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Abstract—Recursive programs that typically implement divide-
and-conquer algorithms are well-suited for multicore systems,
as they offer a high degree of parallelization potential. So far,
existing parallelizing compilers have mainly focused on extracting
other parallel patterns, such as data or pipeline level parallelism.
In this paper, we propose a toolflow for the extraction of recursion
level parallelism for embedded multicore systems. To achieve
this, the toolflow verifies not only the mutual independence of
recursive call-sites, but also selects an appropriate task granu-
larity to ensure a good trade-off between load balancing and
parallelization overhead. Profitable parallelization opportunities
are implemented by using compiler directives from the OpenMP
tasking model. Results show the effectiveness of our toolflow, as
it is able to speedup sequential recursive programs between 2.5×
and 3.8× on a quad-core platform.

I. INTRODUCTION

While Moore’s law is gradually coming to an end, the

demand for high performance embedded systems is still con-

tinuously increasing. In response, both industry and academia

have moved towards the use of Multiprocessor System-on-

Chips (MPSoCs), as they provide a good trade-off between

conflicting constraints, such as performance, energy and cost.

However, software has to be carefully parallelized to exploit

the full potential of multicore systems. This task is even more

challenging considering that the current practice for software

development relies on program transformation [1], where

developers have to manually parallelize existing sequential

software to optimize it for multicore systems. Parallelizing

compilers are a promising solution to address this challenge.

However, these technologies have mainly focused on loop

parallelization [2]–[6], missing the optimization potential

of recursive procedures. Therefore, this paper addresses the

extraction of Recursion Level Parallelism (RLP).

Our work focuses on exploiting parallelism in programs

with multiple recursion, where recursive functions contain

two or more self-invocations. These programs typically imple-

ment divide-and-conquer algorithms, which recursively break

problems into smaller sub-problems that are easier to solve.

If the sub-problems are independent (i.e., the recursive call-

sites are mutually independent), it is possible to exploit a

scalable form of nested parallelism. Here for a recursive call

a task is created, which then can further spawn parallel work

as nested tasks in subsequent recursive calls. OpenMP [7]

and Cilk [8] are examples of programming paradigms that

provide facilities to parallelize functions containing mutually

independent recursive call-sites.
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Fig. 1: Impact of the Task Granularity on NQueens

However, detecting the mutual independence of recursive

call-sites is not enough to ensure a profitable parallelization.

The performance of parallel recursive programs greatly de-

pends on the task granularity [9]. The task granularity can

be controlled by a mechanism often referred as cut-off [10],

which defines if a dynamic call of a recursive function is

executed as a parallel task or as a sequential function call. The

selection of a proper cut-off value is a critical issue. Coarse-

grained tasks result in load imbalance, while fine-grained tasks

result in high task management overhead. Fig. 1 exemplifies

the impact of the task granularity on the NQueens bench-

mark by comparing speedup results with and without cut-off

mechanism (Section III describes details of the experimental

environment). Clearly using the cut-off mechanism to control

the task granularity provides the best results. Therefore, a key

challenge here is to select an appropriate task granularity to

achieve good trade-off between load balancing and overhead.

In this paper, we propose a toolflow to parallelize programs

with multiple recursion for embedded multicore systems. In

our approach a model of the program is built, and then

analyzed by an algorithm, which verifies mutual independence

of recursive call-sites and selects an appropriate cut-off value.

Finally, the parallelization opportunities identified by our

toolflow are implemented by automatically annotating the in-

put program with properly parameterized OpenMP directives.

In summary, this paper makes the following contributions:

• A parallelization approach for embedded multicore sys-

tems for sequential applications with multiple recursion.

• Automatic identification of a proper cut-off value to

control the task granularity and thus achieve a good trade-

off between load balancing and parallelization overhead.

• Evaluation of the effectiveness of the approach by paral-

lelizing a set of multi-recursive programs on a commer-

cial multicore platform [11].



Fig. 2: Parallelization Toolflow

II. PROPOSED APPROACH

Fig. 2 shows an overview of our toolflow. It takes as

inputs a sequential C/C++ program, a model of the target

MPSoC and constraints provided by the developer to guide

the analysis. Then it performs both a dynamic analysis based

on profiling information and a static analysis based on compile

time information. Afterwards, the program model is built and

then analyzed by an algorithm that identifies parallelization

opportunities in functions with multiple recursion. Finally, a

code generator inserts OpenMP pragmas and the needed logic

to control the task granularity to efficiently parallelize the

program. In the following sections, the proposed toolflow is

explained in detail.

A. Toolflow Inputs

1) MPSoC Model: This model enables our toolflow to

perform a platform specific analysis. The MPSoC model

provides a simplified view of the underlying platform in

terms of processing and communication elements. We for-

mally describe the model as follows: let pe be a processor

element, which is characterized by its clock frequency, a

cost model for each instruction and OS features (e.g., task

overhead). The set of all processing elements can be defined

as PE = {pe1, ..., peNPE
}. Similarly, let ceij be a commu-

nication element, which is a resource (e.g., shared memory)

that allows two processing elements to communicate, pei and

pej . The set of all communication elements can be defined as

CE = {ce1, ..., ceNCE
}.

Definition 1: An MPSoC model is a directed multigraph

MPSoC = (PE,CE), where PE is the set of processing

elements, and CE the set of communication elements, with

CE ⊆ PE × PE.

1 void f(...) {

2
3 ...

4 f(...);

5
6 f(...);

7 ...

8 }

(a) Multiple Static Call-Sites

1 void f(...) {

2 ...

3 for (condition && increment)

4 {

5 f(...);

6 }

7 ...

8 }

(b) Single Static Call-Site within a Loop

Fig. 3: Simplified Multiple Recursion Code Examples

2) Recursive Sequential Program: Our approach focuses

on exploiting parallelism in applications with multiple recur-

sion, where recursive functions contain two or more self-

invocations. This is typically the case in divide-and-conquer

algorithms. The self-invocations could be due to syntactically

independent static call-sites, as shown in Fig. 3a, or due to

multiple executions of a single static call-site within the body

of a loop, as shown in Fig. 3b.

3) User Constraints: The toolflow takes multiple con-

straints that allow control over the analysis performed by our

approach. The constraints include thresholds to consider a

recursive function as a candidate for parallelization, as well

as the maximum task management overhead that is tolerated.

The constraints are described in detail in Section II-D3.

B. Dynamic and Static Analyses

The first step in our toolflow is to perform dynamic and

static analyses of the input program, as Fig. 2 shows. The

dynamic analysis relies on a profiling run of the program that

collects runtime information, such a list of executed functions,

basic block execution count, and memory accesses involving

pointers or dynamic allocated memory. In order to obtain the

dynamic information, the Intermediate Representation (IR)

generated by the compiler is instrumented, and a trace is

generated by executing the resultant executable. During the

instrumentation process function calls to a profiling library

are inserted in the IR, in order to track function entry/exits,

basic block execution counts, memory allocations, memory

accesses and function pointers. Debugging information is kept

in the IR to enable correlation with the input source code of

the program. On the other hand, the static analysis relies on

compile time information collected directly from the IR, such

as control flow, variable declarations and memory accesses.

C. Program Model

The program model is composed of architecture specific

performance information, a dynamic call graph, a recursion

tree for each independent recursion and a set of dependence

flow graphs with the control and data dependency information

of each function in the program.

1) Performance Information: This is a key piece of infor-

mation to enable a platform specific profitability analysis of

the parallelization opportunities existing in the input program.

We use a microarchitecture-aware cost-table model to derive

a performance estimate of the program [4]. This estimation is

based on the execution count of every statement provided by

the dynamic information and the characteristics provided by



Fig. 4: Dynamic Call Graph (DCG) Example

the MPSoC model (e.g., instruction execution cost). The per-

formance information in this approach is not influenced by the

instrumentation overhead, since it is estimated instead of being

measured from the platform. The function ζpe(S,MPSoC)
models the performance estimation by mapping a set of state-

ments S = {s1, ..., sNS
} to the cycles consumed by them in

the processor element pe of the MPSoC model. Here, S ⊆ SP

is an arbitrarily defined set, where SP represents the state-

ments of the program. Similarly, the function ζce(b,MPSoC)
models the communication overhead by returning the cycles

required to communicate b bytes through the communication

element ce, e.g., shared memory.

2) Call Graph: A call graph describes the calling relation-

ships among the functions within a program. In this work

we focus on a particular type of call graph, called Dynamic

Call Graph (DGC), which contains only executed functions

observed during the dynamic analysis. The DCG is formally

defined as follows:

Definition 2: A Dynamic Call Graph (DCG) is a directed

multigraph DCG = (F,Ecg), where F is the set of executed

program functions and Ecg ⊆ F×F is a multiset that describes

their calling relationships. Each edge ecgst = (fs, ft) ∈ Ecg

represents that the function fs calls ft and it includes the

dynamic call count.

From the DCG it is possible to easily identify all the

recursive functions within a program. Fig. 4 shows an example

of a DCG, in which each node represents a function with its

total workload percentage, and edges the calling relationships

with the corresponding execution count. In this example f1,

f2 and f3 are recursive functions.

3) Dependence Flow Graph: In our approach, the data

flow analysis is enabled by the Dependence Flow Graph

(DFG) [12]. This is an intermediate representation that com-

bines control dependencies, data dependencies, and Single-

Entry Single Exit (SESE) regions in a single graph. A SESE

region is a part of the DFG with only one entry and one

exit control points. Regions are enclosed by artificial nodes

(i.e., switch and merge), as Fig. 5 shows. Data dependencies

that are relevant within a region are redirected inside/outside

the region through the artificial nodes. Moreover, regions

represent high level language constructs, such as if-then-else

blocks or loops. We use the DFG in our approach, in order

to verify the mutual independence among recursive function

calls. For this purpose, the use and def information of variables

obtained from the static and dynamic analyses is annotated

on the statements in the DFG. Then, the corresponding

Fig. 5: Dependence Flow Graph (DFG) Example

data dependency edges are created, namely: Read-After-Read

(RAR), Read-After-Write (RAW), Write-After-Read (WAR)

and Write-After-Write (WAW).

4) Recursion Tree: The behavior of recursive functions

during a profiling run can be described in a Recursion Tree

(RT), which is built based on the trace generated during the

dynamic analysis. The RT in our approach is used to evaluate

the profitability of parallelizing a given recursion and estimate

an appropriate task granularity. Fig. 6 shows examples of RTs.

We formally define a RT as follows.

Definition 3: A Recursion Tree (RT) is a directed rooted

tree RT = (I, E), where I is the set of nodes that represent

the invocations to recursive functions, and E is the set of

edges that represent their nesting relationships. The nodes are

augmented with the workload of each function invocation,

which is obtained from the performance information. The

workload also accounts calls from the recursive functions to

other intermediate non-recursive functions. Each edge exy =
(ix, iy) ∈ E represents that a node ix immediately precedes a

node iy in the nesting calling hierarchy.

(a) Homogeneous Multi-Recursion

(b) Heterogeneous Multi-Recursion

Fig. 6: RTs Corresponding to the DCG from Fig. 4



As described earlier, our work focuses on multi-recursive

functions, i.e., the branching factor of the root and internal

nodes of the tree must be greater than one. We built one

RT for every independent recursion identified in the DCG.

For example, in the DCG of shown in Fig. 4 there are two

independent recursions: one that only involves the function

f1 and another that involves the functions f2 and f3, where

f2 is the root of the recursion. The RT for the recursion

that involves the function f1 is shown in Fig. 6a. In this

work, we refer to this as homogeneous multi-recursion, as one

function is exclusively calling itself. The RT for the recursion

that involves the functions f2 and f3 is shown in Fig. 6b.

In this work, we call this heterogeneous multi-recursion as it

involves more than one single recursive function. Our approach

supports both forms of multi-recursion.

Finally, we define the program model as the triple PM =
(DFG, DCG,RT ), where DFG is the set of DFGs, DCG
the dynamic call graph and RT the set of recursion trees.

D. Extraction of Recursion Level Parallelism

1) Work-Span Model: For a profitable parallel execution

on multicore systems, programs have to exhibit enough paral-

lelism for a given target platform. In this work, we use the

work-span model [13] to quantify the potential parallelism

existing in a given recursion. The work-span model is for-

mulated in terms of Directed Acyclic Graphs (DAGs), where

nodes represent tasks and the edges represent precedence

relationships, i.e., a task is ready to execute when all its

predecessors have finished with their work. The model also

assumes that the scheduler is greedy, which means that no

processor is left idle if there are tasks ready to be executed.

The model relies on two measures: the total work (Twork)

and the span (Tspan). The work refers to the total time that

it would take to serially execute all tasks. The span refers to

the longest chain of tasks that must be executed in a sequence

along any path in the DAG. This is equivalent to the critical

path of the DAG. The work-span model defines a speedup

upper bound for a multicore platform with P processors as

follows:

SUB = min

(
P,

Twork

Tspan

)
≥

Twork

Tpar

(1)

Fig. 7 shows a DAG example, where each box represents a

task that is executed in one unit of time. Therefore, the total

work (Twork) is 15 and the span (Tspan) is 5, which results

in a speedup upper bound of 3× (Twork/Tspan), as it is also

shown in the graph in Fig. 7. The work-span model can be also

used to estimate a speedup lower bound by means of Brent’s

theorem [14]. This theorem bounds the parallel execution time

Tpar in terms of the work and the span as follows:

Tpar ≤
Twork

P
+ Tspan (2)

Equation 2 shows that Tpar is composed of imperfectly

parallelizable work that takes Tspan independently of the

number of processors P , and perfectly parallelizable work

Fig. 7: Work-Span model example. Each task takes one unit

of time: Twork = 15, Tspan = 5

Twork that can be speeded up by P . Then, from Equation 2

the speedup lower bound can be derived as follows:

SLB =
Twork

Twork

P
+ Tspan

≤
Twork

Tpar

(3)

Furthermore, Brent’s theorem gives a formal motivation for

overdecomposition derived from Equation 1:

Twork

Tpar

≈ P if
Twork

Tspan

≫ P (4)

Equation 4 says that ideally a linear speedup can be achieved

by overdecomposing a problem to create more potential par-

allelism that can be exploited by the schedulers to achieve

a better load balancing. This extra parallelism on a given

platform with P processors is called parallel slack [13]:

PS =
Twork

P · Tspan

(5)

2) Incorporating Overhead in the Work-Span Model: As

previously described, Brent’s theorem provides a lower bound

to the speedup (SLB) in terms of work and span. However, in

practice the speedup is influenced by additional factors, such

as task-creation and task-communication overhead, as Fig. 1

shows. These factors contribute proportionally to the work and

the span. Therefore, here we augment the work-span model to

incorporate the impact of this overhead.

The work is augmented as follows: T̂work = Twork+τ ·Nnt.

Here, Twork is the work without the overhead, τ is the

overhead required to create a single task on the target platform

(a constant provided by the MPSoC model), and Nnt is the

total number of tasks created in the DAG. Similarly, the

span is augmented not only by including the task creation

overhead but also the task communication overhead. A span

that consider such overheads is called burdened span [8].

Then, the span is augmented as follows: T̂span = Tspan + τ ·
Nts+ζce(Nts,MPSoC). Here, Tspan is the span without the

overhead, τ is the overhead to create a single task on the target

platform, Nts is the total tasks created along the critical path in

the DAG, and ζce(Nts,MPSoC) is the overhead due to the

communication among tasks along the critical path. Finally,

the lower speedup bound can be redefined as follows to include

the effect of the overheads:

ŜLB =
T̂work

T̂work

P
+ T̂span

≤
T̂work

Tpar

(6)



Fig. 8: Cut-off Mechanism Example

3) Parallelism Extraction: There are two fundamental con-

straints to achieve a profitable parallelization of multi-recursive

programs, namely: load balancing and overhead minimization.

On one hand, load balancing is about distributing the workload

as even as possible across the available processors in the

target platform. On the other hand, overhead minimization

is about reducing the non-productive work related to task

management. Unfortunately, these are conflicting constraints

as load balancing implies having as much parallelism as

possible (see Equations 4 and 5), while overhead minimization

implies having as little parallelism as possible to reduce

the impact of the overhead on the work and the span (see

Equation 6). Therefore, the trade-off lies on providing enough

decomposition to achieve a good load balancing, while keep-

ing tasks large enough to amortize their management overhead.

The aforementioned trade-off can be achieved by selecting a

proper task granularity [9]. In terms of the recursion tree, the

task granularity defines what nodes are executed as parallel

tasks and what nodes are executed as sequential function

calls. The task granularity can be controlled by a mechanism

called cut-off [10]. In this work, we use the task level cut-off

mechanism, which is based on the number of parents from

the root node. This approach is well-suited for tree-shaped

task graphs, as is the case of the recursion tree. Fig. 8 shows

an example of the maximum level cut-off mechanism applied

to a recursion tree. In this example, the cut-off value is set to

two, which means that all nodes with a recursion level less or

equal than two are executed as tasks (boxes). Otherwise, they

are executed as sequential function calls (circles). Defining

a proper cut-off value is critical to control the overhead,

especially in recursions with a high parallel slack, as there

are potentially a large number of tasks in the recursion tree.

From Fig. 8 it possible to distinguish tree types of tasks: i) a

root task, which has no parent tasks but multiple child tasks, ii)

inner tasks, which have both a parent tasks and child tasks and

iii) leaf tasks that have no child tasks. In terms of workload,

typically root and inner tasks are fine-grained, while leaf tasks

are coarse-grained, then having the major impact on the load

balancing.

Algorithm 1 shows our heuristic for extraction of Recursion

Level Parallelism (RLP). First multiple platform definitions

and user constrains are extracted (Lines 1-6). Then each

independent recursion in the program is analyzed. The call

to the procedure at Line 9 extracts the root function for

Algorithm 1: Extraction of Recursion Level Parallelism

Input: Program Model (PM), MPSoC Model, User
Constraints (UC)

Output: OpenMP Annotated Code

// Extract Platform Definitions

1 P ← GETPROCESSORNUM(MPSoC);
2 τ ← GETTASKOVERHEAD(MPSoC);

// Extract User Constraints

3 ηWL ← GETWORKLOADCSTR(UC);
4 ηPS ← GETPARALLELSLACKCSTR(UC);
5 ηLI ← GETLOADIMBALANCECSTR(UC);
6 ηTO ← GETMAXTASKOVERHEADCSTR(UC);

// Iterate Over Indepedent Recursions

7 DCG← GETDCG(PM);
8 PA ← ∅;
9 for fi ∈ GETROOTRECURSIVEFUNCTION(DCG) do

// Data Dependency Analysis

10 DFGfi ← GETDFG(PM, fi);
11 if CHECKCALLSITESINDEPENDENCE(DFGfi) then

// Profitability Analysis

12 WL← GETTOTALWORKLOAD(fi);
13 RT fi ← GETRT(PM, fi);
14 (Twork, Tspan)← GETWORKANDSPAN(RT fi);
15 PS ← Twork/(P · Tspan);
16 if (WL ≥ ηWL) ∨ (PS ≥ ηPS) then

// Task Granularity Analysis

17 CO ← 1;
18 while (LI ≥ ηLI) ∨ (TO ≤ ηTO) ∨ (CO < TH)

do

19 LI ← ESTLOADIMBALANCE(RT fi, CO, P )

TO← ESTTASKOVERHEAD(RT fi, CO, τ )
CO ← CO + 1;

20 end

21 PAfi ← CREATEPA(DFGfi, RT fi , CO);

22 PA ← PA∪ PAfi ;
23 end
24 end
25 end

// Code Generation

26 GENSPEEDUPBOUNDSGRAPHS(PA, MPSoC);
27 ANNOTATECODE(PA);

every recursion. For example, in the DCG presented in Fig. 4,

the root functions of each recursion are f1 and f2. As the

first step for every recursion, the mutual independence of the

recursive call-sites is verified by analyzing the DFG. If the

recursion consists of multiple independent static call-sites, it is

verified that there are no data dependencies among those call-

sites. If the recursion consists of a single static call-site within

the body of a loop, it is verified that this loop does not present

loop-carried dependencies that would prevent parallelization.

The loop-carried dependencies can be directly identified from

the SESE region representing the loop. Moreover, it is checked

that the recursive function does not perform write accesses to

global variables. If mutual independence among recursive call-

sites is confirmed, then a profitability analysis is performed

(Lines 12-16). In this analysis two profitability constraints are

considered: i) the total workload of the recursion (WL) is

greater than a user-defined threshold (ηWL) and ii) the parallel

slack (PS) of the RT is greater than an user-defined threshold



(ηPS). The first constraint ensures that the recursion is a

hotspot of the application, and the second constraint ensures

that the RT exhibit enough parallelism for the selected target

platform.

The last step is to find a proper cut-off value (Lines 17-22).

A high cut-off value results in a good load balancing but in

a high task overhead. Therefore, the aim is to select a cut-off

value that provides a good trade-off between load balancing

and overhead. The heuristic incrementally evaluates cut-off

values between one and the height of the recursion tree (HT ).

For every possible cut-off value the load imbalance and task

overhead are estimated. The procedure at Line 19 performs

the load imbalance estimation. For this purpose we use the

Longest Processing Time (LPT) algorithm [15], to estimate the

task distribution on the processors of the target platform and

then the resultant load imbalance. The procedure at Line 19

estimates the overall task overhead (TO) based on the task

overhead for a single task (τ ) and the number of tasks for

the given cut-off value (CO). A cut-off value is selected if

either the resultant load imbalance (LI) is smaller than an

user-defined threshold (ηLI ) or the resultant task overhead is

higher than an user-defined threshold (ηTO). Once a proper

cut-off value has been identified, the speedup bounds graphs

(see Equations 1 and 6) and a parallel annotation (PAfi )

are generated. The annotations are accumulated in a set PA,

which represents the input information for the code generation

described in the next section.

E. Code Generation

The information provided by the parallel annotations is

the basis for code generation. Our toolflow annotates the

input code with OpenMP task directives (i.e., #pragma omp

task) introduced in the OpenMP 3.0 specification [7]. This

model is well-suited to parallelize recursive programs, as it

allows to explicitly specify code regions as tasks, which can

be nested within other tasks.

In the OpenMP tasking model there are two types of tasks:

tied and untied. A tied task is executed by one single OpenMP

thread from the beginning until the end (i.e., a suspended task

cannot be stolen by other threads to continue its execution),

while an untied task is more flexible, as it can be partially

executed by multiple threads (i.e., a suspended task can be

stolen by other threads to continue its execution). The standard

specifies that tasks are by default tied, otherwise the behavior

can be modified by adding the untied clause to the task

construct. Previous research [16] has shown that untied tasks

provide better performance due to their flexibility, therefore

this type of task is used here. An example of a task construct

with the untied clause is shown at Line 4 in Fig. 9a.

Another key construct of the tasking model is taskwait.

This construct specifies a synchronization point where the

current task is suspended until all its children tasks are done

with their work. An example of a taskwait construct is

shown at Line 8 in Fig. 9a.

Finally, to implement the cut-off mechanism a new param-

eter is added to the functions involved in the recursion, to

keep track of the recursion level (e.g., int depth), as it

1 const int cutoff = N;

2 void f(..., int depth) {

3 if (depth < cutoff) {

4 #pragma omp task untied

5 f(..., depth+1);

6 #pragma omp task untied

7 f(..., depth+1);

8 #pragma omp taskwait

9 } else {

10 f(..., depth+1);

11 f(..., depth+1);

12 }

13 }

(a) Language if Construct Cut-off Mechanism

1 const int cutoff = N;

2 void f(..., int depth) {

3 #pragma omp task untied if (depth<=cutoff)

4 f(..., depth+1);

5 #pragma omp task untied if (depth<=cutoff)

6 f(..., depth+1);

7 #pragma omp taskwait

8 }

(b) OpenMP if Clause Cut-off Mechanism

Fig. 9: OpenMP Code Generation Simplified Examples

is shown at Line 2 in Fig. 9a. In addition, the cut-off value

is defined as a global constant value, as Line 1 in Fig. 9a

shows. The cut-off mechanism itself can be implemented in

two ways. The first option is to use a C/C++ language if

construct, where in the true block each recursive static call-

site is annotated with an OpenMP pragma and at the end the

taskwait construct is inserted to define the synchronization

point, while in the false block the static recursive call-sites

are invoked without any OpenMP pragmas. Fig. 9a shows a

simplified code generation example using the language if

construct cut-off mechanism. The other option is to use the

if clause of the task construct, as it allows to dynamically

serialize a task based on a boolean condition. An example

of this is shown in Fig. 9b. A similar approach is performed

in the case of the code generation for multi-recursions with

one single static call-site within a loop (see Fig. 3b). In this

case the task construct is inserted before the single recursive

call-site and the taskwait construct after the loop.

III. EXPERIMENTAL EVALUATION

This section describes the experimental evaluation of the

proposed parallelization toolflow.

A. Experimental Environment

The toolflow was implemented on the Clang/LLVM 3.9

compiler framework, and integrated on the Eclipse GUI to

enable an easy interaction with the developer. The dynamic

analysis is enabled by the CoEx source level profiler [17].

The target platform considered in this work is the 66AK2H

MPSoC [11]. The evaluation was performed on the quad ARM

A15 MPCore running at 1.4GHz. The MPSoC model was

calibrated with data obtained from the actual platform, such

as the task overhead by using the EPCC OpenMP micro-

benchmark suite [18].



TABLE I: Characteristics of the Benchmarks

Benchmark Input Computation Structure Recursion Type Functions in Recursion Maximum Branching Factor Workload (%) Cut-off Value

FFT 16M Floats At leaf nodes Heterogeneous 12 1M 98 2

Fib 40 At each node Homogeneous 1 2 100 2

Health 4 levels with 18 cities At each node Homogeneous 1 365 97 1

NQueens 13x13 At each node Homogeneous 1 13 98 3

Sort 16M At leaf nodes Heterogeneous 2 7 90 4

Strassen 2048x2048 matrix At each node Heterogeneous 2 8 98 3
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Fig. 10: Scalability Speedup Results

B. Case Studies

The case studies considered in this work are taken from the

Barcelona OpenMP Tasks Suite (BOT) [16]. During the anal-

ysis the following user constraints values were used: i) 25%

as the minimum workload (ηWL) to consider a recursion as a

parallelization candidate, ii) 2 as the minimum parallel slack

(ηPS), iii) 5% as the minimum load imbalance (ηLI ) and iv)

10% as the maximum allowed task overhead (ηTO). After

analyzing the benchmarks with our toolflow some of them

were discarded due to the lack of multiple recursion (e.g.,

Alignment and SparseLU) or due to the lack of mutual

independence among recursive call-sites (e.g., Floorplan).

Table I summarizes the characteristics of the benchmarks

that exhibit multiple recursion. The characteristics include

the input used, the computation structure, the recursion type

(i.e., homogeneous or heterogeneous as shown in Fig. 6),

the number of recursive functions in a each independent

recursion (e.g., f1 or f2+f3 shown in Fig. 4), the maximum

branching factor in the RT, the total workload and the cut-off

value selected by our toolflow considering four processors.

It is worth mentioning that the FFT benchmark exhibits two

independent recursions, However, one of them presents a low

workload, therefore, it was discarded by the toolflow, as it is

not a profitable parallelization candidate.

Fig. 10 shows the scalability speedup results from one to

ten processors. The speedup bounds graphs were automatically

generated by our framework according to Equations 1 and 6.

The solid dots on the graphs represent the speedup values

resulting from the experimental evaluation of the parallelized

benchmarks on the target platform. The baseline used here is

the execution of the sequential version of each benchmark on

an ARM A15 processor, and the cut-off values were selected

according to the number of processors used. Moreover, the

default code generation settings were used, i.e., untied tasks

and the language if cut-off mechanism. The first observation

from these results is that the experimental speedup points

fall within the speedup regions estimated by our toolflow.

In addition, the speedup graphs reflects diverse results, as
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some benchmarks exhibit good scalability (e.g., NQueens

and Sort), while others quickly saturate (e.g., FFT, Fib and

Strassen). In contrast to benchmarks with poor scalability,

scalable benchmarks present a good computation to overhead

ratio and a good computation to communication ratio (high

arithmetic intensity [13]).

Fig. 11 shows speedup results on four processors for dif-

ferent cut-off values, where the marks representing the cut-

off values selected by our framework are highlighted. On

one hand, for benchmarks with a large branching factor (e.g.,

FFT and Health) or with a poor computation to overhead

ratio (e.g., Fib) our approach was able to correctly select

small cut-off values as the most convenient ones to avoid

the parallelization overhead (e.g., one or two). On the other

hand, benchmarks with a small branching factor and with a

good computation to overhead ratio benefit from bigger cut-

off values to achieve a better load balancing, while at the

same time being less sensitive to the parallelization overhead

(e.g., NQueens, Sort and Strassen). Our toolflow was

also able in these cases to select proper cut-off values.

As described in Section II-E there are two main choices

during code generation: i) task type and ii) cut-off mechanism.

Both aspects are evaluated here to corroborate the appropri-

ateness of the default settings selected in the code generator

phase of our toolflow. Fig. 12 shows the speedup results on

four processors using tied and untied tasks. From these results,

it can be observed that overall untied tasks provide slightly

better speedup numbers in some cases (e.g., Fib, NQueens

and Sort). This can be attributed to flexibility of untied tasks,

which allows to resume suspended tasks in any idle thread and

thus resulting in a better load balancing. This confirms that the

use of untied tasks is an appropriate default setting.

Regarding the cut-off mechanism, we evaluated the

OpenMP if clause and the language if construct cut-off

mechanisms introduced in Fig. 9. The results presented in

Fig. 13 show that overall the language if construct approach

provides the best speedup results, in particular for benchmarks

that are more sensitive to the parallelization overhead (e.g.,
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Fig. 14: Manual vs Toolflow Speedup Results

Fib). The reason for this being that even when the if

clause evaluates to false (i.e., for tasks with a recursion

level higher than the cut-off value) there is still an associated

overhead, which can be significant for benchmarks with a

low computation to overhead ratio. These results support our

choice of the language if construct as the default cut-off

mechanism.

Finally, to further assess the effectiveness of our toolflow,

we compared the speedup results achieved by our framework

with the ones achieved by manual parallelization. This eval-

uation is possible since the BOT suite provides handwritten

OpenMP versions of the benchmarks by expert programmers.

For a proper comparison we selected the handwritten version

of each benchmark, in which untied tasks and language

if construct cut-off mechanism are used. Fig. 14 shows the

speedup results obtained from this evaluation on four proces-



sors. As it can be observed, our framework overall achieves

similar speedup results as with manual parallelization. This is

an expected result, provided that in general our framework was

able to generate functionally equivalent OpenMP pragmas to

the handwritten ones. However, in the particular case of FFT

our toolflow achieved a better speedup (2.5× vs 2.7×). The

reason being that in the manual version of its heterogeneous

recursion, the cut-off value is only applied to the root recursive

function. Therefore, the granularity of the tasks due to the

other recursive functions within the whole recursion is not con-

trolled, which results in a significant amount of fine-grained

tasks that increases the parallelization overhead. This result

shows the effectiveness of our approach while parallelizing

heterogeneous recursions, as it analyzes them as a whole.

IV. RELATED WORKS

Existing parallelizing compiler technologies have mainly

focused on the extraction of loop level patterns, such as Data

Level Parallelism (DLP) and Pipeline Level Parallelism (PLP),

as well as on more irregular patterns such general Task Level

Parallelism (TLP). Polly [2] is a state-of-the-art parallelization

framework integrated in the LLVM compiler, which relies

on the polyhedral model to identify DLP, which can be ex-

ploited as coarse-grained or fined-grained parallelism. Similar

to our approach, Tournavitis [19] proposed a profile-driven

parallelization toolflow to overcome the traditional limitations

of static analysis. His work focused on the extraction of

DLP and PLP. In the embedded domain, Cordes [3] proposed

an approach based on a hierarchical model of the program,

which is analyzed by Integer Linear Programming (ILP) and

Genetic Algorithms (GAs) to extract TLP and PLP. In [6],

we presented a toolflow for the extraction of DLP, PLP and

TLP targeting multicore Android devices. In contrast to our

approach, none of the previous works have addressed the

extraction of Recursion Level Parallelism (RLP).

There have been also research efforts that address the

parallelization of recursive programs. The compiler proposed

by Rugina and Rinard [20] is an early work on the paral-

lelization of divide-and-conquer algorithms in which its sub-

problems access disjoint array regions. This compiler relies

on pointer and symbolic analyses to statically reason about

the mutual independence of recursive call-sites. Gupta et al.

[21] proposed a similar approach, where compile time analysis

is complemented by a runtime system to perform speculative

parallelization. However, the authors do not discuss the over-

head introduced by the runtime speculation that could limit the

effectiveness of the approach. Frameworks that heavily require

user intervention have been also proposed. For example, in

REAPAR [22] the independence of the recursive call-sites is

assumed and not verified, leaving the responsibility of the data

dependency analysis to the developers. Similarly, Ariadne [23]

is a framework in which the developer has to insert directives

to instruct the compiler where and how to parallelize recursive

programs. In contrast to the previous works, our approach

besides verifying mutual independence of recursive call-sites,

it also performs a profitability analysis and controls the task

granularity, all of this with a minimal user intervention.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a toolflow that addresses the ex-

traction of recursion level parallelism for multicore embedded

systems. The approach relies on a program model that is built

based on a combination of static and dynamic analyses. The

program model is analyzed by an algorithm that first identifies

recursions that could result in a profitable parallelization.

Then, it verifies the mutual independence of the recursive

call-sites. Afterwards, the task granularity is carefully selected

to achieve a proper trade-off between load balancing and

parallelization overhead. Finally, the input program is auto-

matically annotated with OpenMP pragmas according to the

parallelization opportunities identified by our toolflow. Results

show that our toolflow is able to achieve similar speedups as

manual parallelization by expert programmers. In future work,

we plan to extend the toolflow for heterogeneous platforms by

means of the OpenMP Accelerator Model.
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