In the Proceedings of ICSPAT 95, Boston, USA, pp. 1748 1763

SUPERSIM — A NEW TECHNIQUE FOR SIMULATION OF
PROGRAMMABLE DSP ARCHITECTURES

V. Zivojnovié, S. Pees, Ch. Schliger, R. Weber, and H. Meyr

Integrated Systems for Signal Processing

Aachen University of Technology

Templergraben 55, 52056-Aachen, Germany

ABSTRACT

This paper presents a technique for simulating
DSP processors based on the principle of com-
piled simulation. Unlike existing, commercially
available instruction set simulators for DSP pro-
cessors, which are of interpretive character, the
proposed technique performs instruction deco-
ding and simulation scheduling at compile time.
The technique offers up to three orders of ma-
gnitude faster simulation. The high speed al-
lows the user to explore algorithms and hard-
ware/software trade-offs before any hardware im-
plementation. Moreover, the user can tailor the
compiled simulation to trade speed for more ac-
curacy. In this paper, the sources of the immense
speedup are analyzed and the realization of the
simulation compiler is presented.

I. Introduction

Designers of today’s DSP systems — such as digi-
tal cellular phones and multimedia systems — face
rising complexity and quickly changing system re-
quirements. To deal with these challenges, designers
have increasingly turned to programmable architec-
tures as the basis for their DSP systems. The flexi-
bility inherent in such architectures allows designers
to accommodate late design changes and to fix bugs
even after shipping the systems. Moreover, the flexi-
bility promises shorter design time, thus decreasing
time-to-market.

In the past, programmable processors played a
peripheral role: they performed control and interface
functions while ASICs provided key DSP functions.
Today, with the advent of much higher performance
digital signal processors, they play a much larger
role, providing key DSP functions as well as control
and interfacing, and relegating ASICs to the role of

accelerators. Correspondingly, the amount and com-
plexity of DSP code have increased introducing the
need for new powerful software development tools.

Instruction set architecture (ISA) simulators of
the processor, such as instruction set simulators are
standard part of tool-sets supplied with off-the-shelf
or in-house DSP processor. They enable comforta-
ble debugging through controlled program execution
and provide visibility of processor resources neces-
sary for code development. All currently available
instruction set simulators use the interpretive simu-
lation technique. Their main disadvantage is the low
simulation speed. In the sequel we shall see that this
represents a serious limitation for use of ISA simu-
lators in DSP code design and verification.

This paper presents a new approach to ISA mo-
deling that is fast enough to enable code verification
and statistical exploration of algorithms without any
hardware components. Instead of the standard inter-
pretive technique, it uses the technique of compiled
simulation. We have observed three orders of ma-
gnitude improvement in speed over standard inter-
pretive simulators on some examples. Typical spee-
dups are between one and two orders of magnitude.
The new techniques is able to close the speed-gap
between simulation and real-time execution on the
processor to only one order of magnitude.

Because of its ability to be tailored to each new
simulation, our compiled simulator — SuperSim —
can be used in different kinds of simulation tasks.
We can write behavioral hardware models in C and
attach them using subroutine calls to the compiled
simulator (i.e. behavioral simulation). We can em-
bed our simulator within system-level simulation en-
vironments such as COSSAP, DSPstation, Ptolemy,
or SPW. This combination lets us verify algorithms
using the exact arithmetic properties of the target
processor (i.e. bit-true simulation). We can have the
simulator compiler insert code that mimic instruc-

tion pipelines. Thus we can estimate the number of
clock cycles that the software will require between
real-time events (i.e. clock-true simulation). We can
connect the compiled simulator to a VADL or VER-
ILOG simulator to verify hardware that interfaces
directly to simulated-processor pins. The simulator
compiler achieves this by inserting code that commu-
nicates pin updates to the hardware simulator (i.e.
pin-accurate simulation).

Compiled simulation does not limit debugging.
Our approach provides links from the compiled code
to the original source program for the simulated-
processor code. The links allow the use of a stan-
dard C-language debugger (such as dbx) on the tar-
get program. Thus, designers can debug the code
just as they would with a vendor-supplied interpre-
tive simulator.

The compiled simulation technique we use for our
simulator is well known in simulation of hardware
circuits, e.g. [1]. We follow the same general idea,
but apply it to the simulation of the instruction set
architecture. Our approach resembles binary trans-
lation used for migrating executables from one ma-
chine to another [2], or collecting run-time statistics
[3]. However, clock/bit-true translation and debug-
ging are not objectives of binary translation.

II. Fast ISA Simulation

The following three examples shall provide an insi-
ght into the role of fast ISA simulation in DSP code
design, joint DSP processor-compiler design, as well
as in the general model-before-silicon approach.

DSP Code Verification

On Fig. 1 a typical DSP software design flow is
depicted. Although algorithm design and assembly
code programming are probably the most complex
tasks, verification is surely the most time-consuming.
According to some estimates, almost 70% of the over-
all design time is spent on verification.

Verification of the code can be done either using
a hardware or a software model of the processor.
Hardware models in form of emulators, or final tar-
get system, permit fast verification, but offer only
poor debugging support. For example, if debugging
1s done with the processor itself, pipelining effects
cannot be followed. Also, the realization of the mo-
del is costly in terms of time and money, and flexi-
bility of the model for user’s interventions low.

Software models of the processor provide opti-
mum debugging comfort. Also, model realization

problem specification
algorithm

) software prototype
debugging comfort
model flexibility
model realization assemk;ly code simulation speed
Pemmesmmemme—a————, Femmemme—mm———————.
processor model i processor model

1

! e .
X 1 <> verification <—> 1 X
in software H v ! in hardware

product code

Figure 1: Code Verification.

consists in writing software which is less costly than
building hardware. In the same time the flexibility
of the model is very high — re-designs and exten-
sions are done by simple re-coding of the modeling
program. Using a software model of the processor
can significantly shorten time-to-market of the pro-
duct. The main obstacle is the relatively low simu-
lation speed. Fig. 2 presents simulation speed as
a function of the accuracy level for different proces-
sor models. Depending on the necessary accuracy
level, processor simulators can simulate between 1
instruction and 100M instructions per second on a
100 MIPS machine. The ISA simulation level in-
cludes all the details of the processor which are of
interest to the DSP software developer. Currently,
ISA models can simulate between 2K and 20K in-
sns/s [4]. This is mostly not fast enough for code

speed
[insns/sec] A

program 100MIPS machine

\Y o N) QS accuracy
e 0O o¢ N o
SONE AT oo level

Figure 2: Modeling Accuracy vs. Simulation Speed.

verification. The following example gives an illust-
ration. Our example arises from the development
of the ADPCM G.721 and G.726 speech transco-
ders for the Digital European Cordless Telecommu-
nications (DECT) and Digital Circuit Multiplication
Equipment (DCME) applications using an off-the-
shelf DSP processor. Off-line verification of the soft-
ware implementation (~93 millions instructions) on
the standard set of CCITT-ITU test sequences (13
seconds of speech signals) on the target processor
takes 7 seconds. The same verification using the in-

struction set simulator (4K insns/s) provided by the
DSP chip vendor takes approximately 6.4 hours on
an 86 MIPS machine (Sparc-10).

Unfortunately, a complete statistical analysis of
the algorithm required to estimate signal-to-noise ra-
tio (SNR), bit-error-rate (BER), or word-length de-
pendent accuracy would require far more than 13
seconds of real-time signals. When designs have to
be verified using statistical methods, state-of-the-art
processor simulators prove inadequate. The designer
has to use a prototype or hardware emulation. Both
prospects increase costs and development time enor-
mously.

Joint Processor-Compiler Design

DSP processor and compiler have to be designed in a
joint fashion if optimum results are expected. Figure
3 presents the design flow in which the processor
and the compiler are simultaneously tuned in order
to improve quantitative performance data measured
on a set of typical DSP benchmarks. In this case

benchmarks
ISA
definition)
processor _______ compiler
design H design

quantitative generated
perfgrrtnance code
ata
fast ISA
simulation

Figure 3: Joint DSP Processor-Compiler Design.

fast ISA model plays a crucial role. Moreover, it
cannot be replaced by a hardware model, because
the processor is still in design. If the ISA simulation
1s slow, most of the time of the design cycle is spent
on waiting for quantitative performance data.

Model-Before-Silicon

In order to shorten time from ISA specification to
final product release, DSP hardware and software
suppliers are increasingly adopting the model-before-
stlicon approach well known in the field of general
purpose hardware and software design. Figure 4
depicts its main idea.

After defining the ISA of the processor, the ISA
simulator is built permitting the design of silicon,
software tools and application to continue in parallel.

product }
model
- after - | ISA | processor | silicon |Soflwarelools|application
silicon
time >
i shortened product
| 1A processer Silicon development time
ISA f
model sl | software tools |
- before - —
silicon application
4}product

Figure 4: Model-After/Before-Silicon.

As a result, product development time is shortened.
ISA simulators are the crucial part of this approach.
They have to be accurate and fast enough in order
to fulfill the needs of processor, tools and application
designers. The standard approach to use VHDL mo-
dels for ISA simulation mostly failed because of the
low simulation speed.

ITI. Compiled Simulation of Programmable
Architectures

Interpretive simulators process instructions using a
software model of the target processor. A virtual
processor, i.e. ISA model, is built using a data struc-
ture representing the state of the processor and a
program which changes the processor state accor-
ding to the stimuli — either a new instruction poin-
ted to by the program sequencer, or some external
events, such as interrupts. In general, interpretive
simulators can be summarized as a loop in which in-
structions are fetched, decoded, and executed using
a “big switch” statement, such as the one below:

while(run) {
next = fetch(PC);
insn = decode(next);
switch (insn) {

add: exe_add(); break;

}

Our approach translates each target instruction di-
rectly to one or more host instructions. For example,
if the following three target instructions

add r1,r2;
mov r2,mem(0x175);
mul r2,r3;

are interpreted, the above simulation loop iterates
once for each instruction. The compiled simulation

approach translates the target instructions into the
following host instructions, represented here as ma-
Cros:

ADD(_R1,_R2); SAT(_R2); ADJ_FL(_R2); PCQ);
MOV(_R2,MEM(0x175)); ADJ_FL(O); PC();
MUL(_R2,_R3); SAT(_R3); ADJ_FL(_R3); PC(Q);

The translation completely eliminates the fetch and
decode steps, and loop overheads of interpretation,
resulting in a faster simulation. For target processors
with complex instruction encoding, the decode step
can account for a significant amount of time.

Additional speedup is created because compiled
simulation generates code tailored to the required
accuracy level, while an interpreter provides a fixed
level of accuracy. For example, if interrupts are not
required, compiled simulation suppresses the simu-
lation of the interrupt logic already during the pre-
processing.

However, compiled simulation assumes that the
code does not change during run-time. Therefore
self-modifying programs will force us to use a hy-
brid interpretive-compiled scheme. Fortunately, self-
modifying programs are rare. The isolated cases in
DSP programming we encountered so far are limited
to programs that change the target address in branch
instructions. This type of self-modifying code, ho-
wever, can be easily handled without interpreting.

The binary-to-binary translation process can be
organized in two ways. The direct approach transla-
tes target binary to host binary directly (Fig. 5a). It
guarantees fast translation and simulation times, but
the translator is more complex and less portable bet-
ween hosts. To simplify the translator and improve
its portability, we split the translation process into
two parts—compile the target code to a program
written in a high-level language such as C (front-end
processing), and then compile the program into host
code (back-end processing) (Fig. 5b). In this way we

target host
binary simulation binary
— .
compiler
a)
target C host
binary simulation program binary
g C compiler [—p

compiler

b)

Figure 5: Two Approaches to Binary-To-Binary
Translation.

take advantage of existing compilers on the host and

we reduce the realization of the simulation compiler
to building the front-end. Portability is greatly im-
proved but with a possible loss in simulation speed.

Some features of machine code are difficult to re-
present in a high-level language. For example, in the
absence of very sophisticated analysis, compiled si-
mulation must assume that every instruction can be
a target of an indirect branch statement. Therefore,
every compiled instruction must have a label, and
computed goto or switch statements are used to si-
mulate indirect branching. These labels reduce the
effectiveness of many compiler optimizations. For
DSP architectures, indirect branches are the main
problem in compiled simulation [5].

IV. Realization of the Simulation Compiler
and Results

The simulation environment SuperSim SS-21xx has
been implemented for the Analog Devices ADSP-
21xx family of DSP processors. It consists of the si-
mulation compiler (ssc), host C compiler (gcc), and
C source level debugger (dbx). This enables cycle-
and bit-true behavioral simulation of the processor
in a comfortable debugging environment.

The ssc simulation compiler has a form of a two-
pass translator with a translation speed of about
1500 target insns/s (Sun-10/64MB). Translating the
whole program memory (16 Kinsns) of the ADSP-
2105 into intermediate C representation takes less
than 11 seconds. To enable additional trade-off bet-
ween recompilation and execution speed, the simu-
lation compiler can translate target instructions into
intermediate C code using macros or function calls.

Compiling the intermediate C code to the host
executable takes most of the overall translation time.
For the version with function-calls the compilation
speed of the gcc-2.5.8 compiler with optimization
-01 was about 24 target insns/s (12 target insns/s
for -03).

Table 1 presents some real-life examples of SS-
21xx performance. Simulation speed measured in
insns/s depends on the complexity of instructions
found in the target code. The FIR filter example is
generated by the C compiler of the target that ge-
nerates compound instructions rarely. However, the
ADPCM example is hand-coded optimally and uses
complex compound instructions frequently. The
results from Table 1 show that our simulator ou-
tperforms the standard simulator by almost three
orders of magnitude on the FIR example and by ab-
out 200 times on the ADPCM example. The same
verification which took 6.4 hours with the standard

| example | simulator | opt. | insns/s | speedup |

FIR filter | ADSP-21xx - 3.9K 1

SS-21xx -03 2.5M 640

-7 -02 2.0M 510

-7 -01 1.6M 420

TI-C50 - 2.4K 1

SS-C507 -03 | 0.8M 320

ss-77016" [-03 | 0.8M -

ADPCM | ADSP-21xx - 4.0K 1

SS-21xx -03 0.8M 200

-7 -02 0.6M 150

-7 -01 0.4M 100
host: Sun-10/64MB; SS-21xx flags: -f
compiler: gcc 2.5.8; {-preliminary results;

Table 1: Simulation Examples - Measurement Re-
sults.

ADSP-21xx simulator is reduced to less than 2 mi-
nutes using SuperSim.

The ADSP-21xx does not have a visible pipe-
line. In order to prove our concepts on architectures
with pipeline effects we have written compiled simu-
lation examples for the TT’s TMS320C50 and NEC’s
puPD77016 processors. Despite overhead introduced
for pipeline modeling, results from Table 1 show that
our approach still achieves significant speedup. A
detailed analysis of compiled simulation of pipelines
is provided in [5].

Moreover, our simulator offers full debugging sup-
port using the standard C level debugger (e.g. dbx
or gdb). It offers breakpoint setting and watching
of registers, memory, flags, stack and pins. This is
a large advantage compared to standard DSP de-
buggers which are highly target dependent. Figure
6 shows an example of the graphical user interface
of the dbxtool debugger which was adapted to exe-
cute C code of the simulator, and in the same time
display assembly instructions of the target or the C
code of the simulator. If the attached hardware is
modeled in C, the same debugger can be used for
debugging of software and hardware.

In order to enable control of external events which
occur in parallel with code execution, the simulation
compiler is able to generate cycle-hooks, which are
executed before or after each clock-cycle. Also, the
user can easily insert his own hooks using simple la-
bels in the assembly code of the target.

] SuperSim-adpcm.sst

Stopped in File: adpcm.dis Func: main Line: 548
File Displayed: adpcm.dis Lines: 540-555
00AE: if Tt ar = pass 0;
00A7: sr = sr or Ishift ar by 4 (Tad;
00A8: ayl = 255;

0043 ar = s xor ayD; i
00AA: rts;
00AB: EXPAND:

= 255;
00AC: af = ar and ay0, ax0 = ayl;
= 00AD: af = ax0 xor af;

DOAF | ar = axd and af;
% 00BO: sr = 1shift ar by -4 (1o);

O0B1: ar = ar xwor af, se = sr0;
00B2: ayl = -128;

af = ar + ayi;
00B4: if 1t junp POSVAL;

S
gezF
gee
5gg
g8
e
332
EXE
-EC0-0

sb
cntr = Or0
pe = Oxad

Figure 6: Debugging with SuperSim.

V. HW/SW Co-Simulation

The SuperSim simulator can be used in a simulation
of both the hardware and the software components.
We have connected SuperSim to behavioral models
of hardware components as shown in Figure 7. This
example shows an A/D converter and its glue lo-
gic attached to a DSP processor. Communication

ADSP 2101 GAL
(Adr-Dec)

A0..A13

A0..A13

| |
| |
| |
| |
f |
} out }
| |
| E— |
| . - |
} oF AD 578 }
] |
| |
| |
|

|

I

|

|

ADC

———={sT_conv
DO0..D11

74373 ANALOG
ocC =t
Latch 7404 IN
Inverter
EOC

IRQ2

|
|
|
|
|
|
|
|
|
|
|
} D0..D11
|
|
|
|
|
|
|
L

|

— |

(«<— EOC |
|

|

SuperSim cycle—hooks behavioral model of the hardware

Figure 7: HW/SW Co-Simulation Using SuperSim.

between software and hardware is mediated by cy-
cle hooks. The hooks pass control to the hardware
model which is written in C. The hooks also accept
data from the hardware models. When the hard-
ware models are written in C, the hooks are sim-
ple calls. However, when the models are written in
HDL, the hooks are more complicated. They must
synchronize SuperSim to the HDL simulator and also
convert data values before and after communicating
with the HDL simulator.

VI. Compiled Simulation and System-Level
Design Tools

System-level design tools like COSSAP (Synopsys),
DSPstation (Mentor), Ptolemy (Berkeley University)
or SPW (Alta Group) can easily take advantage of
the compiled simulation in order to deliver bit-true
simulation using the ISA model of the DSP proces-
sor. Figure 8 shows how SuperSim can be used to
obtain bit-true simulation for one or more functional
blocks. This toy example consists of three proces-

Block-Diagram Editor

PPGENI AD21XX DMPNI

I T !
v

firl6i.exe

SuperSim
‘ ppgeni.c firléi.ss.c dmpni.c ‘
\ System-Level /

Simulator
Figure 8: System-Level Simulation with SuperSim.

sing blocks. Whereas for the sink and source blocks
the provided C functional templates are used, the
functionality of the third block is described by the
binary code for some target processor, in this case
the ADSP21xx DSP processor from Analog Devices.
In order to permit execution without using processor
hardware, SuperSim converts the binary code into
bit-equivalent C code, which is then used as the C
functional template for system-level simulation.

Currently system-level design tools provide the
same functionality by interfacing the bit-true model
to the interpretive instruction set simulator which
runs as a separate process. The disadvantages of
this approach are:

e low speed and flexibility of standard ISA simu-
lators;

e multiple instantiations of the ISA simulator
are necessary if multiple functional blocks are
simulated in a bit-true fashion;

e interfacing the system-level and instruction-set
simulator introduces a high overhead;

o different debuggers are used for system-level
and instruction set simulation.

All these disadvantages disappear if SuperSim is used.
SuperSim offers to the designer a fast, flexible and
comfortable simulation and debugging environment
for bit-, cycle-, pipeline- and pin-true simulation of
the DSP processor.

VII. Conclusions

Compiled simulation provides very fast and accurate
instruction set simulation. The presented SuperSim
simulation environment generates bit-, cycle-, and
pin-accurate DSP processor simulation engines that
are two to three orders of magnitude faster than in-
terpretive simulators. Moreover, standard source le-
vel debuggers offer a comfortable debugging envi-
ronment and the intermediate representation in C is
open for extensions by the designer. The presented
compiled simulator is easily interfaced to behavioral
hardware models. In addition to fast simulation, it
offers a comfortable debugging environment in which
hardware and software are debugged using the same
debugger.

Currently, recompilations (with SuperSim) after
design changes are relatively slow. Though recompi-
lation will always take additional time relative to in-
terpretation, we believe that we can reduce the time
to a tolerable level by limiting recompilation only
to code that has changed. Moreover, a SuperSim-
interpreter hybrid, in addition to alleviating the pro-
blems of indirect branches, can provide fast simula-
tion speed, as well as fast turn-around time on design
changes.

VIII. References

[1] Z. Barzilai, et al., “HSS - A high speed simula-
tor,” IEEE Trans. on CAD, vol. CAD-6, pp. 601—
616, July 1987. 1987.

[2] R. Sites, et al., “Binary translation,” Comm. of
the ACM, vol. 36, pp. 69-81, Feb. 1993.

[3] J. Davidson and D. Whalley, “A design environ-
ment for addressing architecture and compiler in-
teractions,” Microprocessors and Microsystems,
vol. 15, pp. 459472, Nov. 1991.

[4] J. Rowson, “Hardware/Software co-simulation,”
in 81st ACM/IEEE Design Automation Confe-
rence, 1994.

[5] V. Zivojnovié, et al., “Compiled simulation of
programmable DSP architectures,” in Proc. of
1995 IEEE Workshop on VLSI in Signal Proces-
sing, Osaka, Japan, Oct. 1995.

