
LISA � Machine Description Language and

Generic Machine Model for

HW�SW Co�Design

Vojin �Zivojnovi�c Stefan Pees Heinrich Meyr

Integrated Systems for Signal Processing
Aachen University of Technology

Aachen� Germany

Abstract � In the paper a new machine description language is pre�

sented� The new language LISA� and its generic machine model are able

to produce bit� and cycle�phase�accurate processor models covering the

speci�c needs of HW�SW co�design� and co�simulation environments�

The development of a new language was necessary in order to cover the

gap between coarse ISA models used in compilers� and instruction�set si�

mulators on the one hand� and detailed models used for hardware design

on the other� The main part of the paper is devoted to behavioral pipe�

line modeling� The pipeline controller of the generic machine model is

represented as an ASAP �As Soon As Possible� sequencer parameterized

by precedence and resource constraints of operations of each instruction�

The standard pipeline description based on reservation tables and Gantt

charts was extended by additional operation descriptors which enable

the detection of data and control hazards� and permit modeling of pi�

peline �ushes� Using the newly introduced L�charts we reduced the

parameterization of the pipeline controller to a minimum and at the

same time covered typical pipeline controls found in state�of�the�art sig�

nal processors� As an example� the application of the LISA model on

the TI�TMS�	
C��x signal processor is presented�

� Introduction

Simultaneous design of hardware and software can take place at di�erent
abstraction levels� At the HLL�level compiler and processor are designed
jointly in order to obtain optimum performance on selected high�level lan�
guage constructs� At the application�level the on�o��chip hardware has the
role of a processing accelerator� or external interface� and is optimized to de�
liver optimum results for a speci�c application or a class of them� The goal
of instruction�level HW�SW co�design is to speedup frequently used instruc�
tions by appropriate design of the instruction set architecture �ISA� of the
processor� All three levels correspond to software�based HW�SW co�design�
where the realization in software is the starting point and hardware alterna�
tives are introduced in order to speedup execution� Independent of the level�

abstract processor models �machine models in compiler terminology� are an
unavoidable part of each HW�SW co�design environment�

Currently available processor models cover a whole spectrum of applica�
tions �compilation� software�hardware design� architecture exploration� and
design steps �simulation� synthesis� veri�cation�� Surprisingly� machine mo�
dels tailored to speci�c HW�SW co�design needs are rare and mostly su�er
from the rudimentary division between hardware and software�

Machine models of modern DSP and embedded processors follow the clas�
sical distinction between instruction set architecture �programmers view of
the processor� and hardware implementation� In general purpose processing�
hiding of implementational details of the processor is argumented by the pro�
gramming comfort� and by the need for di�erent hardware implementations
of a single instruction set architecture �	
� In HW�SW co�design of DSP and
embedded systems� both arguments� and especially the latter one� do not
hold� Standard ISA models and description languages do not deliver the de�
tailed pipeline and pin�related information necessary for HW�SW co�design�
On the other hand� models and description languages suited for hardware
implementation contain a lot of details which are super�uous for software
design� and often even for the design of attached hardware� The consequence
is a remarkable increase in necessary design e�ort and simulation time�

In this paper a new machine description language � LISA � is intro�
duced� The development of a new language and its generic machine model
was necessary in order to cover the gap between standard ISA models and
description languages used in compilers and instruction�level simulators on
the one hand� and detailed behavioral�structural models and description lan�
guages used in hardware design on the other� The main characteristics of
LISA is the operation�level description of the pipeline which is able to mo�
del even complex interlocking and bypassing techniques� Instructions consist
of multiple operations which are de�ned as register transfers during a single
control step� Depending on the requested accuracy� a control step can be an
instruction�� clock�� or phase�cycle� Operation scheduling in LISA is based
on modi�ed Gantt charts �L�charts� specifying time and resource allocation
of operations and an operation sequencer with an ASAP �As Soon As Possi�
ble� operation sequencing strategy� The resulting timed ISA model delivers
instruction�� clock�� or phase�accurate timing� depending on the selected con�
trol step� Combined with the bit�accurate description of all operations� the
model contains the necessary information to produce a clock��phase�accurate
model of processor pins� or the core interface�

LISA is a description language developed to parameterize a generic machine
model� The goal is to have a single generic machine model and a single
description language covering a whole class of processor architectures �Fig�
	��� The resulting machine model of the target processor can be used for
simulation� compilation� or other purposes�

Currently� the primary application domain of LISA is timed ISA simu�
lation used in HLL�� application�� and instruction�level HW�SW co�designs�
However� the proposed machine model can be used equally well in other ap�

machine
description 1

machine
model 1

simulator 1

processor #1
programmer’s

guide

machine
description #1

machine
model #1

simulator/
compiler #1

processor #1
hardware

description

machine
description
language

generic
machine
model

Figure 	 Generic Machine Model and Machine Description Language�

plications� as in compilation� The main di�erence between simulation and
compilation lies in the relation between instruction selection�scheduling and
behavior modeling� The code generator of a compiler starts with the beha�
vior �mostly in form of a three�address intermediate representation�� and has
to select and schedule target instructions in order to match the behaviour�
In simulations the process is reversed� The instructions are already selected
and scheduled� and the task of the simulator is to reproduce the behavior as
speci�ed by the simulated program� The essential di�erence between models
used for simulation and compilation is the organization and semantics of in�
structions which have to be understood by the compiler� but are irrelevant
for simulation� The newly introduced LISA pipeline model based on L�charts
is equally useful for both simulation and compilation� In this paper our pri�
mary focus is on simulation aspects of machine modeling �LISA�S�� We hope
to present the work on the LISA compilation model �LISA�C� soon�

� Previous Work

The work on LISA was motivated by the wish to enable easy retargeting of our
fast compiled simulators ����
 to various existing� or exploratory architectures�
With this goal in mind we analyzed previous work on machine models and
machine description languages�

At the �rst glance� hardware description languages �HDL� seem to be
the most natural selection for describing processors� Most of the existing
processor hardware models are described using HDLs� like VHDL or Verilog�
Unfortunately� using HDL models for real�time software design� or HW�SW
co�design� has a number of disadvantages� HDL models contain a lot of
super�uous details which are unnecessary for purposes other than design and
veri�cation of processor hardware� Although the relevant information� e�g�
the ISA� or the control of the pipeline sequencer can be always extracted� it is
mostly a highly complex task even for the person who designed the processor�
Automatic architecture extraction can be done only for processors with a

simple program sequencing logic and data path� Also� HDL descriptions
of a single machine can di�er enormously in representation level and style
complicating the task further�

In the HW�SW co�design �eld the issue of machine modeling and machine
descriptions has not received any speci�c attention ����
� The work mostly
concentrated on system models of multiple processors� ASICs� and their in�
terfaces ��
� In the PTOLEMY environment developed at the Berkeley Uni�
versity� a �xed system�level behavioral simulator of the Motorola DSP�����
signal processor was integrated into the Thor hardware design environment
��
� No attempt to cover other processors was reported� The PIXIE simulator
developed at the Stanford University provides detailed modeling of the pipe�
line and memory system� Here the system�level simulator SABLE models the
system aspects �e�g� external exceptions� and the I�O system ��
� Again� no
details about the machine speci�cation formalism are provided�

Machine description is an unavoidable part of every compiler� Two ap�
proaches to compilation�related pipeline modeling can be distinguished� The
�rst one is based on reservation tables� The machine description language
MARIL models the pipeline of RISC processors using reservation tables ��
�
A similar reservation table based approach is reported for VLIW compilation
�	�
� In both cases the standard reservation table approach was used� which is
unable to capture all the details of the pipeline� such as data�control hazards�
interlocks� or pipeline �ushes�

The alternative approach is based on latency speci�cation� The machine
description formalism nML �		
 provides common architectural information
for the compiler and the instruction set simulator and uses storage latencies in
order to describe pipelining e�ects �	�
� A similar pipeline model is part of the
GNU�gcc compiler �	�
� Storage latencies provide a highly simpli�ed model
of the pipeline� which cannot be used for simulation� and is questionable even
as a compilation model�

Our wish to capture more detailed timing information than available at
the ISA level� motivated the introduction of operation�level behaviour and
scheduling description� In terms of pipeline sequencing representation� LISA
follows the same main idea of reservation tables and Gantt charts� as in ��

and �	�
� However� in order to enable additional modeling of data�control
hazards and pipeline �ushes� we extended the modeling ability of Gantt charts
by introducing L�charts and operation descriptors�

We posed the following requirements on the machine model

� application domain � real�time software design �machine�dependent
�nite�word�length analysis� speed�memory optimization��DSP�embedded
system design� HW�SW co�veri�cation �on��o��chip accelerator and in�
terface design�� architecture exploration�

� processor class � digital signal processors and microcontrollers of low
or medium complexity with pipelined� VLIW� and RISC architectures�

� model accuracy � selectable instruction� clock or phase accurate ti�
ming� bit�accurate register transfers� exact pipeline� interrupt and wait

state modeling� spatial accuracy on the software�level �registers� me�
mory�� system�level �interrupts� peripherals�� and hardware�level �pins��

� state visibility � complete state visibility at selected control steps�

The requirements on the machine model have a direct impact on the generic
machine model and the machine description language� The main requirement
on the generic machine model is to capture the maximumof common features
of the target processor class� and in this way minimize description size and
description generation time�

The machine speci�cation language should capture the di�erences between
the processors of the given class� The main requirement is low redundancy of
the description� Also� the language should have a syntax which can be easily
understood by the user and language parser� Below we shall concentrate on
the speci�cation of operation constraints and the sequencer of the generic
machine model�

� Operation Sequencer of the Generic Ma�
chine Model

In order to enable cycle�phase�true modeling� instructions have to be par�
titioned into operations as basic schedulable units� At each control step t

the admissible operations form the transition function Ft which changes the
machine state� Figure � shows three instructions and their operations� The
transition function Ft � fO�� P�� Q	g is applied to the machine state at con�
trol step t� At the next control step t�	� the new set of admissible operations

instruction
N-1

O1

O2 O3

instruction
N+1

Q1

Q2

instruction
N

P1

P2
P3

P4

operation
sequencing

model

operation
sequencing

rules

operations

O3

P2

Q1

admissible
operations

F = {O3, P2, Q1}t

Figure � Operation Sequencing�

is determined�
Admissible operations are determined from precedence and resource con�

straints speci�ed for operations of each instruction� Direct speci�cation using
a more general rule�based approach was rejected because of the large number
of rules which must accompany each instruction� Additionally� the constraint�
based approach has proven to be advantageous if instructions are added or

removed from the instruction set� Despite of reduced modeling power compa�
red to the rule�based approach� the constraint�based model captured all the
pipeline sequencing strategies of the aforementioned processor class�

A well known formalism to describe precedence and resource constraints
of operations are the reservation tables �	�
� Reservation tables are two�
dimensional representations of resource allocation in the resource�time space�
A mark at some place in the table indicates that the corresponding processor
resource� such as a bus or a functional unit is in use during the indicated time
interval� In Gantt charts �	�
 instead of reservation marks� operations are
uniquely speci�ed� For pipeline �	�
� and instruction scheduling ��
 reservation
tables deliver all the necessary details� Clock�accurate modeling� however�
requires additional information about operation precedence and Gantt charts
are more appropriate�

If we convert the time axis of a Gantt chart into a precedence axis� the
Gantt chart describes precedence constraints� Figure � shows how the infor�
mation from the Gantt charts is used by the operation sequencer in order to
determine admissible operations at each control step� The sequencer deter�

instruction
N-1

instruction
N+1

instruction
N

operation
sequencing

model

R1 O1
R2 O2
R3 O3

R1 P1
R2 P2 P3
R3 P4

R1 Q1
R2
R3 Q2

O1 P1 Q1
 O2 P2 P3
 O3 P4 Q2

Gantt charts

k k+1 k+2 k+3 k+4

control steps

Figure � Gantt Chart Sequencing�

mines admissible operations according to the As Soon As Possible �ASAP�
principle� thereby accounting for precedence and resource constraints imposed
by the Gantt charts� If multiple operations coming from di�erent instructions
compete for the same resource� the precedence is determined by the �logical�
precedence of their instructions as speci�ed by the program thread�

The main assumption thereby is that the pipeline sequencer inserts bubbles
in the pipeline only if resource con�icts have to be resolved� So� processors
with out�of�order execution have to be excluded� A great deal of processors
we are dealing with� use ASAP sequencing because of the reduced overhead
in the realization of the pipeline controller�

In LISA a more compact speci�cation style than Gantt charts is used�
Under the assumption that each operation takes a single control step� a Gantt
chart can be speci�ed as

O��R�� � O��R�� � O��R�� � O��R���O��R�� � O	�R��

where vertical lines� commas and parenthesized objects specify precedence�
parallelism and resources� respectively� For example� operation O� uses re�
source R� and has to be scheduled before operation O� which uses resource
R�� Note that no precedence between operations O� and O� is speci�ed�

In pipelined architectures three classes of pipeline hazards occur � struc�
tural� data and control hazards� These hazards have to be detected and
resolved� Gantt chart based models support detection of structural hazards�
However� data hazards and control hazards� which can be seen as data ha�
zards on the program counter cannot be detected properly� For example� it
is not possible to distinguish between a read�after�write �RAW� hazard and
a read�after�read �RAR� access�

In order to detect data and control hazards it is necessary to extend the
Gantt chart concept� First� for those operations which access storage resour�
ces� like memory or registers� it has to be speci�ed whether the access is a
read or a write access� Second� the access has to be announced in advance of
the operation which manipulates the storage�

The following example shows two instructions producing a hazard and the
introduced notation

IF � ID�
w�R�� � IA � IE�w�R�� � instruction ��

IF � ID�r�R��� IA � IE instruction ��

Instruction �	 reserves register R� for writing already during the ID operation
by announcing the write access to register R� using the resource descriptor

w� and it performs the write during the IE operation �speci�ed by the
w� descriptor�� Instruction �� �shown shifted� attempts to read register R�
during the decode operation �the r� descriptor is used�� Using the supplied
information the data hazard on register R� can be easily detected and resolved
using interlocking� as shown by the same example

IF � ID�
w�R�� � IA � IE�w�R�� �

IF � nop � nop � ID�r�R��� IA � IE

The same mechanism is used to describe control hazards and e�ects of short
circuiting�

A special class of stalls are pipeline stalls introduced by memorywait states
or by the cache� The pipeline behaviour in these cases can be described as
resource reservation by external events� In order to describe pipeline �ushing�
it is necessary to permit some of the control instructions to explicitly change
the sequencing mechanism of the generic machine model� According to this
mechanism all operations of the instruction which entered the pipeline will
be executed� Control instructions mostly do not follow this rule� In order to
model pipeline �ushing we introduced the k� descriptor for operations �e�g�
k�O��� The kill descriptor is described in an example in the following section�

The proposed generic machine model is well suited to model statically sche�
duled pipelines� We assume that the pipeline fetches an instruction and issues
it� unless there is a con�ict with previous instructions� Dynamic scheduling
of the pipeline� where the hardware rearranges the instruction execution to
reduce the stalls� needs a more sophisticated modeling�

� Example

We shall illustrate machine modeling using LISA on the example of the
TMS���C��x signal processor� The pipeline of the TMS���C��x has six
stages and no interlocking or short circuiting� Our example is based on the
description of the pipeline speci�cation of the conditional branch instruction
provided in the user�s guide of the processor �	�
�

Figure � presents the LISA machine description of three TMS���C��x
instructions� Using the keywords decode� schedule and operate the re�

<insn> BC
 {
 <decode>
 {
 %ID: {0x7495, 0x0483}
 %cond_code: { %OPCODE1 & 0x7F }
 %dest_address: { %OPCODE2 }
 }

 <schedule>
 {
 BC1(PF, w:ebus_addr, w:pc) |
 BC2(PF, w:pc), BC3(IF) |
 BC4(ID) |
 <if> (condition[cond_code])
 {
 BC5(AC) |
 BC6(PF), BC7(ID), BC8(RE) |
 BC9(EX)
 }
 <else>
 {
 k:NOP(IF), BC10(AC, w:pc) |
 BC11(PF), BC12(ID), BC13(RE) |
 k:NOP(ID), BC14(EX) |
 k:NOP(ID), k:NOP(AC) |
 k:NOP(AC), k:NOP(RE) |
 k:NOP(RE), k:NOP(EX) |
 k:NOP(EX)
 }
 }

 <operate>
 {
 BC1.control: { ebus_addr = pc++; }
 BC2.control: { ir = mem[ebus_addr]; pc++ }
 BC10.control: { pc = (%OPCODE2) }
 }
}

<insn> ADD
 {
 <decode>
 {
 %ID: {0x7121, 0x1004}
 %src: { mem[%OPCODE1 & 0x7F] }
 %dest: { accu[(%OPCODE1 >> 8) & 1] }
 }

 <schedule>
 {
 ADD1(PF, w:ebus_addr, w:pc) | ADD2(IF) |
 ADD3(DE) | ADD4(AC, w:dbus_addr) |
 ADD5(RE, w:alu_reg2, r:dbus_addr) | ADD6(EX)
 }

 <operate>
 {
 ADD1: { ebus_addr = pc; }
 ADD1.control { pc++ }
 ADD2: { ir = mem[ebus_addr]; }
 ADD4: { dbus_addr = %OPCODE1 & 0x7F; }
 ADD5: { alu_reg2 = mem[dbus_addr]; }
 ADD6: { %dest += %src;
 setflags (); }
 }
}

<insn> LD
 {
 <decode>
 {
 %ID: {0x7121, 0x1004}
 %src: { mem[%OPCODE1 & 0x7F] }
 %dest: { accu[(%OPCODE1 >> 8) & 1] }
 }

 <schedule>
 {
 LD1(PF, w:ebus_addr, w:pc) | LD2(IF) |
 LD3(DE) | LD4(AC, w:dbus_addr) |
 LD5(RE, !r:treg, r:dbus_addr) | LD6(EX, r:treg)
 }

 <operate>
 {
 LD1: { ebus_addr = pc; }
 LD1.control { pc++ }
 LD2: { ir = mem[ebus_addr]; }
 LD4: { dbus_addr = %src; }
 LD5: { treg = mem[dbus_addr]; }
 LD6: { %dest = treg; }
 }
}

Figure � LISA description of TMS���C��x instructions�

spective information is speci�ed� The L�chart is speci�ed by the keyword
schedule� The L�chart of the BC �branch conditional� is more complex than
that of the single�word ADD and LD instructions� The BC instruction needs �
cycles if the branch is not taken� and � if the branch is taken� The kill de�
scriptor was used to describe �ushing of operations which already advanced
in the pipeline�

The program segment of the example consists of three sequential instruc�
tions fBC�ADD�LDg and the ADD instruction on the target address of the branch
instruction� The scheduling of operations delivered by the ASAP scheduler
of the LISA generic machine model is presented on the following two tables�
Table 	 provides the operation scheduling if the branch is not taken� Note
that the fetch of the ADD instruction happens in the �th cycle and decode in
the �th� The sequencer of the generic machine model was able to successfully
model the pipeline using only the information provided in L�charts�

Table � shows the case when the branch is taken� In this case the BC

instruction speci�es kill resources using the kill descriptor� Without the kill
descriptor the ADD� operation would execute in the �th cycle� The kill de�

� � � � � � � � � �	

PF BC� BC� ADD� LD� BC�

IF BC� ADD� LD�

ID BC� BC� ADD� LD�

AC BC� ADD� LD�

RE BC� ADD� LD�

EX BC� ADD� LD�

Table 	 Scheduling of the BC Instruction �branch not taken��

� � � � � � � � � �	

PF BC� BC� ADD� LD� BC�� ADD�

IF BC� ADD� LD� ADD�

ID BC� BC�� NOP NOP ADD�

AC BC�	 NOP NOP ADD�

RE BC�� NOP NOP � � �

EX BC�� NOP � � �

Table � Scheduling of the BC Instruction �branch taken��

scriptor simply overloads the ADD� operation with its own operation� in this
case NOP� In this way the operation cancelation takes place to stop further
propagation �issuing� of instructions ADD and LD�

� Conclusions

Recent examples of DSP processor�compiler� and processor�accelerator co�
designs have emphasized the importance of accurate machine models� In
the same time the model�before�silicon approach is established nowadays as
the main strategy to shorten time�to�market� Tools� and applications are
developed using the model before the silicon of the processor is available�

In the paper the new machine description language LISA and its generic
machine model have been introduced� LISA enables fast and comfortable
speci�cation of DSP and embedded processor architectures used in HW�SW
co�design� Although currently targeted primarily to simulators� the generic
machine model of LISA can be used equally well for other purposes� e�g�
compilation�

Main contribution of LISA is the introduction of extended Gantt charts
or L�charts as we named them� Compared to classical reservation tables�
and Gantt charts� the L�charts additionally permit modeling of data�control
hazards� as well as pipeline �ushing� In this way pipeline interlocking and
bypassing can be modeled� Operation sequencing in LISA is modeled using
a simple ASAP sequencing strategy which obeys the time and resource con�
straints speci�ed in the L�chart of each instruction� Limitation of the ap�
proach is that it cannot model out�of�order execution found in superscalar
processors�

Our future work will concentrate on two issues� First� we have to explore
further the set of architectures which can be modeled with LISA and the
L�charts� Second� we shall extend LISA to e�ciently support compilation
�LISA�C� and in this way produce a unique machine description language for
processor�compiler co�design�

References

��� J� Hennessy and D� Patterson� Computer Architecture� A Quantitative Ap�
proach� Morgan Kaufmann Publishers Inc�� �����

��� V� �Zivojnovi	c� S� Tjiang� and H� Meyr�
Compiled simulation of programmable
DSP architectures�� in Proc� of IEEE Workshop on VLSI in Signal Processing�
Osaka� Japan� pp� ������� Oct� �����

��� V� �Zivojnovi	c and H� Meyr�
Compiled HW�SW co�simulation�� in Proc� De�
sign Automation Conference� �Las Vegas� NV�� June �����

��� in Int� Workshop on Hardware�Software Co�Design� Cambridge� MA� �����

��� G� De Micheli and M� Sami� Hardware�Software Co�Design� Kluwer Academic
Publishers� �����

��� D� Gajski and F� Vahid�
Speci�cation and design of embedded hardware�
software systems�� IEEE Design � Test of Computers� spring �����

�� A� Kalavade and E� Lee�
A hardware�software codesign methodology for DSP
applications�� IEEE Design � Test of Computers� pp� ������ Sept� �����

��� J� Hennessy and M� Heinrich�
Hardware�software codesign of processors� con�
cepts and examples�� in Hardware�Software Co�Design �G� De Micheli and
M� Sami� eds��� Kluwer Academic Publishers� �����

��� D� Bradlee� R� Henry� and S� Eggers�
The Marion system for retargetable
instruction scheduling�� in Proc� ACM SIGPLAN��� Conference on Program�
ming Language Design and Implementation� Toronto� Canada� pp� ��������
�����

���� B� Rau�
VLIW compilation driven by a machine description database�� in
Proc� 	nd Code Generation Workshop� Leuven� Belgium� �����

���� M� Freericks�
The nML machine description formalism�� Tech� Rep� ��������
Technische Universit�at Berlin� Fachbereich Informatik� Berlin� �����

���� A� Fauth� J� Van Praet� and M� Freericks�
Describing instruction set processors
using nML�� in Proc� European Design and Test Conf�� Paris� Mar� �����

���� R� Stallman� Using and Porting GNU CC� Free Software Foundation� Cam�
bridge�MA� ��� ed�� �����

���� P� Kogge� The Architecture of Pipelined Computers� McGraw Hill� New York�
NY� �����

���� K� Baker� Introduction to Sequencing and Scheduling� John Wiley � Sons�
����

���� Texas Instruments Inc�� TMS
	�C�x User�s Guide� �����

