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Abstract � In the paper a new machine description language is pre�

sented� The new language LISA� and its generic machine model are able

to produce bit� and cycle�phase�accurate processor models covering the

speci�c needs of HW�SW co�design� and co�simulation environments�

The development of a new language was necessary in order to cover the

gap between coarse ISA models used in compilers� and instruction�set si�

mulators on the one hand� and detailed models used for hardware design

on the other� The main part of the paper is devoted to behavioral pipe�

line modeling� The pipeline controller of the generic machine model is

represented as an ASAP �As Soon As Possible� sequencer parameterized

by precedence and resource constraints of operations of each instruction�

The standard pipeline description based on reservation tables and Gantt

charts was extended by additional operation descriptors which enable

the detection of data and control hazards� and permit modeling of pi�

peline �ushes� Using the newly introduced L�charts we reduced the

parameterization of the pipeline controller to a minimum and at the

same time covered typical pipeline controls found in state�of�the�art sig�

nal processors� As an example� the application of the LISA model on

the TI�TMS�	
C��x signal processor is presented�

� Introduction

Simultaneous design of hardware and software can take place at di�erent
abstraction levels� At the HLL�level compiler and processor are designed
jointly in order to obtain optimum performance on selected high�level lan�
guage constructs� At the application�level the on�o��chip hardware has the
role of a processing accelerator� or external interface� and is optimized to de�
liver optimum results for a speci�c application or a class of them� The goal
of instruction�level HW�SW co�design is to speedup frequently used instruc�
tions by appropriate design of the instruction set architecture �ISA� of the
processor� All three levels correspond to software�based HW�SW co�design�
where the realization in software is the starting point and hardware alterna�
tives are introduced in order to speedup execution� Independent of the level�



abstract processor models �machine models in compiler terminology� are an
unavoidable part of each HW�SW co�design environment�

Currently available processor models cover a whole spectrum of applica�
tions �compilation� software�hardware design� architecture exploration� and
design steps �simulation� synthesis� veri�cation�� Surprisingly� machine mo�
dels tailored to speci�c HW�SW co�design needs are rare and mostly su�er
from the rudimentary division between hardware and software�

Machine models of modern DSP and embedded processors follow the clas�
sical distinction between instruction set architecture �programmers view of
the processor� and hardware implementation� In general purpose processing�
hiding of implementational details of the processor is argumented by the pro�
gramming comfort� and by the need for di�erent hardware implementations
of a single instruction set architecture �	
� In HW�SW co�design of DSP and
embedded systems� both arguments� and especially the latter one� do not
hold� Standard ISA models and description languages do not deliver the de�
tailed pipeline and pin�related information necessary for HW�SW co�design�
On the other hand� models and description languages suited for hardware
implementation contain a lot of details which are super�uous for software
design� and often even for the design of attached hardware� The consequence
is a remarkable increase in necessary design e�ort and simulation time�

In this paper a new machine description language � LISA � is intro�
duced� The development of a new language and its generic machine model
was necessary in order to cover the gap between standard ISA models and
description languages used in compilers and instruction�level simulators on
the one hand� and detailed behavioral�structural models and description lan�
guages used in hardware design on the other� The main characteristics of
LISA is the operation�level description of the pipeline which is able to mo�
del even complex interlocking and bypassing techniques� Instructions consist
of multiple operations which are de�ned as register transfers during a single
control step� Depending on the requested accuracy� a control step can be an
instruction�� clock�� or phase�cycle� Operation scheduling in LISA is based
on modi�ed Gantt charts �L�charts� specifying time and resource allocation
of operations and an operation sequencer with an ASAP �As Soon As Possi�
ble� operation sequencing strategy� The resulting timed ISA model delivers
instruction�� clock�� or phase�accurate timing� depending on the selected con�
trol step� Combined with the bit�accurate description of all operations� the
model contains the necessary information to produce a clock��phase�accurate
model of processor pins� or the core interface�

LISA is a description language developed to parameterize a generic machine
model� The goal is to have a single generic machine model and a single
description language covering a whole class of processor architectures �Fig�
	��� The resulting machine model of the target processor can be used for
simulation� compilation� or other purposes�

Currently� the primary application domain of LISA is timed ISA simu�
lation used in HLL�� application�� and instruction�level HW�SW co�designs�
However� the proposed machine model can be used equally well in other ap�
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Figure 	 Generic Machine Model and Machine Description Language�

plications� as in compilation� The main di�erence between simulation and
compilation lies in the relation between instruction selection�scheduling and
behavior modeling� The code generator of a compiler starts with the beha�
vior �mostly in form of a three�address intermediate representation�� and has
to select and schedule target instructions in order to match the behaviour�
In simulations the process is reversed� The instructions are already selected
and scheduled� and the task of the simulator is to reproduce the behavior as
speci�ed by the simulated program� The essential di�erence between models
used for simulation and compilation is the organization and semantics of in�
structions which have to be understood by the compiler� but are irrelevant
for simulation� The newly introduced LISA pipeline model based on L�charts
is equally useful for both simulation and compilation� In this paper our pri�
mary focus is on simulation aspects of machine modeling �LISA�S�� We hope
to present the work on the LISA compilation model �LISA�C� soon�

� Previous Work

The work on LISA was motivated by the wish to enable easy retargeting of our
fast compiled simulators ����
 to various existing� or exploratory architectures�
With this goal in mind we analyzed previous work on machine models and
machine description languages�

At the �rst glance� hardware description languages �HDL� seem to be
the most natural selection for describing processors� Most of the existing
processor hardware models are described using HDLs� like VHDL or Verilog�
Unfortunately� using HDL models for real�time software design� or HW�SW
co�design� has a number of disadvantages� HDL models contain a lot of
super�uous details which are unnecessary for purposes other than design and
veri�cation of processor hardware� Although the relevant information� e�g�
the ISA� or the control of the pipeline sequencer can be always extracted� it is
mostly a highly complex task even for the person who designed the processor�
Automatic architecture extraction can be done only for processors with a



simple program sequencing logic and data path� Also� HDL descriptions
of a single machine can di�er enormously in representation level and style
complicating the task further�

In the HW�SW co�design �eld the issue of machine modeling and machine
descriptions has not received any speci�c attention ����
� The work mostly
concentrated on system models of multiple processors� ASICs� and their in�
terfaces ��
� In the PTOLEMY environment developed at the Berkeley Uni�
versity� a �xed system�level behavioral simulator of the Motorola DSP�����
signal processor was integrated into the Thor hardware design environment
��
� No attempt to cover other processors was reported� The PIXIE simulator
developed at the Stanford University provides detailed modeling of the pipe�
line and memory system� Here the system�level simulator SABLE models the
system aspects �e�g� external exceptions� and the I�O system ��
� Again� no
details about the machine speci�cation formalism are provided�

Machine description is an unavoidable part of every compiler� Two ap�
proaches to compilation�related pipeline modeling can be distinguished� The
�rst one is based on reservation tables� The machine description language
MARIL models the pipeline of RISC processors using reservation tables ��
�
A similar reservation table based approach is reported for VLIW compilation
�	�
� In both cases the standard reservation table approach was used� which is
unable to capture all the details of the pipeline� such as data�control hazards�
interlocks� or pipeline �ushes�

The alternative approach is based on latency speci�cation� The machine
description formalism nML �		
 provides common architectural information
for the compiler and the instruction set simulator and uses storage latencies in
order to describe pipelining e�ects �	�
� A similar pipeline model is part of the
GNU�gcc compiler �	�
� Storage latencies provide a highly simpli�ed model
of the pipeline� which cannot be used for simulation� and is questionable even
as a compilation model�

Our wish to capture more detailed timing information than available at
the ISA level� motivated the introduction of operation�level behaviour and
scheduling description� In terms of pipeline sequencing representation� LISA
follows the same main idea of reservation tables and Gantt charts� as in ��

and �	�
� However� in order to enable additional modeling of data�control
hazards and pipeline �ushes� we extended the modeling ability of Gantt charts
by introducing L�charts and operation descriptors�

We posed the following requirements on the machine model

� application domain � real�time software design �machine�dependent
�nite�word�length analysis� speed�memory optimization��DSP�embedded
system design� HW�SW co�veri�cation �on��o��chip accelerator and in�
terface design�� architecture exploration�

� processor class � digital signal processors and microcontrollers of low
or medium complexity with pipelined� VLIW� and RISC architectures�

� model accuracy � selectable instruction� clock or phase accurate ti�
ming� bit�accurate register transfers� exact pipeline� interrupt and wait



state modeling� spatial accuracy on the software�level �registers� me�
mory�� system�level �interrupts� peripherals�� and hardware�level �pins��

� state visibility � complete state visibility at selected control steps�

The requirements on the machine model have a direct impact on the generic
machine model and the machine description language� The main requirement
on the generic machine model is to capture the maximumof common features
of the target processor class� and in this way minimize description size and
description generation time�

The machine speci�cation language should capture the di�erences between
the processors of the given class� The main requirement is low redundancy of
the description� Also� the language should have a syntax which can be easily
understood by the user and language parser� Below we shall concentrate on
the speci�cation of operation constraints and the sequencer of the generic
machine model�

� Operation Sequencer of the Generic Ma�
chine Model

In order to enable cycle�phase�true modeling� instructions have to be par�
titioned into operations as basic schedulable units� At each control step t

the admissible operations form the transition function Ft which changes the
machine state� Figure � shows three instructions and their operations� The
transition function Ft � fO�� P�� Q	g is applied to the machine state at con�
trol step t� At the next control step t�	� the new set of admissible operations
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is determined�
Admissible operations are determined from precedence and resource con�

straints speci�ed for operations of each instruction� Direct speci�cation using
a more general rule�based approach was rejected because of the large number
of rules which must accompany each instruction� Additionally� the constraint�
based approach has proven to be advantageous if instructions are added or



removed from the instruction set� Despite of reduced modeling power compa�
red to the rule�based approach� the constraint�based model captured all the
pipeline sequencing strategies of the aforementioned processor class�

A well known formalism to describe precedence and resource constraints
of operations are the reservation tables �	�
� Reservation tables are two�
dimensional representations of resource allocation in the resource�time space�
A mark at some place in the table indicates that the corresponding processor
resource� such as a bus or a functional unit is in use during the indicated time
interval� In Gantt charts �	�
 instead of reservation marks� operations are
uniquely speci�ed� For pipeline �	�
� and instruction scheduling ��
 reservation
tables deliver all the necessary details� Clock�accurate modeling� however�
requires additional information about operation precedence and Gantt charts
are more appropriate�

If we convert the time axis of a Gantt chart into a precedence axis� the
Gantt chart describes precedence constraints� Figure � shows how the infor�
mation from the Gantt charts is used by the operation sequencer in order to
determine admissible operations at each control step� The sequencer deter�
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Figure � Gantt Chart Sequencing�

mines admissible operations according to the As Soon As Possible �ASAP�
principle� thereby accounting for precedence and resource constraints imposed
by the Gantt charts� If multiple operations coming from di�erent instructions
compete for the same resource� the precedence is determined by the �logical�
precedence of their instructions as speci�ed by the program thread�

The main assumption thereby is that the pipeline sequencer inserts bubbles
in the pipeline only if resource con�icts have to be resolved� So� processors
with out�of�order execution have to be excluded� A great deal of processors
we are dealing with� use ASAP sequencing because of the reduced overhead
in the realization of the pipeline controller�

In LISA a more compact speci�cation style than Gantt charts is used�
Under the assumption that each operation takes a single control step� a Gantt
chart can be speci�ed as

O��R�� � O��R�� � O��R�� � O��R���O��R�� � O	�R��



where vertical lines� commas and parenthesized objects specify precedence�
parallelism and resources� respectively� For example� operation O� uses re�
source R� and has to be scheduled before operation O� which uses resource
R�� Note that no precedence between operations O� and O� is speci�ed�

In pipelined architectures three classes of pipeline hazards occur � struc�
tural� data and control hazards� These hazards have to be detected and
resolved� Gantt chart based models support detection of structural hazards�
However� data hazards and control hazards� which can be seen as data ha�
zards on the program counter cannot be detected properly� For example� it
is not possible to distinguish between a read�after�write �RAW� hazard and
a read�after�read �RAR� access�

In order to detect data and control hazards it is necessary to extend the
Gantt chart concept� First� for those operations which access storage resour�
ces� like memory or registers� it has to be speci�ed whether the access is a
read or a write access� Second� the access has to be announced in advance of
the operation which manipulates the storage�

The following example shows two instructions producing a hazard and the
introduced notation

IF � ID�
w�R�� � IA � IE�w�R�� �  instruction ��

IF � ID�r�R��� IA � IE  instruction ��

Instruction �	 reserves register R� for writing already during the ID operation
by announcing the write access to register R� using the resource descriptor

w� and it performs the write during the IE operation �speci�ed by the
w� descriptor�� Instruction �� �shown shifted� attempts to read register R�
during the decode operation �the r� descriptor is used�� Using the supplied
information the data hazard on register R� can be easily detected and resolved
using interlocking� as shown by the same example

IF � ID�
w�R�� � IA � IE�w�R�� �

IF � nop � nop � ID�r�R��� IA � IE

The same mechanism is used to describe control hazards and e�ects of short
circuiting�

A special class of stalls are pipeline stalls introduced by memorywait states
or by the cache� The pipeline behaviour in these cases can be described as
resource reservation by external events� In order to describe pipeline �ushing�
it is necessary to permit some of the control instructions to explicitly change
the sequencing mechanism of the generic machine model� According to this
mechanism all operations of the instruction which entered the pipeline will
be executed� Control instructions mostly do not follow this rule� In order to
model pipeline �ushing we introduced the k� descriptor for operations �e�g�
k�O��� The kill descriptor is described in an example in the following section�

The proposed generic machine model is well suited to model statically sche�
duled pipelines� We assume that the pipeline fetches an instruction and issues
it� unless there is a con�ict with previous instructions� Dynamic scheduling
of the pipeline� where the hardware rearranges the instruction execution to
reduce the stalls� needs a more sophisticated modeling�



� Example

We shall illustrate machine modeling using LISA on the example of the
TMS���C��x signal processor� The pipeline of the TMS���C��x has six
stages and no interlocking or short circuiting� Our example is based on the
description of the pipeline speci�cation of the conditional branch instruction
provided in the user�s guide of the processor �	�
�

Figure � presents the LISA machine description of three TMS���C��x
instructions� Using the keywords decode� schedule and operate the re�

<insn> BC
  {
    <decode>
      {
        %ID: {0x7495, 0x0483}
        %cond_code: { %OPCODE1 & 0x7F }
        %dest_address: { %OPCODE2 }
      }

    <schedule>
      {
        BC1(PF, w:ebus_addr, w:pc) |
        BC2(PF, w:pc), BC3(IF) |
        BC4(ID) |
        <if> (condition[cond_code])
          {
            BC5(AC) |
            BC6(PF), BC7(ID), BC8(RE) |
            BC9(EX)
          }
        <else>
          {
            k:NOP(IF), BC10(AC, w:pc) |
            BC11(PF), BC12(ID), BC13(RE) |
            k:NOP(ID), BC14(EX) |
            k:NOP(ID), k:NOP(AC) |
            k:NOP(AC), k:NOP(RE) |
            k:NOP(RE), k:NOP(EX) |
            k:NOP(EX)
          }
      }

    <operate>
      {
        BC1.control: { ebus_addr = pc++; }
        BC2.control: { ir = mem[ebus_addr]; pc++ }
        BC10.control: { pc = (%OPCODE2) }
      }
}

<insn> ADD
  {
    <decode>
      {
        %ID: {0x7121, 0x1004}
        %src: { mem[%OPCODE1 & 0x7F] }
        %dest: { accu[(%OPCODE1 >> 8) & 1] }
      }

    <schedule>
      {
        ADD1(PF, w:ebus_addr, w:pc) | ADD2(IF) |
        ADD3(DE) | ADD4(AC, w:dbus_addr) |
        ADD5(RE, w:alu_reg2, r:dbus_addr) | ADD6(EX)
      }

    <operate>
      {
        ADD1: { ebus_addr = pc; }
        ADD1.control { pc++ }
        ADD2: { ir = mem[ebus_addr]; }
        ADD4: { dbus_addr = %OPCODE1 & 0x7F; }
        ADD5: { alu_reg2 = mem[dbus_addr]; }
        ADD6: { %dest += %src;
                setflags (); }
      }
}

<insn> LD
  {
    <decode>
      {
        %ID: {0x7121, 0x1004}
        %src: { mem[%OPCODE1 & 0x7F] }
        %dest: { accu[(%OPCODE1 >> 8) & 1] }
      }

    <schedule>
      {
        LD1(PF, w:ebus_addr, w:pc) | LD2(IF) |
        LD3(DE) | LD4(AC, w:dbus_addr) |
        LD5(RE, !r:treg, r:dbus_addr) | LD6(EX, r:treg)
      }

    <operate>
      {
        LD1: { ebus_addr = pc; }
        LD1.control { pc++ }
        LD2: { ir = mem[ebus_addr]; }
        LD4: { dbus_addr = %src; }
        LD5: { treg = mem[dbus_addr]; }
        LD6: { %dest = treg; }
      }
}

Figure � LISA description of TMS���C��x instructions�

spective information is speci�ed� The L�chart is speci�ed by the keyword
schedule� The L�chart of the BC �branch conditional� is more complex than
that of the single�word ADD and LD instructions� The BC instruction needs �
cycles if the branch is not taken� and � if the branch is taken� The kill de�
scriptor was used to describe �ushing of operations which already advanced
in the pipeline�

The program segment of the example consists of three sequential instruc�
tions fBC�ADD�LDg and the ADD instruction on the target address of the branch
instruction� The scheduling of operations delivered by the ASAP scheduler
of the LISA generic machine model is presented on the following two tables�
Table 	 provides the operation scheduling if the branch is not taken� Note
that the fetch of the ADD instruction happens in the �th cycle and decode in
the �th� The sequencer of the generic machine model was able to successfully
model the pipeline using only the information provided in L�charts�

Table � shows the case when the branch is taken� In this case the BC

instruction speci�es kill resources using the kill descriptor� Without the kill
descriptor the ADD� operation would execute in the �th cycle� The kill de�



� � � � � � � � � �	

PF BC� BC� ADD� LD� BC�

IF BC� ADD� LD�

ID BC� BC� ADD� LD�

AC BC� ADD� LD�

RE BC� ADD� LD�

EX BC� ADD� LD�

Table 	 Scheduling of the BC Instruction �branch not taken��

� � � � � � � � � �	

PF BC� BC� ADD� LD� BC�� ADD�

IF BC� ADD� LD� ADD�

ID BC� BC�� NOP NOP ADD�

AC BC�	 NOP NOP ADD�

RE BC�� NOP NOP � � �

EX BC�� NOP � � �

Table � Scheduling of the BC Instruction �branch taken��

scriptor simply overloads the ADD� operation with its own operation� in this
case NOP� In this way the operation cancelation takes place to stop further
propagation �issuing� of instructions ADD and LD�

� Conclusions

Recent examples of DSP processor�compiler� and processor�accelerator co�
designs have emphasized the importance of accurate machine models� In
the same time the model�before�silicon approach is established nowadays as
the main strategy to shorten time�to�market� Tools� and applications are
developed using the model before the silicon of the processor is available�

In the paper the new machine description language LISA and its generic
machine model have been introduced� LISA enables fast and comfortable
speci�cation of DSP and embedded processor architectures used in HW�SW
co�design� Although currently targeted primarily to simulators� the generic
machine model of LISA can be used equally well for other purposes� e�g�
compilation�

Main contribution of LISA is the introduction of extended Gantt charts
or L�charts as we named them� Compared to classical reservation tables�
and Gantt charts� the L�charts additionally permit modeling of data�control
hazards� as well as pipeline �ushing� In this way pipeline interlocking and
bypassing can be modeled� Operation sequencing in LISA is modeled using
a simple ASAP sequencing strategy which obeys the time and resource con�
straints speci�ed in the L�chart of each instruction� Limitation of the ap�
proach is that it cannot model out�of�order execution found in superscalar
processors�



Our future work will concentrate on two issues� First� we have to explore
further the set of architectures which can be modeled with LISA and the
L�charts� Second� we shall extend LISA to e�ciently support compilation
�LISA�C� and in this way produce a unique machine description language for
processor�compiler co�design�
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