
DSPs� GPPs� and Multimedia Applications � An Evaluation Using DSPstone

V� �Zivojnovi�c� H� Schraut� M� Willems and R� Schoenen

Integrated Systems for Signal Processing

Aachen University of Technology

Templergraben ��� ������Aachen� Germany

ABSTRACT

The DSPstone evaluation methodology is applied to eva�
luate performance of �xed� and �oating�point digital
signal �DSP�� and general purpose �GPP� processors with
appropriate C compilers� Main goal was to estimate run�
time e�ciency on code which is representative for base�
band processing in multimedia applications� The results
show that for DSP�type code� like FIR �ltering� DSP
processors are superior compared to GPP processors�
both in processor and C compiler performance� Also�
it is shown that contrary to an established opinion� C
compilers for �oating�point DSP and GPP processors in�
troduce signi�cant run�time overhead on DSP�type code�
This overhead mostly disappears if the programming of
�xed� and �oating�point DSP processors is done using
language extensions�

I� Introduction

The digital signal processing �DSP� market is no longer
a small niche of the overall computer market� Especially
in multimedia and mobile communications� the market
for �xed�point and �oating�point DSP processors is con�
stantly growing� Orders to the DSP chip industry have
grown from quantities of tens of thousands to millions�
or even tens of millions� The number of new compa�
nies that are using DSP technology increases from day
to day� The DSP chip industry has all reasons to be
satis�ed with the current situation�

However� some new developments have to be taken
seriously by the producers of DSP processors if they want
to exploit the multimedia market� Although they are
more expensive and less powerful for DSP applications�
general�purpose processing �GPP� processors could take
over the market opportunities of the DSP processor in�
dustry�

In a letter dated January 	
� 	���� Microsoft announ�
ced the withdrawal of its Resource Management Interface
�RMI� speci�cation� The RMI was an attempt to enable
the producers of multimedia boards and equipment to
easily interface to Microsoft
s new operating systems� In
the letter to potential independent software and hard�
ware vendors and OEMs Microsoft explained the reason
for their withdrawal from RMI�

Independent software vendors are looking for

solutions enabling them to write device dri�

vers and DSP algorithms only once� regard�

less of the DSP instruction set� Exploiting

the features and capabilities of each DSP�

based platform is by nature a device�dependent

operation� and existing resource management

architectures� including the Microsoft RMI�

will not provide this level of independence�

It is obvious that this would not be a problem with
high quality DSP compilers and that this decision enor�
mously favors the native processors � GPP processors �
as DSP engines� A huge GPP processor producer has
already started an initiative under the name Native Sig�
nal Processing �NSP� in order to introduce GPP proces�
sors as basic components for multimedia processing� The
others will follow in short order�

Compiler e�ciency is surely not the main feature
guiding processor selection for some DSP application�
However� the constantly tightening time�to�market con�
straints and falling hardware prices could promote com�
piler e�ciency to a factor of highest importance very
soon�

The goal of this paper is to provide quantitative mea�
surements of run�time performance on typical DSP algo�
rithms running on commercial �xed���oating�point DSP
and GPP processors� Special attention is devoted to the
e�ciency of the compilers� Using the DSPstone metho�
dology� the overhead introduced by the compiler is mea�
sured and reported�

In this paper we limit the benchmarking suite to the
FIR �ltering benchmark� As an inevitable part of each
baseband signal processing� it is selected as the standard
performance indicator� Concentration on one benchmark
has surely its disadvantages� However� it enables us to
provide an analysis of processor and compiler characte�
ristics in a much deeper fashion than if the results of the
whole DSPstone suite are discussed�

After presenting the main features of the DSPstone
benchmarking methodology� the paper concentrates on
benchmarking results for four �xed�point processors and
appropriate C compilers �Analog Devices ADSP
	���
Motrorola DSP ������ NEC �PD ���	�� and TI TMS
�
�C�	�� two �oating�point processors �Analog Devices
ADSP
	��� � SHARC� and TI TMS �
�C��� with three
C compilers �Analog Devices� Tartan� and TI�� as well

as one GPP processor �Intel i���� and its compiler �Bor�
land�� Measurement results are presented and discussed�

II� DSPstone � A DSP�Oriented

Benchmarking Methodology

In order to explore quantitative characteristics of DSP
compilers the Institute for Integrated Systems in Sig�
nal Processing of the Aachen University of Technology
started the DSPstone project in 	��� �	�� During this
project a DSP�related benchmarking methodology was
de�ned which should help in evaluating DSP compilers�
The main goal was to get exact quantitative data about
the overhead which is introduced if a high�level language
and compiler are used for DSP code design�

The basic feature of the methodology is the compari�
son between the code generated by the compiler and the
hand�written assembly code which is used as a reference�
The metric distance in execution time and memory uti�
lization is compared and the results are reported� More
information about the DSPstone benchmarking metho�
dology can be found in �	��

III� Benchmarking Results

Digital �ltering is one of the central operations in DSP
applications� Especially in baseband processing� �ltering�
type algorithms consume most of the available processing
time� We have selected the FIR benchmark as a repre�
sentative for all DSP functions based on a similar com�
putation � multiply�accumulate operation on vectors of
variables�

The FIR benchmark of the DSPstone DSP suite mul�
tiplies an array of state variables x by an array of coe��
cients h and accumulates the result in the output variable
y� as

y �

N��X

i��

xi � hN�i �	�

State variables xi are kept in a tapped delay line of length
N that holds the input values from xi to xi�N��� Each
time a new value appears on the input of the �lter� the
last N�	 values are shifted within the delay line x� The
result y is the weighted sum of the delay line content x
and the coe�cients h� In the benchmark N is set to 	��
and the performance per input sample is reported�

The FIR benchmark was applied to a set of � pro�
cessors and � compilers� The same C code is used for
all targets� Only the data types di�er in the case of
�xed�point and �oating�point DSP processors� For the
Intel i��� processor and Borland compiler both� the inte�
ger and �oating�point version of the FIR benchmark are
measured� Table 	 presents the absolute performance of
the processors and compilers� For compilers supporting
C language extensions� the ANSI C code and the C code
with extensions are benchmarked� These results are pre�
sented in the a�b form� where a is the result for ANSI
C code and b for C code using extensions� For the Intel

i��� processor the results for the integer and �oating�
point benchmark are provided in the form a� b� where
a is the �oating�point result� and b the result for the in�
teger FIR �lter� The clock frequency of the processors is
selected as the maximum clock of the processor which is
reported in �
��

Table
 presents the overhead in percents�

In order to provide better visualization� the results
from Tables 	 and
 are presented in form of bar graphs
on Figures 	�
� and �� Figure 	 presents the absolute
execution time measured in microseconds for the refe�
rence code� ANSI C code� and C code with extensions�
On Figure
 the overhead in execution time expressed
in percents for the ANSI C code and the C code using
language extensions is provided� Figure � provides the
results for the overhead in memory utilization expressed
in percents for the same C code versions�

ADSP-2101/ADI

Moto-56002/Moto

NEC-77016/NEC

TI-C51/TI

ADSP-21060/ADI

TI-C40/TI

TI-C40/Tartan

Intel-i568/Borland - FP

Intel-i586/Borland - INT

0 1 2 3 4 5 6 7 8 9 10

ANSI C

C with Extensions

Assembly Reference

Figure 	� Reference Code � Execution Time ��s�

In sequel a more detailed discussion of the results is
provided�

IV� Fixed�Point DSP Processors and Compilers

The �xed�point DSP processors have an architecture which
is tuned to be highly e�cient on FIR�type algorithms�
The Harvard architecture with multiple memory banks�
parallel multiply�accumulate instruction� zero�overhead
loop� and modulo addressing �circular bu�ers� enables
fast signal processing�

The Analog Devices ADSP���� compiler puts the
translated code into a zero�overhead loop and uses one
parallel instruction� The loop body contains 		 instruc�
tions� No mac operation is placed within the loop body�
Particularly remarkable is the fact that the compiler de�
�nes the modify register value m� through the register
ay�� which holds the product xi � hN�i during compu�
tation� This modify register value should be de�ned out

proc� ADI Moto NEC TI ADI TI TI Intel
���� ����� ����� C�� ����� C�� C�� i���

		MHz ��MHz 		MHz ��MHz ��MHz ��MHz ��MHz
�MHz
comp� ADI Moto NEC TI ADI TI Tartan Borland

��� ���� ��� ��� ��� ��� ���� ���

tr ��s� ���� ���� ���� ����� ����� ��� ��� ���
���
tg ��s� ��	����
 ��
� 	�������� 	�� ��������	� ���	 ���	����	
��
���
cg�cr� �����
����� 	������ ���������� ������� ��������� ������ ��������� ���
�
�����
����
pg�pr� ����	��� ����� ������� ����� �������� ���
� �	�
�
� ���
����	
���
dg�dr� 		�		�		� 		�		� 		�		�		� 		�		� 		�		�		� 		�		� 		�		�		� ���
����	�
���
mg�mr � ������	
� ������ ������	
� ������ ����	���� ������ ��������� ���
������	
����

t � execution time� c � clock cycle count� p � program memory� d � data memory� m � p � d
subscript g stands for code generated by the compiler and r for the reference code

Table 	� Absolute Performance

proc� ADI Moto NEC TI ADI TI TI Intel
���� ����� ����� C�� ����� C�� C�� i���

		MHz ��MHz 		MHz ��MHz ��MHz ��MHz ��MHz
�MHz
comp� ADI Moto NEC TI ADI TI Tartan Borland

��� ���� ��� ��� ��� ��� ���� ���

�c��� ������� ��� ����� 	
� ��
���� 	�� �
��� 	��
��
�p��� ������	 ��	 ������ ��� ����	 �� ���� �

��
�d��� ��� � ��� � ��� � ��� ��
�
�m��� 	���� 	� 	��
 	
 ���� � ���� 		
�

�t � �tg � tr��tr ��� � execution time overhead �equals �c�
�c � �cg � cr��cr ��� � clock cycle overhead

�p � �pg � pr��pr ��� � program memory overhead
�d � �dg � dr��dr ��� � data memory overhead
�m � �mg �mr��mr ��� � memory overhead

Table
� Compiled Code � Overhead Introduced by the Compiler

of the zero�overhead loop� Likewise� the content of the
register variable y should not be stored in the loop�
This would decrease the content of the loop body and
increase code performance� We could not observe any
improvement by explicitly allocating x and h to di�erent
memory banks by using C language extensions�

The Motorola DSP����� compiler generates paralle�
lized code with 	� instructions in the loop body� The
�ltering itself is performed with a mac instruction in a
zero�overhead do loop� Each C pointer is translated
into an appropriate register at assembly level� Higher
code compaction could be reached by putting the regi�
ster postdecrementing operations after the last use of the
register itself within the loop� The compiler places also
an entirely useless nop instruction as last loop operation�
consuming extra unnecessary cycles� The relative high
code parallelization results in a low overhead in memory
consumption� No language extensions are supported�

The NEC �PD����� compiler translates the loop
within a zero�overhead instruction� The loop contains
� instructions� where
 of them perform parallel operati�
ons� No mac instruction is generated by the compiler� but
two separate multiply and add operations� The compiler
sets also a on bit�left shift in order to keep data repre�
sentation right�

The NEC compiler o�ers DSP�speci�c C language
extensions� Among others these extensions include the

explicit assignment of variables to memory banks as well
as a modulo addressing� Using these two features for
programming the FIR��lter� the compiler is able to ge�
nerate highly optimized code� with almost no overhead�
The compiled code makes use of the mac instruction� with
two parallel moves using modulo�addressing� Therefore
each tap of the �lter can be processed within one clock
cycle� This allows to use the rep instruction instead of
the loop� The complete �ltering operation is executed
within

 clock cycles� using
	 instructions�

It has to be mentioned that the improvements due to
extensions heavily depend on the benchmarked kernel�
although for all kernels improvements can be encounte�
red� Reductions in execution time range from 	�� �FIR
benchmark� to ��� �n real update benchmark of DS�
Pstone� relative to the results achieved using ANSI C�

The TI TMS	��C�� compiler translates the critical
part of the C code� the loop� into a zero�overhead com�
pact structure of � instructions� The �ltering is perfor�
med via separated multiplication� addition and storing
operations� The compiler makes an extensive use of the
indirect addressing capabilities of the processor� provi�
ding a compact assembly translation� The translation of
the critical C code part in � instructions allows the ANSI
C code to be performed faster than at the other targets�
The compiler reaches the lowest compiler overhead on
ANSI C among all �xed�point compilers� No language

ADSP-2101/ADI

Moto-56002/Moto

NEC-77016/NEC

TI-C51/TI

ADSP-21060/ADI

TI-C40/TI

TI-C40/Tartan

Intel-i568/Borland - FP

Intel-i586/Borland - INT

0 100 200 300 400 500 600 700 800 900

ANSI C

C with Extensions

Figure
� Compiled Code � Overhead in Execution Time
���

extensions are supported�

With an overhead from ��� to almost ��� percent
the performance of the �xed�point compilers on ANSI C
code is very poor and the code cannot be used without
manual tuning� However� if C language extensions are
supported and implemented in a proper fashion� like in
the case of the NEC �PD����� compiler� almost zero
percent overhead can be reached�

V� Floating�Point DSP Processors and

Compilers

Just like their �xed�point counter parts� the performance
of the �oating�point DSPs relies heavily on the use of mac
instructions which enable the processors to compute one
�lter tap each instruction cycle once the pipeline is set�
Assembly reference codes for the �oating�point targets
need about as many instruction cycles as the �xed�point
targets whereas the generated code is in general quite
shorter for the �oating�point processors� Note that the
C�� consumes two clock cycles to perform one instruc�
tion cycle�

The Analog Devices ADSP������ compiler places all
variables in data memory� The loop is translated into
a zero overhead loop which contains four instructions�
The two operands xi and hN�i are fetched in two se�
parate instructions� Instead of using a mac instruction
the compiler implements a multiply followed by an accu�
mulate operation� The shifting of the delay line is done
in parallel to the computation� The limiting factor wit�
hin this loop body is given by the four data memory
accesses� Thus� with all variables in data memory� the
shortest possible loop body is generated� Language ex�
tensions for this compiler include dual memory support�
Numerical C� and circular bu�ering� For this FIR bench�
mark� using the keyword pm to place the coe�cients into

ADSP-2101/ADI

Moto-56002/Moto

NEC-77016/NEC

TI-C51/TI

ADSP-21060/ADI

TI-C40/TI

TI-C40/Tartan

Intel-i568/Borland - FP

Intel-i586/Borland - INT

0 5 10 15 20 25 30 35 40 45

ANSI C

C with Extensions

Figure �� Compiled Code � Overhead in Memory Uti�
lization ���

program memory proved to be the only helpful extension
while the Numerical C iterator and the circular bu�ering
are convenient for C programming but slowed down the
performance of the generated code� Nevertheless� Nu�
merical C has improved the compiler e�ciency for many
other benchmarks�

The Texas Instruments TMS	��C
� compiler gene�
rates a non�delayed loop� The loop body contains four
instructions� No mac instruction is used by the compiler�
Multiplication� accumulation� and shifting of the delay
line are done sequentially� All C level pointers are trans�
formed into addresses in the auxiliary registers ARn for
indirect addressing with postdecrementation� Although
the assembly code generated by the compiler is quite
e�cient� use of the mac instruction could still improve
the code� No language extensions are supported by the
compiler�

The Tartan TMS	��C
� compiler was invoked with
the �o command line option which gives the compiler the
directive to balance time and memory optimization� Alt�
hough we are concentrating on run�time e�ciency rather
than on memory consumption the �ot switch� which op�
timizes highly in time� was not applied because it causes
the compiler to unfold the loop thus creating an unpro�
portional memory overhead� Results show that the loop
body stays unchanged compared to the TI compiler� The
loop itself is implemented using a delayed repeat instruc�
tion� This loop implementation obtains a gain of three
instruction cycles compared to the non�delayed solution�
The Tartan compiler also supports C level circular buf�
fering� Using these extensions improved the compiler
e�ciency dramatically� Except for one instruction cycle
the generated code is as fast as the reference code� The
compiler implements the loop with a delayed repeat in�
struction� The loop body consists of a mac instruction�
Therefore� the Tartan compiler and the NEC compiler in

conjunction with their speci�c language extensions are
the only ones which are able to create code near the op�
timum�

Our results show that compilers for �oating�point
DSPs� although more e�cient than compilers for �xed�
point DSPs� are still far from optimum� All compilers
lack the ability to implement mac instructions from ANSI
C code� With an overhead ranging from
	� to ���
percent� the performance of the compilers is not suited
for straightforward code design with ANSI C� As espe�
cially the Tartan compiler shows� language extensions
can improve compiler performance and� therefore� code
e�ciency decisively�

VI� Intel Pentium GPP processor and Borland

C Compiler

Two versions of the FIR �lter have been evaluated on the
Intel i��� � a �oating point version with �
 bit precision
using the numeric coprocessor� and a 	� bit �xed point
version� Both versions have been compiled with Borland
C�C�� compiler with all optimizations �fastest code�
i��� instructions� turned on�

The �oating point code generated by the compiler
consists of assembler statements that re�ect the sequen�
tial execution order of the C source� Thus ine�cient
code is produced� because it doesn
t utilize the potential
parallelism between CPU and �oating point unit �FPU��
the latter being known as numeric coprocessor for for�
mer Intel processors up to i���� While one �oating point
instruction is started on the FPU� the CPU is free for
further commands� Only when synchronization between
them is necessary� an FWAIT instruction waits for the
coprocessor to �nish calculation� The reference assem�
bly code has the FPU commands embedded within CPU
code� so a highly parallel execution results� In the code
generated by the compiler the utilization of registers for
pointers �index registers� is not optimal� In the assembly
reference code all variables except the arrays are held in
registers�

The reference code holds the accumulated value af�
ter multiplication xi � hN�i on the coprocessors stack
instead of storing and retrieving it to�from memory� like
the compiler does� Data memory optimization comes
along with register use automatically� but a new loop
structure saves program space� too� The compiler imple�
ments the for loop unnecessarily with a test before the
�rst loop instruction� This is not done in the reference
code� The epilog section is put into the loop� too� thus
saving further program memory space�

The �xed�point versions of the reference and compi�
led code di�er much less than in the �oating�point case�
However reorganizing the loop and using registers in�
stead of memory� has improved the code for additional

� percent�

VII� Conclusions

The relatively low e�ciency of the �xed�point C compi�
lers on ANSI C code is a result which is not a surprise for
DSP programmers� The �xed�point processor architec�
tures cannot be programmed properly using a language
�ANSI C� and compiler techniques which are introduced
for a quite di�erent type of processing� From the measu�
rement results it is obvious that these problems can be
solved� The NEC �PD����� compiler and its support
for language extensions is a good example�

More surprising is the relatively high overhead of the
�oating�point compilers� With an overhead in execution
time between
	� and ��� percent on ANSI C code� they
are more e�cient than the �xed�point compilers� but it
is hard to expect that they can be directly used for any
production�quality code development� Also� in this case
language extensions can enormously improve e�ciency�

The relatively low e�ciency of the GPP compilers
is surely something what we have not expected� On a
�oating�point FIR �lter benchmark the Borland compi�
ler was not able to detect the possibility for concurrent
operation with the FPU unit� As a result an overhead of
��� percent resulted� This is higher than for any of the
�oating�point DSP compilers� It can be concluded that
even from the compiler point of view� the GPP processors
cannot be a serious competitor for the DSP processors as
far as typical DSP�type code is concerned� In the inte�
ger case the GPP compiler was able to deliver

 percent
overhead in execution time� which is the best result on
ANSI C code among all compilers� However� it is still
higher than the results obtained by using C language
extensions of DSP compilers�

It can be concluded that for DSP�type code DSP pro�
cessors cannot be replaced by their powerful GPP rela�
tives� Typical application domains� like baseband pro�
cessing in modems� will still need DSP�like architectures
despite of the relative ine�ciency of DSP compilers�

We are aware of the fact that FIR �ltering cannot
be used as the only performance indicator for compilers�
However� the concentration on one benchmark in this
paper enabled us to discuss the results in more details�
The complete DSPstone suite contains over
� bench�
marks and should provide a complete picture about the
state�of�the�art DSP and GPP compilers� Our e�orts
concentrate at this moment on benchmarking of control�
type code� It can be expected that in this case the GPP
processors and compilers will show all their power� We
hope to report these results very soon�

VIII� References

�	� V� �Zivojnovi�c� J� Mart�inez� C� Schl�ager� and H� Meyr�
 DSPstone� A DSP�oriented benchmarking metho�
dology�! in Proc� of ICSPAT��
 � Dallas� Oct� 	����

�
� M� Levy and J� Leonard� EDN
s DSP�chip direc�
tory�! EDN Magazine� May 	����

