
In the Proceedings of ICSPAT���� Boston� USA� pp� ���� 	��
�

SUPERSIM � A NEW TECHNIQUE FOR SIMULATION OF

PROGRAMMABLE DSP ARCHITECTURES

V� �Zivojnovi�c� S� Pees� Ch� Schl�ager� R� Weber� and H� Meyr

Integrated Systems for Signal Processing

Aachen University of Technology

Templergraben ��� ������Aachen� Germany

ABSTRACT

This paper presents a technique for simulating

DSP processors based on the principle of com�

piled simulation� Unlike existing� commercially

available instruction set simulators for DSP pro�

cessors� which are of interpretive character� the

proposed technique performs instruction deco�

ding and simulation scheduling at compile time�

The technique o�ers up to three orders of ma�

gnitude faster simulation� The high speed al�

lows the user to explore algorithms and hard�

ware�software trade�o�s before any hardware im�

plementation� Moreover� the user can tailor the

compiled simulation to trade speed for more ac�

curacy� In this paper� the sources of the immense

speedup are analyzed and the realization of the

simulation compiler is presented�

I� Introduction

Designers of today�s DSP systems � such as digi�
tal cellular phones and multimedia systems � face
rising complexity and quickly changing system re�
quirements� To deal with these challenges� designers
have increasingly turned to programmable architec�
tures as the basis for their DSP systems� The 	exi�
bility inherent in such architectures allows designers
to accommodate late design changes and to
x bugs
even after shipping the systems� Moreover� the 	exi�
bility promises shorter design time� thus decreasing
time�to�market�

In the past� programmable processors played a
peripheral role� they performed control and interface
functions while ASICs provided key DSP functions�
Today� with the advent of much higher performance
digital signal processors� they play a much larger
role� providing key DSP functions as well as control
and interfacing� and relegating ASICs to the role of

accelerators� Correspondingly� the amount and com�
plexity of DSP code have increased introducing the
need for new powerful software development tools�

Instruction set architecture �ISA simulators of
the processor� such as instruction set simulators are
standard part of tool�sets supplied with o��the�shelf
or in�house DSP processor� They enable comforta�
ble debugging through controlled program execution
and provide visibility of processor resources neces�
sary for code development� All currently available
instruction set simulators use the interpretive simu�
lation technique� Their main disadvantage is the low
simulation speed� In the sequel we shall see that this
represents a serious limitation for use of ISA simu�
lators in DSP code design and veri
cation�

This paper presents a new approach to ISA mo�
deling that is fast enough to enable code veri
cation
and statistical exploration of algorithms without any
hardware components� Instead of the standard inter�
pretive technique� it uses the technique of compiled
simulation� We have observed three orders of ma�
gnitude improvement in speed over standard inter�
pretive simulators on some examples� Typical spee�
dups are between one and two orders of magnitude�
The new techniques is able to close the speed�gap
between simulation and real�time execution on the
processor to only one order of magnitude�

Because of its ability to be tailored to each new
simulation� our compiled simulator � SuperSim �
can be used in di�erent kinds of simulation tasks�
We can write behavioral hardware models in C and
attach them using subroutine calls to the compiled
simulator �i�e� behavioral simulation� We can em�
bed our simulator within system�level simulation en�
vironments such as COSSAP� DSPstation� Ptolemy�
or SPW� This combination lets us verify algorithms
using the exact arithmetic properties of the target
processor �i�e� bit�true simulation� We can have the
simulator compiler insert code that mimic instruc�

tion pipelines� Thus we can estimate the number of
clock cycles that the software will require between
real�time events �i�e� clock�true simulation� We can
connect the compiled simulator to a VHDL or VER�
ILOG simulator to verify hardware that interfaces
directly to simulated�processor pins� The simulator
compiler achieves this by inserting code that commu�
nicates pin updates to the hardware simulator �i�e�
pin�accurate simulation�

Compiled simulation does not limit debugging�
Our approach provides links from the compiled code
to the original source program for the simulated�
processor code� The links allow the use of a stan�
dard C�language debugger �such as dbx on the tar�
get program� Thus� designers can debug the code
just as they would with a vendor�supplied interpre�
tive simulator�

The compiled simulation technique we use for our
simulator is well known in simulation of hardware
circuits� e�g� ���� We follow the same general idea�
but apply it to the simulation of the instruction set
architecture� Our approach resembles binary trans�
lation used for migrating executables from one ma�
chine to another ���� or collecting run�time statistics
���� However� clock�bit�true translation and debug�
ging are not objectives of binary translation�

II� Fast ISA Simulation

The following three examples shall provide an insi�
ght into the role of fast ISA simulation in DSP code
design� joint DSP processor�compiler design� as well
as in the general model�before�silicon approach�

DSP Code Verication

On Fig� � a typical DSP software design 	ow is
depicted� Although algorithm design and assembly
code programming are probably the most complex
tasks� veri
cation is surely the most time�consuming�
According to some estimates� almost ��� of the over�
all design time is spent on veri
cation�

Veri
cation of the code can be done either using
a hardware or a software model of the processor�
Hardware models in form of emulators� or
nal tar�
get system� permit fast veri
cation� but o�er only
poor debugging support� For example� if debugging
is done with the processor itself� pipelining e�ects
cannot be followed� Also� the realization of the mo�
del is costly in terms of time and money� and 	exi�
bility of the model for user�s interventions low�

Software models of the processor provide opti�
mum debugging comfort� Also� model realization

problem specification

algorithm

software prototype

verification

assembly code

product code

processor model
 in software

debugging comfort
model flexibility

model realization

processor model
 in hardware

simulation speed

Figure �� Code Veri
cation�

consists in writing software which is less costly than
building hardware� In the same time the 	exibility
of the model is very high � re�designs and exten�
sions are done by simple re�coding of the modeling
program� Using a software model of the processor
can signi
cantly shorten time�to�market of the pro�
duct� The main obstacle is the relatively low simu�
lation speed� Fig� � presents simulation speed as
a function of the accuracy level for di�erent proces�
sor models� Depending on the necessary accuracy
level� processor simulators can simulate between �
instruction and ���M instructions per second on a
��� MIPS machine� The ISA simulation level in�
cludes all the details of the processor which are of
interest to the DSP software developer� Currently�
ISA models can simulate between �K and ��K in�
sns�s ���� This is mostly not fast enough for code

accuracy
 level

 speed
[insns/sec]

program

ISA

statement

instru
ctio

n
clock

O-level

nano-second

pipeline

bus-functional

gate

10

10

10

10

1

2

4

6

8

100MIPS machine

Figure �� Modeling Accuracy vs� Simulation Speed�

veri
cation� The following example gives an illust�
ration� Our example arises from the development
of the ADPCM G���� and G���� speech transco�
ders for the Digital European Cordless Telecommu�
nications �DECT and Digital Circuit Multiplication
Equipment �DCME applications using an o��the�
shelf DSP processor� O��line veri
cation of the soft�
ware implementation ���� millions instructions on
the standard set of CCITT�ITU test sequences ���
seconds of speech signals on the target processor
takes � seconds� The same veri
cation using the in�

struction set simulator ��K insns�s provided by the
DSP chip vendor takes approximately ��� hours on
an �� MIPS machine �Sparc����

Unfortunately� a complete statistical analysis of
the algorithm required to estimate signal�to�noise ra�
tio �SNR� bit�error�rate �BER� or word�length de�
pendent accuracy would require far more than ��
seconds of real�time signals� When designs have to
be veri
ed using statistical methods� state�of�the�art
processor simulators prove inadequate� The designer
has to use a prototype or hardware emulation� Both
prospects increase costs and development time enor�
mously�

Joint Processor�Compiler Design

DSP processor and compiler have to be designed in a
joint fashion if optimum results are expected� Figure
� presents the design 	ow in which the processor
and the compiler are simultaneously tuned in order
to improve quantitative performance data measured
on a set of typical DSP benchmarks� In this case

processor
 design

compiler
 design

 fast ISA
simulation

 quantitative
performance
 data

benchmarks

 ISA
definition

generated
 code

Figure �� Joint DSP Processor�Compiler Design�

fast ISA model plays a crucial role� Moreover� it
cannot be replaced by a hardware model� because
the processor is still in design� If the ISA simulation
is slow� most of the time of the design cycle is spent
on waiting for quantitative performance data�

Model�Before�Silicon

In order to shorten time from ISA speci
cation to

nal product release� DSP hardware and software
suppliers are increasingly adopting the model�before�
silicon approach well known in the
eld of general
purpose hardware and software design� Figure �
depicts its main idea�

After de
ning the ISA of the processor� the ISA
simulator is built permitting the design of silicon�
software tools and application to continue in parallel�

 ISA processor silicon software tools application

application

ISA processor silicon

 ISA
simulator

software tools

shortened product
development time

product

product

time

 model
- after -
 silicon

 model
- before -
 silicon

Figure �� Model�After�Before�Silicon�

As a result� product development time is shortened�
ISA simulators are the crucial part of this approach�
They have to be accurate and fast enough in order
to ful
ll the needs of processor� tools and application
designers� The standard approach to use VHDL mo�
dels for ISA simulation mostly failed because of the
low simulation speed�

III� Compiled Simulation of Programmable
Architectures

Interpretive simulators process instructions using a
software model of the target processor� A virtual
processor� i�e� ISA model� is built using a data struc�
ture representing the state of the processor and a
program which changes the processor state accor�
ding to the stimuli � either a new instruction poin�
ted to by the program sequencer� or some external
events� such as interrupts� In general� interpretive
simulators can be summarized as a loop in which in�
structions are fetched� decoded� and executed using
a �big switch� statement� such as the one below�

while�run� �

next � fetch�PC��

insn � decode�next��

switch �insn� �

���

add� exe�add��� break�

���

�

�

Our approach translates each target instruction di�
rectly to one or more host instructions� For example�
if the following three target instructions

add r	
r��

mov r�
mem��x	���

mul r�
r��

are interpreted� the above simulation loop iterates
once for each instruction� The compiled simulation

approach translates the target instructions into the
following host instructions� represented here as ma�
cros�

ADD��R	
�R��� SAT��R��� ADJ�FL��R��� PC���

MOV��R�
MEM��x	���� ADJ�FL��� PC���

MUL��R�
�R��� SAT��R��� ADJ�FL��R��� PC���

The translation completely eliminates the fetch and
decode steps� and loop overheads of interpretation�
resulting in a faster simulation� For target processors
with complex instruction encoding� the decode step
can account for a signi
cant amount of time�

Additional speedup is created because compiled
simulation generates code tailored to the required
accuracy level� while an interpreter provides a
xed
level of accuracy� For example� if interrupts are not
required� compiled simulation suppresses the simu�
lation of the interrupt logic already during the pre�
processing�

However� compiled simulation assumes that the
code does not change during run�time� Therefore
self�modifying programs will force us to use a hy�
brid interpretive�compiled scheme� Fortunately� self�
modifying programs are rare� The isolated cases in
DSP programming we encountered so far are limited
to programs that change the target address in branch
instructions� This type of self�modifying code� ho�
wever� can be easily handled without interpreting�

The binary�to�binary translation process can be
organized in two ways� The direct approach transla�
tes target binary to host binary directly �Fig� �a� It
guarantees fast translation and simulation times� but
the translator is more complex and less portable bet�
ween hosts� To simplify the translator and improve
its portability� we split the translation process into
two parts�compile the target code to a program
written in a high�level language such as C �front�end
processing� and then compile the program into host
code �back�end processing �Fig� �b� In this way we

C compiler
simulation
compiler

simulation
compiler

target
binary

 C
program

 host
binary

b)

target
binary

 host
binary

a)

Figure �� Two Approaches to Binary�To�Binary
Translation�

take advantage of existing compilers on the host and

we reduce the realization of the simulation compiler
to building the front�end� Portability is greatly im�
proved but with a possible loss in simulation speed�

Some features of machine code are di�cult to re�
present in a high�level language� For example� in the
absence of very sophisticated analysis� compiled si�
mulation must assume that every instruction can be
a target of an indirect branch statement� Therefore�
every compiled instruction must have a label� and
computed goto or switch statements are used to si�
mulate indirect branching� These labels reduce the
e�ectiveness of many compiler optimizations� For
DSP architectures� indirect branches are the main
problem in compiled simulation ����

IV� Realization of the Simulation Compiler
and Results

The simulation environment SuperSim SS���xx has
been implemented for the Analog Devices ADSP�
��xx family of DSP processors� It consists of the si�
mulation compiler �ssc� host C compiler �gcc� and
C source level debugger �dbx� This enables cycle�
and bit�true behavioral simulation of the processor
in a comfortable debugging environment�

The ssc simulation compiler has a form of a two�
pass translator with a translation speed of about
���� target insns�s �Sun������MB� Translating the
whole program memory ��� Kinsns of the ADSP�
���� into intermediate C representation takes less
than �� seconds� To enable additional trade�o� bet�
ween recompilation and execution speed� the simu�
lation compiler can translate target instructions into
intermediate C code using macros or function calls�

Compiling the intermediate C code to the host
executable takes most of the overall translation time�
For the version with function�calls the compilation
speed of the gcc������ compiler with optimization
�O� was about �� target insns�s ��� target insns�s
for �O��

Table � presents some real�life examples of SS�
��xx performance� Simulation speed measured in
insns�s depends on the complexity of instructions
found in the target code� The FIR
lter example is
generated by the C compiler of the target that ge�
nerates compound instructions rarely� However� the
ADPCM example is hand�coded optimally and uses
complex compound instructions frequently� The
results from Table � show that our simulator ou�
tperforms the standard simulator by almost three
orders of magnitude on the FIR example and by ab�
out ��� times on the ADPCM example� The same
veri
cation which took ��� hours with the standard

example simulator opt� insns�s speedup

FIR �lter ADSP���xx � ���K �

SS���xx �O� ���M 	
�

��� �O� ���M ���

��� �O� ��	M
��

TI�C�� � ��
K �

SS�C��y �O� ��M ���

SS�����	y �O� ��M �

ADPCM ADSP���xx �
��K �

SS���xx �O� ��M ���

��� �O� ��	M ���

��� �O� ��
M ���

host� Sun����	
MB� SS���xx �ags� �f
compiler� gcc ����� y�preliminary results�

Table �� Simulation Examples � Measurement Re�
sults�

ADSP���xx simulator is reduced to less than � mi�
nutes using SuperSim�

The ADSP���xx does not have a visible pipe�
line� In order to prove our concepts on architectures
with pipeline e�ects we have written compiled simu�
lation examples for the TI�s TMS���C�� and NEC�s
�PD����� processors� Despite overhead introduced
for pipeline modeling� results from Table � show that
our approach still achieves signi
cant speedup� A
detailed analysis of compiled simulation of pipelines
is provided in ����

Moreover� our simulator o�ers full debugging sup�
port using the standard C level debugger �e�g� dbx

or gdb� It o�ers breakpoint setting and watching
of registers� memory� 	ags� stack and pins� This is
a large advantage compared to standard DSP de�
buggers which are highly target dependent� Figure
� shows an example of the graphical user interface
of the dbxtool debugger which was adapted to exe�
cute C code of the simulator� and in the same time
display assembly instructions of the target or the C
code of the simulator� If the attached hardware is
modeled in C� the same debugger can be used for
debugging of software and hardware�

In order to enable control of external events which
occur in parallel with code execution� the simulation
compiler is able to generate cycle�hooks� which are
executed before or after each clock�cycle� Also� the
user can easily insert his own hooks using simple la�
bels in the assembly code of the target�

Figure �� Debugging with SuperSim�

V� HW�SW Co�Simulation

The SuperSim simulator can be used in a simulation
of both the hardware and the software components�
We have connected SuperSim to behavioral models
of hardware components as shown in Figure �� This
example shows an A�D converter and its glue lo�
gic attached to a DSP processor� Communication

D0..D11

IRQ2

A0..A13

Q0..Q11

A0..A13

D0..D11

OE

OC

EOC

7404
Inverter

GAL
(Adr−Dec)

Timer

AD 578
ADC

ADSP 2101

74 373
Latch

OUT
OUT

D0..D11

EOC

ANALOG
IN

ST_CONV

SuperSim behavioral model of the hardwarecycle−hooks

Figure �� HW�SW Co�Simulation Using SuperSim�

between software and hardware is mediated by cy�
cle hooks� The hooks pass control to the hardware
model which is written in C� The hooks also accept
data from the hardware models� When the hard�
ware models are written in C� the hooks are sim�
ple calls� However� when the models are written in
HDL� the hooks are more complicated� They must
synchronize SuperSim to the HDL simulator and also
convert data values before and after communicating
with the HDL simulator�

VI� Compiled Simulation and System�Level
Design Tools

System�level design tools like COSSAP �Synopsys�
DSPstation �Mentor� Ptolemy �Berkeley University
or SPW �Alta Group can easily take advantage of
the compiled simulation in order to deliver bit�true
simulation using the ISA model of the DSP proces�
sor� Figure � shows how SuperSim can be used to
obtain bit�true simulation for one or more functional
blocks� This toy example consists of three proces�

ppgeni.c dmpni.c

fir16i.exe

fir16i.ss.c

SuperSim

System-Level
 Simulator

Block-Diagram Editor

Figure �� System�Level Simulation with SuperSim�

sing blocks� Whereas for the sink and source blocks
the provided C functional templates are used� the
functionality of the third block is described by the
binary code for some target processor� in this case
the ADSP��xx DSP processor from Analog Devices�
In order to permit execution without using processor
hardware� SuperSim converts the binary code into
bit�equivalent C code� which is then used as the C
functional template for system�level simulation�

Currently system�level design tools provide the
same functionality by interfacing the bit�true model
to the interpretive instruction set simulator which
runs as a separate process� The disadvantages of
this approach are�

� low speed and 	exibility of standard ISA simu�
lators�

� multiple instantiations of the ISA simulator
are necessary if multiple functional blocks are
simulated in a bit�true fashion�

� interfacing the system�level and instruction�set
simulator introduces a high overhead�

� di�erent debuggers are used for system�level
and instruction set simulation�

All these disadvantages disappear if SuperSim is used�
SuperSim o�ers to the designer a fast� 	exible and
comfortable simulation and debugging environment
for bit�� cycle�� pipeline� and pin�true simulation of
the DSP processor�

VII� Conclusions

Compiled simulation provides very fast and accurate
instruction set simulation� The presented SuperSim
simulation environment generates bit�� cycle�� and
pin�accurate DSP processor simulation engines that
are two to three orders of magnitude faster than in�
terpretive simulators� Moreover� standard source le�
vel debuggers o�er a comfortable debugging envi�
ronment and the intermediate representation in C is
open for extensions by the designer� The presented
compiled simulator is easily interfaced to behavioral
hardware models� In addition to fast simulation� it
o�ers a comfortable debugging environment in which
hardware and software are debugged using the same
debugger�

Currently� recompilations �with SuperSim after
design changes are relatively slow� Though recompi�
lation will always take additional time relative to in�
terpretation� we believe that we can reduce the time
to a tolerable level by limiting recompilation only
to code that has changed� Moreover� a SuperSim�
interpreter hybrid� in addition to alleviating the pro�
blems of indirect branches� can provide fast simula�
tion speed� as well as fast turn�around time on design
changes�

VIII� References

��� Z� Barzilai� et al�� �HSS � A high speed simula�
tor�� IEEE Trans� on CAD� vol� CAD��� pp� ����
���� July ����� �����

��� R� Sites� et al�� �Binary translation�� Comm� of
the ACM� vol� ��� pp� ������ Feb� �����

��� J� Davidson and D� Whalley� �A design environ�
ment for addressing architecture and compiler in�
teractions�� Microprocessors and Microsystems�
vol� ��� pp� �������� Nov� �����

��� J� Rowson� �Hardware�Software co�simulation��
in ��st ACM�IEEE Design Automation Confe�
rence� �����

��� V� �Zivojnovi�c� et al�� �Compiled simulation of
programmable DSP architectures�� in Proc� of
���� IEEE Workshop on VLSI in Signal Proces�
sing� Osaka� Japan� Oct� �����

