DSPs, GPPs, and Multimedia Applications — An Evaluation Using DSPstone

V. Zivojnovié, H. Schraut, M. Willems and R. Schoenen

Integrated Systems for Signal Processing

Aachen University of Technology

Templergraben 55, 52056-Aachen, Germany

ABSTRACT

The DSPstone evaluation methodology is applied to eva-
luate performance of fixed— and floating—point digital
signal (DSP), and general purpose (GPP) processors with
appropriate C compilers. Main goal was to estimate run—
time efficiency on code which is representative for base-
band processing in multimedia applications. The results
show that for DSP—type code, like FIR filtering, DSP
processors are superior compared to GPP processors,
both in processor and C compiler performance. Also,
it is shown that contrary to an established opinion, C
compilers for floating—point DSP and GPP processors in-
troduce significant run-time overhead on DSP-type code.
This overhead mostly disappears if the programming of
fixed— and floating—point DSP processors is done using
language extensions.

I. Introduction

The digital signal processing (DSP) market is no longer
a small niche of the overall computer market. Especially
in multimedia and mobile communications, the market
for fixed-point and floating-point DSP processors is con-
stantly growing. Orders to the DSP chip industry have
grown from quantities of tens of thousands to millions,
or even tens of millions. The number of new compa-
nies that are using DSP technology increases from day
to day. The DSP chip industry has all reasons to be
satisfied with the current situation.

However, some new developments have to be taken
seriously by the producers of DSP processors if they want
to exploit the multimedia market. Although they are
more expensive and less powerful for DSP applications,
general-purpose processing (GPP) processors could take
over the market opportunities of the DSP processor in-
dustry.

In aletter dated January 12, 1995, Microsoft announ-
ced the withdrawal of its Resource Management Interface
(RMI) specification. The RMI was an attempt to enable
the producers of multimedia boards and equipment to
easily interface to Microsoft’s new operating systems. In
the letter to potential independent software and hard-
ware vendors and OEMs Microsoft explained the reason

for their withdrawal from RMI:

Independent software vendors are looking for

solutions enabling them to write device dri-
vers and DSP algorithms only once, regard-
less of the DSP instruction set. Exploiting
the features and capabilities of each DSP-
based platform is by nature a device-dependent
operation, and existing resource management
architectures, including the Microsoft RMI,
will not provide this level of independence.

It is obvious that this would not be a problem with
high quality DSP compilers and that this decision enor-
mously favors the native processors - GPP processors -
as DSP engines. A huge GPP processor producer has
already started an initiative under the name Native Sig-
nal Processing (NSP) in order to introduce GPP proces-
sors as basic components for multimedia processing. The
others will follow in short order.

Compiler efficiency is surely not the main feature
guiding processor selection for some DSP application.
However, the constantly tightening time-to-market con-
straints and falling hardware prices could promote com-
piler efficiency to a factor of highest importance very
soon.

The goal of this paper is to provide quantitative mea-
surements of run-time performance on typical DSP algo-
rithms running on commercial fixed-/floating-point DSP
and GPP processors. Special attention is devoted to the
efficiency of the compilers. Using the DSPstone metho-
dology, the overhead introduced by the compiler is mea-
sured and reported.

In this paper we limit the benchmarking suite to the
FIR filtering benchmark. As an inevitable part of each
baseband signal processing, it is selected as the standard
performance indicator. Concentration on one benchmark
has surely its disadvantages. However, it enables us to
provide an analysis of processor and compiler characte-
ristics in a much deeper fashion than if the results of the
whole DSPstone suite are discussed.

After presenting the main features of the DSPstone
benchmarking methodology, the paper concentrates on
benchmarking results for four fixed-point processors and
appropriate C compilers (Analog Devices ADSP 2100,
Motrorola DSP 56000, NEC puPD 77016, and TI TMS
320C51), two floating-point processors (Analog Devices
ADSP 21060 - SHARC, and TTI TMS 320C40) with three
C compilers (Analog Devices, Tartan, and TI), as well

as one GPP processor (Intel i586) and its compiler (Bor-
land). Measurement results are presented and discussed.

II. DSPstone — A DSP-Oriented
Benchmarking Methodology

In order to explore quantitative characteristics of DSP
compilers the Institute for Integrated Systems in Sig-
nal Processing of the Aachen University of Technology
started the DSPstone project in 1993 [1]. During this
project a DSP-related benchmarking methodology was
defined which should help in evaluating DSP compilers.
The main goal was to get exact quantitative data about
the overhead which is introduced if a high-level language
and compiler are used for DSP code design.

The basic feature of the methodology is the compari-
son between the code generated by the compiler and the
hand-written assembly code which is used as a reference.
The metric distance in execution time and memory uti-
lization is compared and the results are reported. More
information about the DSPstone benchmarking metho-
dology can be found in [1].

III. Benchmarking Results

Digital filtering is one of the central operations in DSP
applications. Especially in baseband processing, filtering-
type algorithms consume most of the available processing
time. We have selected the FIR benchmark as a repre-
sentative for all DSP functions based on a similar com-
putation — multiply-accumulate operation on vectors of
variables.

The FIR benchmark of the DSPstone DSP suite mul-
tiplies an array of state variables z by an array of coeffi-
cients h and accumulates the result in the output variable

Y, as
N-1

y:Zmi*hN_i (1)
i=0

State variables z; are kept in a tapped delay line of length
N that holds the input values from z; to z;—_n41. Each
time a new value appears on the input of the filter, the
last N —1 values are shifted within the delay line z. The
result y 1s the weighted sum of the delay line content «
and the coefficients k. In the benchmark NV is set to 16,
and the performance per input sample is reported.

The FIR benchmark was applied to a set of 7 pro-
cessors and 8 compilers. The same C code is used for
all targets. Only the data types differ in the case of
fixed-point and floating-point DSP processors. For the
Intel 1586 processor and Borland compiler both, the inte-
ger and floating-point version of the FIR benchmark are
measured. Table 1 presents the absolute performance of
the processors and compilers. For compilers supporting
C language extensions, the ANSI C code and the C code
with extensions are benchmarked. These results are pre-
sented in the a/b form, where @ is the result for ANSI
C code and b for C code using extensions. For the Intel

1586 processor the results for the integer and floating-
point benchmark are provided in the form a — b, where
a 1s the floating-point result, and b the result for the in-
teger FIR filter. The clock frequency of the processors is
selected as the maximum clock of the processor which is
reported in [2].

Table 2 presents the overhead in percents.

In order to provide better visualization, the results
from Tables 1 and 2 are presented in form of bar graphs
on Figures 1, 2, and 3. Figure 1 presents the absolute
execution time measured in microseconds for the refe-
rence code, ANSI C code, and C code with extensions.
On Figure 2 the overhead in execution time expressed
in percents for the ANSI C code and the C code using
language extensions is provided. Figure 3 provides the
results for the overhead in memory utilization expressed
in percents for the same C code versions.

Intel-i586/Borland - INT

Intel-i568/Borland - FP

TI-C40/Tartan
D Assembly Reference

D C with Extensions

' ANSIC

TI-C40/TI

ADSP-21060/ADI

TI-C51/TI

NEC-77016/NEC

Moto-56002/Moto

ADSP-2101/ADI :

0 1 2 3 4 5 6 7 8 9 10

Figure 1: Reference Code - Execution Time [us]

In sequel a more detailed discussion of the results is
provided.

IV. Fixed-Point DSP Processors and Compilers

The fixed-point DSP processors have an architecture which
is tuned to be highly efficient on FIR-type algorithms.
The Harvard architecture with multiple memory banks,
parallel multiply-accumulate instruction, zero-overhead
loop, and modulo addressing (circular buffers) enables
fast signal processing.

The Analog Devices ADSP2100 compiler puts the
translated code into a zero-overhead loop and uses one
parallel instruction. The loop body contains 11 instruc-
tions. No mac operation is placed within the loop body.
Particularly remarkable is the fact that the compiler de-
fines the modify register value m7 through the register
ayl, which holds the product z; * hx_; during compu-
tation. This modify register value should be defined out

proc. ADI Moto NEC TI ADI TI TI Intel

2101 56002 77016 Ch1 21060 C40 C40 1586

33MHz 66MHz 33MHz 80MHz 40MHz 60MHz 60MHz 90MHz

comp. ADI Moto NEC TI ADI TI Tartan Borland

5.1 1.11 1.0 6.5 2.0 4.5 2.01 4.5
t, [us] 0.61 0.76 0.61 0.625 0.525 0.7 0.7 2.0-4.5
tg [us] 5.3/5.79 4.91 3.51/0.64 3.1 1.675/1.35 2.83 2.73/0.73 9.2-5.5
cgqler) 175/191(20) | 324(50) | 117/21(20) | 124(25) 67/54(21) 85(21) 82/22(21) | 828-495(180-405)
pg(pr) 21/23(6) 21(8) 18/7(6) 24(8) 11/10(7) 11(9) 13/9(9) 100-77(53-47)
dg(d;) 33/33(33) 33(33) 33/33(33) 33(33) 33/33(33) 33(33) 33/33(33) 144-74(130-70)
mg(my,) 54/56(39) 54(41) 51/40(39) 57(41) 44/43(40) 44(42) 46/42(42) | 244-151(183-117)

t — execution time; ¢ — clock cycle count; p — program memory; d — data memory; m —p + d
subscript g stands for code generated by the compiler and r for the reference code

Table 1: Absolute Performance

proc. ADI Moto NEC TI ADI TI TI Intel
2101 56002 77016 C51 21060 C40 C40 i586
33MHz 66MHz | 33MHz | 80MHz 40MHz 60MHz | 60MHz 90MHz
comp. ADI Moto NEC TI ADI TI Tartan Borland
5.1 1.11 1.0 6.5 2.0 4.5 2.01 4.5
A% 775/585 | 548 57/5 396 | 219/157 | 305 29075 | 36022
Apl% 250/283 | 163 | 200/17 | 200 57/43 22 11/0 8964
Ad% 0/0 0 0/0 0 0/0 0 0/0 116
Am[%] || 33/4% 32 3179 39 1078 5 1070 33-20
At = (tg — t,)/t. [%] — execution time overhead (equals Ac)
Ac = (eg — ¢r)/er [%] — clock cycle overhead
Ap = (pg — pr)/pr [%] — program memory overhead
Ad = (dy — d;)/d, [%] — data memory overhead
Am = (mg — m,)/m, [%] — memory overhead

Table 2: Compiled Code - Overhead Introduced by the Compiler

of the zero-overhead loop. Likewise, the content of the
register variable y should not be stored in the loop.
This would decrease the content of the loop body and
increase code performance. We could not observe any
improvement by explicitly allocating = and h to different
memory banks by using C language extensions.

The Motorola DSP56000 compiler generates paralle-
lized code with 10 instructions in the loop body. The
filtering itself is performed with a mac instruction in a
zero-overhead do loop. FEach C pointer is translated
into an appropriate register at assembly level. Higher
code compaction could be reached by putting the regi-
ster postdecrementing operations after the last use of the
register itself within the loop. The compiler places also
an entirely useless nop instruction as last loop operation,
consuming extra unnecessary cycles. The relative high
code parallelization results in a low overhead in memory
consumption. No language extensions are supported.

The NEC pPD77016 compiler translates the loop
within a zero-overhead instruction. The loop contains
7 instructions, where 2 of them perform parallel operati-
ons. No mac instruction is generated by the compiler, but
two separate multiply and add operations. The compiler
sets also a on bit-left shift in order to keep data repre-
sentation right.

The NEC compiler offers DSP-specific C language

extensions. Among others these extensions include the

explicit assignment of variables to memory banks as well
as a modulo addressing. Using these two features for
programming the FIR-filter, the compiler is able to ge-
nerate highly optimized code, with almost no overhead.
The compiled code makes use of the mac instruction, with
two parallel moves using modulo-addressing. Therefore
each tap of the filter can be processed within one clock
cycle. This allows to use the rep instruction instead of
the loop. The complete filtering operation is executed
within 22 clock cycles, using 21 instructions.

It has to be mentioned that the improvements due to
extensions heavily depend on the benchmarked kernel,
although for all kernels improvements can be encounte-
red. Reductions in execution time range from 19% (FIR
benchmark) to 68% (n_real update benchmark of DS-
Pstone) relative to the results achieved using ANSI C.

The TI TMS320C51 compiler translates the critical
part of the C code, the loop, into a zero-overhead com-
pact structure of 7 instructions. The filtering is perfor-
med via separated multiplication, addition and storing
operations. The compiler makes an extensive use of the
indirect addressing capabilities of the processor, provi-
ding a compact assembly translation. The translation of
the critical C code part in 7 instructions allows the ANSI
C code to be performed faster than at the other targets.
The compiler reaches the lowest compiler overhead on
ANSI C among all fixed-point compilers. No language

Intel-i586/Borland - INT

Intel-i568/Borland - FP

TI-C40/Tartan . .
C with Extensions

l:' ANSI C

TI-C40/TI
ADSP-21060/ADI
TI-C51/TI
NEC-77016/NEC
Moto-56002/Moto

ADSP-2101/ADI

0 100 200 300 400 500 600 700 800 900

Figure 2: Compiled Code - Overhead in Execution Time
[7]

extensions are supported.

With an overhead from 400 to almost 800 percent
the performance of the fixed-point compilers on ANSI C
code is very poor and the code cannot be used without
manual tuning. However, if C language extensions are
supported and implemented in a proper fashion, like in
the case of the NEC puPD77016 compiler, almost zero
percent overhead can be reached.

V. Floating-Point DSP Processors and
Compilers

Just like their fixed-point counter parts, the performance
of the floating-point DSPs relies heavily on the use of mac
instructions which enable the processors to compute one
filter tap each instruction cycle once the pipeline is set.
Assembly reference codes for the floating-point targets
need about as many instruction cycles as the fixed-point
targets whereas the generated code i1s in general quite
shorter for the floating-point processors. Note that the
C40 consumes two clock cycles to perform one instruc-
tion cycle.

The Analog Devices ADSP-21060 compiler places all
variables in data memory. The loop is translated into
a zero overhead loop which contains four instructions.
The two operands #; and hn_; are fetched in two se-
parate instructions. Instead of using a mac instruction
the compiler implements a multiply followed by an accu-
mulate operation. The shifting of the delay line is done
in parallel to the computation. The limiting factor wit-
hin this loop body is given by the four data memory
accesses. Thus, with all variables in data memory, the
shortest possible loop body is generated. Language ex-
tensions for this compiler include dual memory support,
Numerical C, and circular buffering. For this FIR bench-
mark, using the keyword pm to place the coefficients into

Intel-i586/Borland - INT

Intel-i568/Borland - FP

TI-C40/Tartan

' C with Extensions
TI-C40/TI
\:' ANSI C

ADSP-21060/ADI

TI-C51/TI

NEC-77016/NEC

Moto-56002/Moto

ADSP-2101/ADI

Figure 3: Compiled Code - Overhead in Memory Uti-
lization [%]

program memory proved to be the only helpful extension
while the Numerical C iterator and the circular buffering
are convenient for C programming but slowed down the
performance of the generated code. Nevertheless, Nu-
merical C has improved the compiler efficiency for many
other benchmarks.

The Texas Instruments TMS320C40 compiler gene-
rates a non-delayed loop. The loop body contains four
instructions. No mac instruction is used by the compiler.
Multiplication, accumulation, and shifting of the delay
line are done sequentially. All C level pointers are trans-
formed into addresses in the auxiliary registers ARn for
indirect addressing with postdecrementation. Although
the assembly code generated by the compiler is quite
efficient, use of the mac instruction could still improve
the code. No language extensions are supported by the
compiler.

The Tartan TMS820C40 compiler was invoked with
the —o command line option which gives the compiler the
directive to balance time and memory optimization. Alt-
hough we are concentrating on run-time efficiency rather
than on memory consumption the —ot switch, which op-
timizes highly in time, was not applied because it causes
the compiler to unfold the loop thus creating an unpro-
portional memory overhead. Results show that the loop
body stays unchanged compared to the TI compiler. The
loop itself is implemented using a delayed repeat instruc-
tion. This loop implementation obtains a gain of three
instruction cycles compared to the non-delayed solution.
The Tartan compiler also supports C level circular buf-
fering. Using these extensions improved the compiler
efficiency dramatically. Except for one instruction cycle
the generated code is as fast as the reference code. The
compiler implements the loop with a delayed repeat in-
struction. The loop body consists of a mac instruction.
Therefore, the Tartan compiler and the NEC compiler in

conjunction with their specific language extensions are
the only ones which are able to create code near the op-
timum.

Our results show that compilers for floating-point
DSPs, although more efficient than compilers for fixed-
point DSPs, are still far from optimum. All compilers
lack the ability to implement mac instructions from ANSI
C code. With an overhead ranging from 219 to 305
percent, the performance of the compilers is not suited
for straightforward code design with ANSI C. As espe-
cially the Tartan compiler shows, language extensions
can improve compiler performance and, therefore, code
efficiency decisively.

VI. Intel Pentium GPP processor and Borland
C Compiler

Two versions of the FIR filter have been evaluated on the
Intel 1586 — a floating point version with 32 bit precision
using the numeric coprocessor, and a 16 bit fixed point
version. Both versions have been compiled with Borland
C/C++ compiler with all optimizations (fastest code,
1386 instructions) turned on.

The floating point code generated by the compiler
consists of assembler statements that reflect the sequen-
tial execution order of the C source. Thus inefficient
code is produced, because it doesn’t utilize the potential
parallelism between CPU and floating point unit (FPU),
the latter being known as numeric coprocessor for for-
mer Intel processors up to 1386. While one floating point
instruction is started on the FPU, the CPU is free for
further commands. Only when synchronization between
them is necessary, an FWAIT instruction waits for the
coprocessor to finish calculation. The reference assem-
bly code has the FPU commands embedded within CPU
code, so a highly parallel execution results. In the code
generated by the compiler the utilization of registers for
pointers (index registers) is not optimal. In the assembly
reference code all variables except the arrays are held in
registers.

The reference code holds the accumulated value af-
ter multiplication ; - hy—; on the coprocessors stack
instead of storing and retrieving it to/from memory, like
the compiler does. Data memory optimization comes
along with register use automatically, but a new loop
structure saves program space, too. The compiler imple-
ments the for loop unnecessarily with a test before the
first loop instruction. This is not done in the reference
code. The epilog section is put into the loop, too, thus
saving further program memory space.

The fixed-point versions of the reference and compi-
led code differ much less than in the floating-point case.
However reorganizing the loop and using registers in-
stead of memory, has improved the code for additional
22% percent.

VII. Conclusions

The relatively low efficiency of the fixed-point C compi-
lers on ANSI C code is a result which is not a surprise for
DSP programmers. The fixed-point processor architec-
tures cannot be programmed properly using a language
(ANSI C) and compiler techniques which are introduced
for a quite different type of processing. From the measu-
rement results it is obvious that these problems can be
solved. The NEC puPD77016 compiler and its support
for language extensions is a good example.

More surprising is the relatively high overhead of the
floating-point compilers. With an overhead in execution
time between 219 and 305 percent on ANSI C code, they
are more efficient than the fixed-point compilers, but it
is hard to expect that they can be directly used for any
production-quality code development. Also, in this case
language extensions can enormously improve efficiency.

The relatively low efficiency of the GPP compilers
is surely something what we have not expected. On a
floating-point FIR filter benchmark the Borland compi-
ler was not able to detect the possibility for concurrent
operation with the FPU unit. As a result an overhead of
360 percent resulted. This is higher than for any of the
floating-point DSP compilers. It can be concluded that
even from the compiler point of view, the GPP processors
cannot be a serious competitor for the DSP processors as
far as typical DSP-type code is concerned. In the inte-
ger case the GPP compiler was able to deliver 22 percent
overhead in execution time, which is the best result on
ANSI C code among all compilers. However, it is still
higher than the results obtained by using C language
extensions of DSP compilers.

It can be concluded that for DSP-type code DSP pro-
cessors cannot be replaced by their powerful GPP rela-
tives. Typical application domains, like baseband pro-
cessing in modems, will still need DSP-like architectures
despite of the relative inefficiency of DSP compilers.

We are aware of the fact that FIR filtering cannot
be used as the only performance indicator for compilers.
However, the concentration on one benchmark in this
paper enabled us to discuss the results in more details.
The complete DSPstone suite contains over 20 bench-
marks and should provide a complete picture about the
state-of-the-art DSP and GPP compilers. Our efforts
concentrate at this moment on benchmarking of control-
type code. It can be expected that in this case the GPP
processors and compilers will show all their power. We
hope to report these results very soon.

VIII. References

[1] V. Zivojnovié, J. Martinez, C. Schlager, and H. Meyr,
“DSPstone: A DSP-oriented benchmarking metho-
dology,” in Proc. of ICSPAT 94 - Dallas, Oct. 1994.

[2] M. Levy and J. Leonard, “EDN’s DSP-chip direc-
tory,” EDN Magazine, May 1995.

