual function

s(µ) = max

x2E
f(x) (22)

s.t.
NX

i=1

µigi(x)  0, µi � 0 i = 1, . . . , N.

The vector µ denotes the vector of the surrogate variables
µi � 0. With the definition of g(x) = [g1(x), . . . , gN (x)]

T ,
he proves the following theorem:

Theorem 1: [22] Let f(x) be a quasi-concave lower semi-
continuous2 objective function and let all gi(x) be convex,
assume that t0 = sup

x2E{f(x) : g(x)  0} is finite. Then,
t0 = min

µ

{s(µ)}, where the minimum is achieved for some
µ � 0.
Note, instead of Luenberger’s [22] minimization problem, this
paper regards a maximization problem, hence, the reversals
of the minimization and maximization can be used [25].
Here, the surrogate dual aims at finding the tightest upper
bound [25] instead of the tightest lower bound as in [22].
Theorem 1 requires a quasi-convex objective function. The
following theorem generalizes the work of Luenberger:

Theorem 2: [25], [27] If an x

⇤ solves (22) for a µ

⇤ 2
Rn

+ and x

⇤ is feasible in (21), then x

⇤ solves (21) and
t0 = min

µ

{s(µ)}.
A fundamental result in the surrogate duality theory is proved
in [25]:

Theorem 3: [25] The surrogate dual function s(µ) is quasi-
convex in µ.

1In this paper, the term precision means the residual distance to the optimal
solution.

2Along lines, e.g., every concave function is lower semi-continuous along
lines [22].

Hence, a global minimizer over µ can always attain the min-
imum. Furthermore, the surrogate dual problem is connected
with the Lagrangian dual problem. Greenberg et. al. have
proved the following theorem [25]:

Theorem 4: [25], [27] The solution of the surrogate dual
problem min

µ

s(µ) is a tighter bound than the solution of the
Lagrangian dual min

µ

l(µ); hence, min

µ

s(µ)  min

µ

l(µ).
If min

µ

s(µ) = min

µ

l(µ) then there exists an x such that
µ

Tg(x) = 0. Hence, the surrogate constraint is satisfied with
equality.

This duality theory is used in this section to derive a dual UL
problem of the unicast MBP. The multiple power constraints
are combined to a single power constraint as shown in (22).
At this point it could be helpful to give a short overview of
the propositions for the duality proof in this paper:

• The combination of multiple power constraints to a
single weighted sum power constraint results in a UL
MBP with an inner and an outer problem. The inner
problem corresponds to a DL MBP with a weighted
sum power constraint. Transformation of this problem
to the UL domain leads to a quasi-convex problem. The
Lagrangian dual UL problem of this problem is presented
in Lemma 1. Strong duality is proved for the sum power
constrained case, consequently, the Lagrangian duality is
tight.

• In Proposition 2, the surrogate dual function is derived by
using the previous result in Lemma 1. The surrogate dual
function combines multiple power constraints to a single
weighted sum power constraint. This surrogate function
is transformed to the UL domain where it can be solved
efficiently. The surrogate function in the UL domain leads
to the surrogate dual problem of the original MBP.

• The question is now whether this surrogate dual problem
solves the MBP with multiple power constraints. In the
case of instantaneous CSI or rank-1 spatial correlation
matrices, an equivalent quasi-convex form exists. Based
on the equivalent quasi-convex form, strong (surrogate)
duality can be directly proved with the duality theorem of
Luenberger (Theorem 1). This is proved in Proposition 4.

• If arbitrary long-term CSI in the form of higher-rank
spatial correlation matrices is given no equivalent quasi-
convex form is known. Thus, Theorem 1 can not be
applied. Proposition 5 represents an alternative proof
for strong duality in this more general case based on
Theorem 2.

• With the help of Theorem 3, Proposition 6 states that the
surrogate dual problem is quasi-convex; hence, a global
optimal value exists.

• Proposition 7 shows the equivalence of the surrogate dual
and the Lagrangian dual of the original MBP with general
power constraints. According to Theorem 4, it follows
that the weighted sum power constraint is satisfied with
equality.

The derivation of the surrogate dual problem is based on
an inner MBP with a weighted sum power constraint and
its Lagrangian dual problem, which is tight if a sum power
constraint is given. Consider the following unicast DL MBP
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where the weighted sum power is limited to P :

fD
(µ) = max

⌦
min

i2U
�D
i (⌦) (23)

s.t.
X

i2U
!

H
i Mi!i  P. (24)

where Mi = diag(µ1,i, . . . , µi,NA
) ⌫ 0 in the case of per-

antenna array element power constraints and Mi = µiINA
⌫ 0

in the case of per-BS antenna array power constraints. The
vector µ is the vector of all µa,is or µis. For a fixed µ, this
problem is a MBP with a weighted sum power constraint. The
Lagrangian dual UL problem is given by the following lemma:

Lemma 1: With the definition of the UL SINR (6), the
Lagrangian dual of the unicast DL MBP (23), (24) is given
by:

fU
(µ) = max

�,V
min

i2U
�U
i (µ,�,vi) (25)

s.t.
X

i2U
�i  P �i � 0, 8 i 2 U . (26)

At the optimum, the power constraints of problems (23) and
(25) are satisfied with equality and both problems have the
same SINR fU

(µ) = fD
(µ).

Proof: The derivation of the Lagrangian dual is a simple
extension of [28]. The proof of the strong duality is an
extension of [4, Lemma 2]. [9] presents the duality in the
case of instantaneous CSI or rank-1 spatial correlation matrices
and per-BS power constraints. The proof for the case of per-
antenna power constraints is a straightforward extension and
presented in Appendix A.

Proposition 2: With the diagonal matrices
Pi = diag(Pi,1, . . . , Pi,NA

) in the case of per-antenna
power constraints, or diagonal matrices Pi =

Pi

NA
INA

in
the case of per-BS array power constraints, the surrogate
dual function (or surrogate problem) of the unicast DL MBP
(10) with general (per-antenna or per-antenna array) power
constraints is given by:

sU (µ) = max

�,V
min

i2U
�U
i (µ,�,vi) (27)

s.t.
X

i2U
�i 

X

i2U
Tr{MiPi}

�i � 0, Mi ⌫ 0, 8 i 2 U
for a µ � 0 and µ 6= 0.

Proof: The surrogate dual function of the MBP with per-
antenna power constraints is given by:

sD(µ) = max

⌦
min

i2U
�D
i (⌦) (28)

s.t. p⌃(µ,⌦)  0. (29)
Mi ⌫ 0 8 i 2 U .

With the diagonal matrices Pi = diag(Pi,1, . . . , Pi,NA
), the

per-antenna power constraints are combined to the weighted
sum power constraint:

p⌃(µ,⌦) =
X

i2U

X

a2Ai

µi,a(|[!i]a|2 � Pi,a)  0

,
X

i2U
!

H
i Mi!i 

X

i2U
Tr{MiPi}.

With the diagonal matrices Pi =

Pi

NA
INA

, the per-antenna
array power constraints are combined to the weighted sum
power constraint:

p⌃(µ,⌦) =
X

i2U
µi(!

H
i !i � Pi)  0

,
X

i2U
!

H
i Mi!i 

X

i2U
Tr{MiPi}.

Thus, the problem (28), (29) can be stated as:

sD(µ) = max

⌦
min

i2U
�D
i (⌦) (30)

s.t.
X

i2U
!

H
i Mi!i 

X

i2U
Tr{MiPi} (31)

Mi ⌫ 0, 8 i 2 U .

With P =

P
i2U Tr{MiPi} and Lemma 1, the problem (30)

can be transformed to the UL domain and the problem (27) is
the result.

Proposition 3: If instantaneous CSI in the form of (3) is
given, let s⇤D(µ) denote the surrogate dual of the equivalent
quasi-convex form of the original MPB (10), then s⇤D(µ) =

sD(µ) holds.
Proof: The proof is a straightforward extension of the

theory in [8].
Assuming there exists an equivalent quasi-convex form of

the MBP (10), the proof of strong duality is straightforward
with the help of Theorem 1.

Proposition 4: If the primal unicast DL MBP (10) has an
equivalent quasi-convex form which has the solution �⇤D, the
optimal solution �D of (10) is given by:

�D
= �U

S = min

µ

sU (µ) (32)

for a µ 6= 0 and µ � 0.
Proof: Problem (35) is the surrogate dual problem. Propo-

sition 2 declares the lack of a duality gap for the inner problem
hence,

sD(µ) = sU (µ)

holds. Consequently, also

�D
S = min

µ

sD(µ) = min

µ

sU (µ) = �U
S (33)

holds. According to the duality theorem of Luenberger
(Theorem 1), strong duality between the surrogate dual prob-
lem and the primal problem holds if the primal problem is
quasi-convex, assuming �⇤D is the solution of the equivalent
quasi-convex form of the MBP (10) and s⇤D(µ) is the
equivalent quasi-convex form of the surrogate function. Due
to (33), also

�⇤D
= min

µ

s⇤D(µ) = min

µ

s⇤U (µ) = �⇤U
S (34)

holds. Since s⇤D(µ) = sD(µ), s⇤U (µ) = sU (µ), �⇤U
S = �U

S ,
and �⇤D

= �D holds,3 (32) holds as well.

3In the case of instantaneous CSI and a weighted sum power constraint or
per-antenna or per-antenna array power constraints, the MBP has an equivalent
quasi-convex form (see Propositions 1 and 3).
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Given arbitrary higher rank spatial correlation matrices as (4),
the proof of strong duality is not straightforward, because,
then, no equivalent quasi-convex form of the MBP is known.
However, the following proposition formulates the general
duality result for the case of higher rank spatial correlation
matrices and per-BS array power constraints:

Proposition 5: Given arbitrary higher rank spatial correla-
tion matrices as (4), the solution of the dual UL problem is
equal to the solution of the primal unicast DL MBP (10).
Hence, with µ 6= 0 and �U

S = �D, the solution is given by

�U
S = min

µ

sU (µ). (35)

Proof: Due to sD(µ) = sU (µ), also

�D
S = min

µ

sD(µ) = min

µ

sU (µ) = �U
S (36)

holds. The question is whether �D
S = �D. If an ⌦⇤ is feasible

in sD(µ

⇤
), there must be a µ

⇤ � 0 and µ

⇤ 6= 0 which
is also feasible in (10) according to Theorem 2. We must
show the feasibility of ⌦⇤ in the original problem so that
!

⇤
k
H
!

⇤
k  Pk 8k 2 U . Let µ

⇤
k 2 RM⇥1 be a vector with

exactly one non-zero element, µ⇤
k > 0. Then, the surrogate

problem is

sD(µ

⇤
k) = max

⌦
min

i2U
�D
i (⌦) (37)

s.t. µ⇤
k!

H
k !k  µ⇤

kPk µk > 0. (38)

where (38) is finally !

H
k !k  Pk. The kth constraint of

the original problem (10) is satisfied if the constraint (38)
of surrogate problem sD(µ

⇤
k) is satisfied. As in [17, Theorem

4], let F denotes the feasible set of the original problem (10),
and

FD
k = {⌦⇤

k 2 CNA⇥M
: !

H
k !k  Pk}

denotes the feasible set of (37), (38), then F = \k2UFD
k . The

index k⇤ = argmink2U{sD(µ

⇤
k)} is the index where all power

constraints are satisfied. According to Theorem 2, ⌦⇤
k⇤ 2 F

solves the surrogate dual problem for a µ

⇤
k⇤ � 0, µ⇤

k⇤ 6= 0
and is also feasible in the primal problem (10). Consequently,
according to Theorem 2, the solution of the surrogate dual
problem is a tight upper bound.

The question is now whether (35) attains the optimal value.
In [25], the authors prove that the surrogate dual provides
a tighter bound than the Lagrangian dual. The following
proposition declares the quasi-convexity of the surrogate dual
problem.

Proposition 6: The surrogate dual problem (35) can be
globally optimally solved.

Proof: Due to Theorem 3, the surrogate dual function is
quasi-convex, hence a global minimizer can attain the value
of the global minimum.

In [29], the authors discuss the Pareto optimality of the
achievable rate. This paper regards the point on where all
SINRs are balanced. If a balanced SINR exists, the Lagrangian
dual and the surrogate dual of the MBP (10) are equivalent.

Definition 2: A tuple of SINRs (�D
1 , �D

2 , . . . , �D
M ) is bal-

anced if �D
1 = �D

2 = . . . = �D
M .

A balanced SINR may not exist if, e.g., a user does not receive
any interference from other BSs in the network; hence the
network is not interference coupled. More details concerning
conditions for a balanced SINR are explained in [30], [31].

Proposition 7: If a balanced SINR according to Definition 2
exists, the Lagrangian dual of the MBP (10) is given by

�U
L = min

µ

max

�,V
min

i2U
�U
i (µ,�,vi) (39)

s.t.
X

i2U
�i 

X

i2U
Tr{MiPi},

�i � 0, Mi < 0, 8 i 2 U .

and at the optimum, the weighted sum power constraint (31)
is satisfied with equality.

Proof: The derivation of the Lagrangian is presented in
Appendix B.

The surrogate dual (35) is equivalent to the Lagrangian dual
(39), �U

L = �U
S . According to Theorem 4, the weighted sum

power constraint (31) is satisfied with equality.

IV. ITERATIVE ALGORITHM

The structure of the dual UL problem offers a solution based
on simple mathematical operations. The solution consists of
an outer minimization over µ (35) and an inner maximization
over � and V (27). Thus, two loops (an inner and an outer
loop) as in [12] are used in what follows. In contrast to [12],
the presented approach jointly finds the balanced SINR �.

The duality of the inner UL problem (27) with the DL MBP
is proved in Lemma 1. The problem (23), (24) corresponds to a
MBP with a weighted sum power constraint. For the problems
(23), (24) and (25), (26) strong duality, if a weighted sum
power constraint is given, is proved (Lemma 1). The corre-
sponding UL problem (25), (26) is reduced to a computation
of the largest eigenvalue and the corresponding eigenvector.
This paper presents an iterative computation of the largest
eigenvector instead of an eigenvector decomposition. In [32],
the so-called power iteration is shown to be a low complexity
solution if only the largest eigenvalue is desired.

Regarding the surrogate dual problem (35), the inner prob-
lem in the downlink domain for fixed µ is a MBP as in
[9], [13], with a weighted sum power constraint, where each
beamforming vector is scaled by Mi. However, in contrast to
[9] and [13], the CSI is given here in the form of higher rank
spatial correlation matrices. In the following section (IV-A),
a low complexity method based on an iterative computation
of the UL beamforming vectors and the UL power � for a
fixed vector µ is presented. The next section (IV-B) presents
a solution, similar to [12], where the optimal vector µ is
found by a subgradient projection algorithm in an outer loop.
However, it is known that a subgradient projection method
requires a properly chosen step size; otherwise, the conver-
gence is very slow [12]. Therefore, a faster converging low
complexity method based on a simple scaling of the µis or
µi,as is presented as well. The iterative algorithm has a lower
complexity than the convex solver based methods, especially
for a low precision.
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A. Inner loop
The inner function corresponds to a MBP with a weighted

sum power constraint. The inner maximization in the dual
UL problem (25) of (23) is optimized over � and V. This
is done iteratively in the inner loop by first computing the
optimal receive beamforming vectors vis and then updating
the optimal UL power allocation � for fixed V until conver-
gence is achieved. In [8] and [13], where instantaneous CSI is
used, a fixed point iteration for the � vector is introduced. The
convergence is proved in [9] with the help of [33]. The authors
of [9] use instantaneous CSI to balance the SINR. Using these
resulting rank-1 matrices, an optimal closed form solution
is given by the minimum variance distortionless response
(MVDR) beamformers. For a given � vector, a closed form
solution for the UL beamformers exists. In contrast to that, the
MBP is based here on higher rank spatial correlation matrices.
Consequently, no closed form solution exists. A solution based
on higher rank spatial correlation matrices for a sum power
constraint MBP is already proposed in [4]. In [28], a method
with reduced complexity compared to [4] is proposed. In
[28], in each iteration a complete matrix inversion of the
interference matrix

⌃i = Mi +

X

l2U,l 6=i

�lRi,l (40)

and an eigenvalue decomposition is calculated. The inner
problem (25) of the surrogate dual problem is the maximiza-
tion of the balanced UL SINR (6) and is equivalent to the
eigenproblem

Ri,ivi = �i,n⌃ivi, (41)

with the largest eigenvalue �i,max = max1nNA
(�i,n) =

(�i)
�1. The matrix ⌃i is regular, hence, the generalized

eigensystem can be transformed to a special eigensystem [32]
and the UL power can be directly computed as in [28]:

�i =
1

�i,max(⌃
�1
i Ri,i)

. (42)

The convergence of the resulting fixed point iteration is proved
in [9].

This paper proposes a further complexity reduction, as
a complete eigenvalue decomposition is not necessary. The
eigenvalues corresponding to the UL power and the eigenvec-
tors corresponding to the UL beamformers can be computed
iteratively and jointly with the uplink power computation.
Hence, compared to [28], less complexity per iteration is
achieved, because instead of an eigenvalue decomposition, just
a matrix vector multiplication vi = ⌃

�1
i Ri,ivi is performed.

If (�i)
�1 is strictly the largest eigenvalue, the eigensystem can

be solved iteratively by the power iteration [32]. The inverse
of the largest eigenvalue �i,max(⌃

�1
i Ri,i) corresponds to UL

power �i which is computed for fixed V directly by:

�i =
vH
i ⌃ivi

vH
i Ri,ivi

. (43)

The power iteration is a low complex algorithm for finding the
dominant eigenvector of an eigensystem [32]. It is presented
in Algorithm 1. As in [13] and [28], the �is are scaled such

that the constraint
P

i2U �i 
P

i2U Tr{MiPi} of the dual
problem in (27) is satisfied with equality.

Algorithm 1 Inner loop: vector iteration
repeat

for i = 1 to M do
vi  [Mi +

P
l2U,l 6=i �lRi,l]

�1Ri,ivi

Set kvik = 1 8i 2 U
�i  

vH
i [Mi+

P
l2U,l 6=i �lRi,l]vi

vH
i Ri,ivi

end for
�i = �˜�i, 8i 2 U ,with � =

P
i2U Tr{MiPi}P

i2U �̃i

until convergence
p = (

1
�D

�1 � )

�11
return V, �U

opt = �

If there exists a unique spectral radius
⇢(⌃�1

i Ri,i) = max1nNA
(�i,n(⌃

�1
i Ri,i)) of the matrix

⌃�1
i Ri,i, the power iteration will converge. The convergence

is geometric with a ratio of the largest eigenvalue to the
second largest eigenvalue [32]. If the largest eigenvalue is
significantly larger than the second largest eigenvalue, the
convergence of the inner loop is very fast. The numerical
results suggest that the case of multiple identical eigenvalues
does not occur. The inner loop converges after 29 iterations
for a precision of 10�5.

After obtaining the normalized UL beamformer, the DL
beamforming weights can be obtained by wi =

p
pivi. In

Appendix A, the DL power vector p is derived and given by

p = (

1

�
D�1 � )

�11 (44)

if � = �D
= �U . Algorithm 1 has similarities to the solution

proposed in [9]. However, the proposed solution is also able
to solve the MBP if long-term CSI in the form of higher rank
spatial correlation matrices is available.

B. Outer loop
The outer loop minimizes fD

(µ) (23) such that the given
transmit power constraints are met. In this paper, two methods
for updating the µ vector or the Mi matrices are proposed:

1) Method 1: Subgradient projection method: The
update of the µ vector is based on the sub-
gradient method such that the power constraintP

i2U Tr{MiPi} 
P

i2U !

H
i Mi!i is satisfied [20],

[16]. This method is similar to the subgradient projection
method proposed in [12].

2) Method 2: Low complexity µ-scaling (µ-SC): In the
constraint (31), the two sums are weighted sums over
µ. Since, the constraint is satisfied with equality at the
optimum (Proposition 7),

X

i2U
Tr{MiPi} =

X

i2U
!

H
i Mi!i (45)

the Mis can be updated by comparing the power coupled
with each Mi with Pi and then scaling the µi,as such
that the constraint in (31) is satisfied with equality. Let
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M̂i be the value of Mi of the previous iteration, the
Mis are computed by the following update in the case
of per-antenna power constraints:

˜Mi = diag(!i!
H
i )P�1

i
ˆMi, (46)

Mi =
1Tp

P
i2U Tr{ ˜MiPi}

˜Mi.

In the case of per-BS antenna array power constraints
the update is similar:

˜Mi =
[p]i
Pi

ˆMi, Mi =
1Tp

P
i2U Tr{ ˜MiPi}

˜Mi. (47)

The update of Method 2 is based on the decoupling as in (37)
and (38), where each Mi is optimized independently. For fixed
⌦, the update (46), (47) is a normalized affine selfmapping
satisfing the sum power constraint (45). [33, Theorem 1]
proves that a normalized selfmapping converges if the mapping
is concave or affine. With (45), the mappings (46), (47) are
affine in µ, hence according to [33, Theorem 1], the iteration
converges for fixed ⌦.

The outer loop is shown in Algorithm 2. With the updates
(46), (47), a convergence is given in the case a balanced DL
SINR exists.

Algorithm 2 Outer loop: DL Power and iterations over µ
Initialize µ = 1
repeat

Inner loop (Algorithm 1)
Update the µ vector by Method 1 or 2.

until Convergence
return ⌦

C. Complexity
The work [28] presents a complexity analysis of the

inner loop with an eigenvalue decomposition. In this pa-
per, the complexity of the inner loop is further reduced
by replacing the eigenvalue decomposition with a power
iteration method [32]. In Appendix C, the computation of
the flop count is estimated. Assuming KI is the number
of iterations of the inner loop and KO is the number of
iterations of the outer loop, the upper bound of the com-
plexity of the proposed iterative algorithm with update (46)
and with N users and NA antenna elements per BS is
in the order of O(KOKIN2

(N3
A +N2

A) +KON3N2
A). The

complexity of the bisection with a SDP is in the order of
O(KO log(1/✏)

p
NNA(N3N6

A +N2N2
A)).

V. NUMERICAL RESULTS

In Table III, the main simulation parameters for the network
are summarized. The numerical results are based on long-term
CSI in the form of higher rank spatial correlation matrices. The
power angular density distribution is assumed to be Laplacian
[35] and a similar simulation setup compared to [34] is used
here. The users are randomly distributed in the multicell
network.

TABLE III: Simulation parameters.

Number of user drops 1000
Number of users per user drop 21
Number of BSs drop 21
Transmit antenna arrays uniform linear arrays
Number of antenna array elements at BS 4
Number of antenna array elements at MS 1
Intersite distance 2000 m
Antenna spacing half wavelength
Path loss exponent 3.76
Available CSI long-term CSI
Power angular density Laplacian [34]
Power constraint per-array
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SDP bisection: ε= 10
−3

SDP bisection: ε= 10
−4

SDP bisection: ε= 10
−5

Method 2: ε= 10
−3

Fig. 1: Cumulative distribution function (CDF) of the SINR of the
new iteration based method of Section IV (red) and the conventional
SDP based bisection based method of Section III-A. The scaling of
both axes is logarithmic.

Three algorithms are compared in this section:
• The bisection algorithm with a SDP as feasibility check

problem given in Section III-A.
• The new iterative algorithm of Section IV with Method 1

(subgradient method).
• The new iterative algorithm of Section IV with Method 2

(46), (47).
Regarding Figure 1, the approach based on the interior point
method to solve the SDP [36] requires a higher precision
for the bisection algorithm to find an optimally balanced
solution. As the precision increases, the solution for the SDP
found by the interior point method improves (see Figure 2).
The optimality ratio is the ratio of the largest eigenvalue
of the solution matrices of the SDP divided by the sum of
all eigenvalues of the solution matrix. The solution is nearly
optimal at a precision value smaller than 10

�5.
Figure 1 shows that the iterative method is already very

close to the optimum for a low precision around ✏ = 10

�3.
At a precision of ✏ = 10

�5, the solution of the interior point
method for the SDP is nearly optimal (see Figure 2). The new
iterative algorithm (Section IV) to determine the Mi matrices
iterates over a MBP with a weighted sum power constraint. In
each iteration, the matrices Mi are determined so that, e.g.,
the per-antenna array power constraints are satisfied. Hence,
the balanced SINR decreases per iteration. This convergence
behavior can also be observed in Figure 3.
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Fig. 2: Optimality ratio of the SDP based bisection method (Section
III-A) for different precisions.
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Fig. 3: Exemplified convergence behavior of the three different
algorithms.

The interior point methods for the SDP perform not suf-
ficiently well for a higher precision and, therefore, there are
often users with a SINR below the optimum. An advantage
of the presented solution is the convergence behavior. For
a high precision, after a few iterations, the found SINR is
already close to the lower bound or the optimal value. In
Figure 3 the convergence behavior of the presented algorithm
is depicted for an exemplified user drop. After a few iterations
the algorithm is very close to the optimal value. The algorithm
based on the subgradient based outer update can converge very
fast if the step size is correctly chosen. This is not always the
case.

The outer loop of the presented algorithm is solved by the
subgradient projection method or by the µ-SC method (46).
The subgradient projection method requires a quite low step
size to avoid divergence. Here, the step size is adapted as in
[12]. Using a sufficiently small step size, the method based on
the subgradient method in some cases (user drops) requires a
large number of iterations to find the solution.

Figure 4 depicts the number of iterations of the presented
µ-SC method (46), (47) (outer loop), the inner loop and the
bisection algorithm with the SDP. The number of required
iterations increases linearly with the given precision. For a
high precision, the presented algorithm requires more than
50 iterations. However, for a low precision, the presented
solution with the µ-SC method (46) requires only a few
iterations. For a low precision, the solution of the bisection
algorithm with the SDP is not optimal (see Figure 2). The
bisection algorithm requires a precision of ✏ = 10

�5 to
achieve a balanced SINR and the µ-SC method achieves the
same result at a precision of 10

�3 (Figure 1). The inner
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Fig. 4: Number of iterations for different precisions.
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Fig. 5: Relative approximated complexity for given precision. The
black curve denotes the relative approximated complexity of the
bisection method with a SDP according to Section III-A and the blue
curve shows the relative approximated complexity of the new iterative
method of Section IV with updated (46). 100% is the number of flops
of the bisection method with a SDP according to Section III-A at a
precision of 10�5.

loop has a precision of 10

�5, then it requires KI = 28

iterations to converge. Regarding the complexity, the largest
term of the O-notation of the conventional convex solver based
algorithm grows in N3.5N6.5

A per iteration. The largest term
of the new algorithm grows in N2N3

A per iteration. Figure 5
depicts the inner part g(N,NA,KO,KI , ✏) of the O-notation
O(g(N,NA,KO,KI , ✏)) as a function of different precision
values. It is evident that, the iterative method of Section IV
with update (46) has less complexity compared to the SDP
based bisection algorithm.

VI. CONCLUSION

This paper presents a new framework for uplink–downlink
duality for the max–min beamforming problem with general
power constraints. If an equivalent quasi-convex form of the
max–min beamforming problem exists, e.g, if instantaneous
CSI is available, strong duality is directly proved by a duality
theorem for quasi-convex programming [22]. If long-term CSI
in the form of higher rank spatial correlation matrices is given
no equivalent quasi-convex form was known. However, in this
case the max–min beamforming problem can be also solved
by derived framework for uplink–downlink duality.

The presented dual problem is quasi-convex; hence it can be
efficiently solved. Based on this framework, a low complexity
iterative algorithm is presented. It is based on an inner and
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outer loop and outperforms the known convex solver based
solution.

APPENDIX A
PROOF OF LEMMA 1

Proof: The derivation of the Lagrangian dual (25), (26) is
a simple extension of [28]. The proof of the strong duality is
an extension of the Lemma 2 given in [4]. With !i =

p
pivi,

the definition of the

�D
= max

⌦
min

i2S
�D
i (⌦) (48)

s.t.
X

i2U
pi Tr{Miviv

H
i } = P. (49)

It has to be shown that, for the same sum power, the
same SINR feasible region is the result. As in [4] with
D = diag(

1
vH
1 R1,1v1

, . . . , 1
vH
MRM,MvM

), p = [p1, . . . , pM ],
� = [�1, . . . ,�M ],

[ ]i,k =

(
vH
k Rk,ivk k 6= i

0 k = i,
(50)

d(V,µ) = [Tr{M1v1vH
1 }, . . . ,Tr{MMvMvH

M}]T , and for
a balanced DL SINR �D

= �, the following set of equations
for fixed V and Mi is the result:

1

�
p = D p+D · 1, p = (

1

�
D�1 � )

�11. (51)

The same holds for the balanced UL SINR �U
= �:

1

�
� = D T

�+D · d(V,µ)

, � = (

1

�
D�1 � T

)

�1d(V,µ). (52)

Note, ⇢(�D ) < 1, because the MBP is always feasible (23).
The question is now whether for both problems (23) and (25),
in the weighted sum power case the same sum power for the
feasible SINR � will be the result. With (52), the UL power
of the UL MBP is given by:

�

T · 1 = [(

1

�
D�1 � T

)

�1d(V,µ)]T1 (53)

= dT
(V, {Mi}) (

1

�
D�1 � )

�11
| {z }

=p

= dT
(V,µ)p.

The last line is the weighted sum power constraint (49) of the
DL MBP. Thus, the UL and DL MBP achieve the same SINR
with the same total transmit power. Therefore, both problems
have the same balanced SINR.

APPENDIX B
PROOF OF THE LAGRANGIAN DUAL IN PROPOSITION 6

Proof: Using the Lagrangian of the primal problem (10)

L(�,⌦,�,µ) = � +

X

i2S
Tr{MiPi}�

X

i2U
�i

+

X

i2U
!

H
i [

�i

�
Ri,i �Mi �

X

l2U,l 6=i

�lRi,l]!i,

the dual function of this problem is:

l(�,µ) = sup

�,⌦
L(�,⌦,�,µ).

By observation, it can be inferred that g(�,µ) <1 only if

�i

�
Ri,i �Mi �

X

l2U ,l 6=i

�lRi,l 4 0, (54)

from which the constraint of the dual function follows. Hence,
the Lagrangian dual problem can be stated as:

�L
= min

�,µ
max

�
� +

X

i2U
Tr{MiPi}�

X

i2S
�i (55)

s.t. Mi +

X

l2U
l 6=i

�lRi,l <
�i

�
Ri,i,

Mi < 0, �i � 0, 8 i 2 U .

With the definition of the new optimization variable � and
the additional constraint � �

P
i2U �i, the problem can be

rephrased to

�L
= max

�
min

�,µ
max

�
� +

X

i2S
Tr{MiPi}� � (56)

s.t. Mi +

X

l2U
l 6=i

�lRi,l <
�i

�
Ri,i,

� �
X

i2U
�i,

Mi < 0, �i � 0, 8 i 2 U .

Using the additional variable substitutions � = �
0
P , and

Mi = M
0

i�
0
, where P =

P
i2U Tr{M0

iPi} and �i = �
0

i�
0
,

the following simplification of the problem (56) is given by:

�L
= min

�

0
,µ0

max

�
� (57)

s.t. M
0

i +

X

l2U
l 6=i

�
0

lRi,l <
�

0

i

�
Ri,i,

X

i2U
�

0

i 
X

i2U
Tr{M0

iPi},

M
0

i < 0 ,�
0

i � 0, 8 i 2 U .

With the substitutions �i = �
0

i and Mi = M
0

i and multiplying
both sides of the first constraint in (57) by vH

i from the left
and vi from the right [37], it can be rewritten as

� � �ivH
i Ri,ivi

vH
i (Mi +

P
l2U
l 6=i

�lRi,l)vi
. (58)

With the assumption of a balanced SINR among all users
(according to Definition 2), the first constraint is met with
equality if the Mis and V are fixed [12]. Therefore, the
reversal of the SINR constraints and the reversal of the
minimization as a maximization over �i do not affect the
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optimal solution [12].

�L
= min

µ

max

�,�,V̂
� (59)

s.t. �  �U
i (µ,�,vi)

Mi < 0, �i � 0, 8 i 2 U ,
X

i2U
�i 

X

i2U
Tr{MiPi}.

Replacing � with the right hand side of the first constraints
in (59), the optimization problem is formulated as in (39).

APPENDIX C
COMPLEXITY ANALYSIS

Let N be the number of users and NA be the number of
antennas per array, as in [28], the complexity of the inner loop
can be summarized as follows:

• The complexity of determining the matrix ⌃i (40) is in
the order of O(NN2

A) [28].
• The computation of the inverse matrix⌃�1

i is in the order
of O(N3

A).
• The matrix–matrix multiplication of the symmetric matrix
⌃�1

i Ri,i has a complexity in the order of O(N3
A).

• The matrix–vector multiplication ⌃�1
i Ri,ivi has a com-

plexity in the order of O(N2
A).

• The normalization step kvik = 1 has a low complexity
compared to the other steps, therefore, it is ignored.

• The eigenvalue computation (43) consists of two vector–
matrix–vector products. The complexity is in the order of
O(N2

A).
Consequently, the order of the total complexity of all these
operations can be upper bounded by O(NN3

A +NN2
A). These

steps are made for each of the N users; hence, the total
complexity is in the order of O(N2N3

A + N2N2
A). Based

on similar simple investigations, the order of the downlink
power computation and the scaling step (46) can be upper
bounded by O(N3N2

A). Assuming the inner loop needs KI

iterations, the total complexity for one outer iteration is in
the order of O(KIN2

(N3
A + N2

A) + N3N2
A). Assuming the

outer loop needs KO iterations, the order of the total complex-
ity is then given by O(KOKIN2

(N3
A +N2

A) +KON3N2
A).

The SDP (12) requires interior point methods for solving
it. The complexity of a fast interior point method [38] can
be approximated by O(n3.5

log(1/✏)), where n is the total
variable size [39]. In [24], the authors estimate the order
of the complexity of the convex solver based feasibility
check problem to O(log(1/✏)

p
NNA(N3N6

A +N2N2
A)). As-

suming there are KO outer iterations needed by the bi-
section algorithm, the total complexity is in the order of:
O(KO log(1/✏)

p
NNA(N3N6

A +N2N2
A)).
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