
DSPSTONE� A DSP�ORIENTED BENCHMARKING METHODOLOGY

Vojin �Zivojnovi�c� Juan Mart��nez Velarde� Christian Schl�ager and Heinrich Meyr

Integrated Systems for Signal Processing

Aachen University of Technology

Templergraben ��� ������Aachen� Germany

ABSTRACT

A new� DSP�oriented benchmarking methodology is presented�
Contrary to the existing� assembly�based DSP benchmarks� the
proposedmethodology is able to evaluate the performance of DSP
compilers and joint compiler�processor systems� In the paper
the reference code method is introduced in order to deliver relia�
ble and comparable benchmarking results� As an example� the
DSPstone methodology is applied on a set of �ve state�of�the�art
�xed�point digital signal processors with appropriate C compi�
lers� The Analog Devices ����� AT�T �	��� Motorola
	����
NEC ����	 and TI ���C
� DSP C compilers are benchmarked
under the DSPstone� and the results are reported�

I� Introduction

In the last couple of years a large number of DSP hardware and
software products �ooded the electronic OEM�VEU market� A
great deal of users� and especially newcomers to the DSP �eld�
are faced up with serious problems in selecting the appropriate
processor and�or tool for their application�

Numerous parameters in�uence the decision� Although pa�
rameters like stable product line and available technical support
have to be treated with great respect� the primary parameter is
the cost�e�ciency trade�o� in selecting a particular processor�
Every DSP user tries to implement the most e�cient algorithm
on the least expensive hardware within given time�

Time�to�market constraints and high development costs have
raised the demand for DSP development tools and specially for
high�level language compilers� However� after more than � years
from the appearance of the �rst DSP compiler� assembly pro�
gramming is still an inevitable part of the DSP software de�
velopment� Is it possible that in the era when the technology
changes every two years� the DSP software development tech�
nology looks almost the same for almost a decade	 Obviously�
it is�

During the discussions with numerous DSP users we had the
opportunity to hear that all the shortcomings lie on the ine��
ciency of the DSP high�level language
HLL�� mostly C� com�
pilers� Especially the compilers for �xed�point processors have
been declared as almost useless for product development� Ho�
wever� nobody was able to give us some quantitative data about
the overhead introduced by the high�level language� Therefore�
the primary goal of the DSPstone project was to help providing
an answer to this question�

DSPstone is not a point and shoot benchmark with one pro�
gram and one measure for the overall performance which deli�

vers a rating of compilers or compiler�processor systems� Com�
plex problems� like the evaluation of a DSP system� cannot be
treated in this way� DSPstone is a methodology which permits
the user to make his own picture about the DSP system he
intends to use for his application�

The paper is organized as follows� After the introduction� in
Section II some background information is given� In Section III
a DSP�oriented benchmarking methodology is introduced� The
organization of the DSPstone benchmark suites and the selec�
tion of the benchmark programs is presented and the benchmar�
king procedure is explained� In order to verify the methodology�
in Section IV �ve state�of�the�art �xed�point C compilers
Ana�
log Devices ADSP�
�
� AT�T DSP
�
�� Motorola DSP����
�
NEC �PD���
� and TI TMS���C�
� are benchmarked under
DSPstone� Finally� Section V presents the conclusions�

This paper presents only a part of the results and compari�
sons from the DSPstone �nal report� For more details refer to
�
��

II� Benchmarking of DSP Hardware and Software

In the past benchmarking of digital signal processing hard�
ware was conducted almost only by the chip vendors themselves
���������� Standard DSP algorithms� like FFTs and FIR�IIR �l�
ters� have been benchmarked on a particular processor� The
processing time was used as the only performance measure� Re�
cently� a DSP hardware benchmarking report coming from an
independent source ��� appeared� Speed� memory resources and
power dissipation of almost all state�of�the�art digital signal pro�
cessors have been measured by the authors themselves and the
results are reported�

As far as the authors knowledge concerns� there are no re�
ferences regarding benchmarking of DSP compilers published
by independent sources� In ��� the necessity for C�based DSP
benchmarking was recognized� but later on no actions followed�
DSP hardware�software suppliers have benchmarked mostly own
products and reported the results in internal� con�dential re�
ports�

III� A DSP�Oriented Benchmarking Methodology

The existing computer benchmarks are not suited for bench�
marking of DSPs� Code kernels with lots of string manipulati�
ons and �le I�O are never or rarely run on DSPs� Even in cases
where the standard computer benchmarks could make sense
eg�
Dhrystone or Sieve�� the results are of little value for the DSP

user� In order to supply meaningful� DSP�relevant benchmar�
king results� we proposed a new� DSP�oriented methodology� the
DSPstone� Although DSPstone di�ers from standard computer
benchmarking� the existing benchmarking know�how is used as
its base �����
��

��

III��� The C Compiler as a Transfer Function

The C compiler is a processing unit converting input informa�
tion
source code� de�nition �les� compiler �ags� etc�� to output
information
assembly code� mapping information� etc�� accor�
ding to some conversion mechanism� For the user the C compi�

C compilerC source code

assembly code
object code

 flags &
directives

libraries

compiling
information

Figure
� The C Compiler as a Black�Box Processing Unit�

ler is a black�box
Fig�
�� He controls the input and can judge
about the behavior of the unit by observing the corresponding
output � primarily the generated assembly code�

The C compiler is a highly nonlinear system and only one
speci�c input set cannot provide all the information about its
behavior� Also� it is not possible to generate a set of ortho�
gonal input programs which test one and only one feature of
the compiler� As a consequence� it is not possible to compute
analytically the performance of the whole program knowing the
performance of a �nite set of smaller programs or program frag�
ments� This is the reason why various approaches to benchmark
programs selection and measurement evaluation exist�

III��� Benchmark Program Selection and
Classi�cation

The best benchmark is the application itself� However� in most
cases we want a performance estimate of the end product at the
initial phase of the project� The only way is to choose an ap�
plication which represents a similar workload for the processor�
If it is not available� we can choose computationally intensive
program fragments of the application which do some standard
processing� like �lter� convolution� etc�� The well known
��
�� rule�of�the�thumb tells that
�� of the computation time
is spent in ��� of the code� Code fragments where most of
the computation is performed can be identi�ed� If the compi�
ler�processor performance for these fragments is given a priori�
we can estimate the performance of the whole application in
advance�

The DSPstone benchmark consists of the following three sui�
tes�

� Application benchmarks are complete programs wi�
dely employed by the DSP user community� In our case
complex DSP applications� like the ADPCM transcoder
are used�

� DSP � kernel benchmarks consist of code fragments or
functions which cover the most often used DSP algorithms

FIR�IIR �lters� FFTs� etc���

� C � kernel benchmarks consist of typical C statements

loops� function calls� etc���

DSPstone is not one program which re�ects all the features
of a DSP system consisting of compiler and processor� like e�g�
Dhrystone� It is a collection of programs with three di�erent
levels of granularity corresponding to the three benchmark sui�
tes� The user can estimate the worst case overall performance
by combining benchmark results of the functional parts forming
his application�

III��� Programming the Benchmarks

The C code of the benchmarks is written without any speci�c
architecture or compiler in mind and in the same way most
DSP users and C programmers would do� However� it is hard
to decide whether it is better e�g� to use explicit array indexing
or pointers with some speci�c compiler� We are aware of the fact
that the benchmark results are in�uenced by some amount of
subjective decision about the question what is actually generic
C� We tried to keep this e�ect on minimum�

Compiler �ags and directives are additional information in�
puts for the compiler� Their proper use can improve drastically
the quality of the output for some speci�c C program� We have
applied all those �ags and directives of a particular compiler
which shorten the execution time of the compiled program�

The memory in most DSPs is heterogeneous� Depending on
the distribution of the program code and data on memory� large
di�erences in computation time can be obtain� In order to gu�
arantee fair comparison� in all benchmarks we distributed code
and data to minimize the execution time� For some application
benchmarks we even used external memory� Thereby� we assu�
med that the fastest possible external memory is attached
zero
wait�state��

The functional equivalence of the C or assembly programs is
checked on test sequences which are part of the benchmark� For
the C�kernel benchmarks and in cases where the equivalence is
obvious no test sequences are speci�ed�

III��� Metric de�nition

Instruction Count Metric

Measuring the speed performance of a computer system is most�
ly done using the program execution time t� The drawback of
this metric is that it measures compiler and hardware e�ciency
in a joint fashion� According to �

� the execution time can be
expanded into�

t �
instructions

program

average clock cycles

instruction

seconds

clock cycle

�

The overall performance is a product of three factors�

� clock rate � technology and hardware organization de�
pendent�

� average clock cycles per instruction � hardware or�
ganization and instruction set architecture dependent�

� instructions per program � instruction set architecture
and compiler dependent�

Unfortunately� these parts are interdependent and do not per�
mit decoupling of the compiler and hardware technology in�
�uence on speed performance� Comparing di�erent compilers
using only the instruction count per program produces unrelia�
ble results� Compilers for LIW
large instruction word� architec�
tures are privileged when compared to RISC
reduced instruc�
tion set computer� ones� Also� the memory utilization metric
su�ers for the same reasons� � Despite of all these drawbacks�
the instruction count metric has been often used for compiler
benchmarking� Simply� there was no alternative�

Reference Code Distance

In order to obtain more reliable compiler benchmarking results�
we observed an important di�erence between general compu�
ter and DSP benchmarking� Choosing DSP benchmarks which
have functionally equivalent assembly counterparts� we have the
opportunity to measure the metric distance between the code
generated by the compiler and the reference assembly code� In
the case of mainframes this is not possible� It is very hard to
�nd a functionally equivalent hand�written assembly version of
some standard benchmarking program� like e�g� Dhrystone or
SPICE�

We suppose that the reference assembly code is the best or
almost the best one which can be written with the given in�
struction set� How to guarantee this	 We suppose that the chip
vendors are highly motivated to supply the best possible code for
some function in the accompanying libraries or on their bulletin
board services
BBS�� Our task is to pick up the largest common
subset of these programs� check the functional characteristics of
the supplied code for equivalence and do the pro�ling�

The existence of the assembly reference code enables us to
benchmark the DSP compiler�processor system in a decoupled
fashion� We measure separately the joint performance of com�
piler and processor using compiled C programs and the per�
formance of the processor alone using the assembly reference
code� According to this data� separate evaluation of compiler
and processor is possible� This is the basic feature of the DS�
Pstone benchmark� The suggested approach is depicted in Fig�
�� It is obvious that the reference code method can be applied

 reference
assembly code

 generated
assembly code

C compiler

C source
 code

+ -
comparison
 results

profiler

profiler

comparison of:
 - execution time
 - program memory
 - data memory

Figure �� C Compiler Performance Evaluation

independent of the programming language
C� ADA� etc��� tool

compiler� code generator� etc�� or processor type
�oating� or
�xed�point��

The well known approach for comparing two functionally

�Improvements can be obtained by introducing the normalization

factor which accounts for the di�erences in the architectures�

equivalent programs is to measure their execution time t� num�
ber of clock cycles c� program memory utilization p� data me�
mory utilization d and overall memory utilization m � p�d� For
some given processor clock�cycle period � the execution time t
can be easily converted into number of clock cycles c � t�� and
vice versa�

Every code is a point in the �D space spanned by c� p and
d� If the generated code G is described by
cg� pg� dg� and the
reference code R by
cr� pr � dr�� then we de�ne�

� execution time overhead

�tg �
tg � tr��tr ���
��

� clock�cycles overhead
equals the execution time over�
head�

�cg �
cg � cr��cr ���
��

� program memory overhead

�pg �
pg � pr��pr ���
��

� data memory overhead

�dg �
dg � dr��dr ���
��

� memory overhead

�mg � �
pg � dg��
pr � dr���
pr � dr� ���
��

The introduced overhead measures are the basic metrics which
are used in the DSPstone for measuring compiler e�ciency� For
those users which need the information about the e�ciency of
the joint software�hardware system consisting of compiler and
processor� we also report the absolute measurements for the
fastest processor supported by the compiler�

The advantages of the reference code methodology are its
simplicity� clarity for the user� unbiased results and simple pro�
�ling� The metric gives the answer to the most common que�
stion� How large will be the overhead if I decide to program
my application in C	 The main disadvantage lies in the rigor
of the measure� The DSP compiler is mostly a priori limited
to use some subset of the instruction set� Some features� like
bit�reversed or modulo addressing� are excluded from the in�
struction set seen by the compiler� The reference code distance
cannot count for this� The problem can be bypassed in two
ways� Implement the instruction� which cannot be reached by
compiler� in assembly� or rewrite the reference code in order to
exclude unreachable instructions�

III��� Metric Estimation

The program code can be mostly divided into three parts� in�
itialization� actual processing and post�processing� In the DS�
Pstone the execution time of the actual processing is measured
and reported� The problem is how to determine the start and
end instructions and how to obtain the necessary resolution� In
practice this problem was solved by executing the actual pro�
cessing in a large number of iterations� In this way the e�ects
of the initialization and post�processing are canceled and the
resolution of the measurements is improved�

Using a simulator for time measurements is the only reason�
able alternative when the DSP hardware is not available� Even

on high�performance workstations� the simulation is a rather
slow process� If you have to process
��� samples in the AD�
PCM transcoder� you have to wait for days� However� the exe�
cution time is obtained in processor clock�cycles� which under
the assumption that the simulator does his job bug free� gua�
rantees the best possible accuracy� The drawback is the neces�
sity to determine the start and end instructions of the actual
processing� These points are labeled by START PROFILING
and END PROFILING in the assembly code� The C compiler
mostly rearranges the code� so positioning the labels already in
the C code can yield to inaccurate measurements� In those cases
the label positions in the generated assembly code are adjusted
manually�

One of the features of DSP C compilers is their ability to
do constant propagation as a part of the machine independent
optimizations� In order to protect the benchmarked programs�
especially the short ones in the HLL�kernels suite� against this
optimization we have introduced a mechanism based on the
pin down�� procedure� It represents the border for the con�
stant propagation� If the compiler is even able to explore the
contents of the pin down�� procedure� relocation to a separate
�le will help�

Every benchmark program is accompanied by a measure�
ment report which is the basis for analysis and comparison� In
the DSPstone methodology the format and contents of this re�
port are speci�ed� It entails the measurements� the listings of
the measured code and all the facts regarding compilation and
pro�ling which enable an exact reproduction of the measure�
ments�

III��� Evaluation

After collecting all the measurements of the benchmark pro�
grams� the next step is the evaluation of the results� The goal
of the evaluation is to provide the user with informations about
strong and weak points of the compilers and the joint com�
piler�processor system� Using the benchmark results he can
decide whether the C compiler is the appropriate tool for his
design process� Also� he is enabled to determine which part of
the code has to rewritten in assembly or replaced by highly�
optimized library functions�

Also� using the DSPstone results� the reasons for the low
performance of the compilers can be identi�ed and comparisons
can be made� This could be of special interest for DSP compiler
specialists� In the DSPstone project comparisons and ratings of
various compilers and compiler�processor systems are of secon�
dary importance only�

IV� Example

The DSPstone methodology has been applied on a set of �ve
state�of�the�art DSP C compilers for �xed�point processors
Ana�
log Devices �
�
� AT�T
�
�� Motorola ����
� NEC ���
� and
TI ���C�
�� The decision to select this test suite was motivated
by the fact that the �xed�point compilers are mostly newcomers
to the market and that no clear answers about their usefulness
exist� Up to the TI and NEC compilers� all others are ports of
the GNU gcc compiler �
���

Although we tried to evaluate all compilers under the same
benchmarks� di�erent development states of the compilers have

partitioned the test set into two subsets� In the �rst subset are
the ADI� Motorola and TI compiler� These companies started
releasing their compilers quite early� so the products are stable
and well supported� Also� the underlying processors are for
some time on the market which caused the assembly reference
code for the most standard applications and DSP functions to
be available�

In order to gain an insight into the ability and limitations
of the compilers to support speci�c processor and language fea�
tures an overview is presented on Table
 ��

AT�T AD Motorola NEC TI
feature compiler ���� ���� ����� ����� C��

�rst release in ���	
 ���� ���	 ����
benchmarked version beta ��� ���� beta ���	

multiply
add

p p

parallel
move�single

p p p

parallel
move�double

 y
repeat
loop
 y p p

do
loop

p p p p
nested
loop

p p p

modulo addressing

p

bit
reversed addr� y

pre�post inc��dec�

p p p p p
static frame alloc�

p

p

fractional arithmetic

p

inline assembly

p p p p p
��� to C interface

p p p p p
function inlining

p p

p
interrupts in C

p p
p

supported�
 not supported� y no hardware support�

Table
� Compiler Characteristics�

In the sequel we shall present some measurement results in
order to verify the introduced methodology� For more details
refer to the DSPstone �nal report �
�� The results and comments
presented in the next subsection express only the views of the
authors�

IV��� Application Benchmarks

ADPCM Transcoder � CCITT Recommendation G����

The ADPCM standard is one of the oldest speech coding stan�
dards which plays an important role even in newest designs

DECT�� It is speci�ed up to bit�accurate test sequences pro�
vided by the International Telecommunication Union
ITU�� so
di�erences in functionality are easily checked and removed� Be�
cause of the data dependent execution time we measured the
performance of all programs on the �rst �� samples of the ITU�
CCITT test sequence nrm�m�

One of the reasons to include the ADPCM transcoder as a
benchmark lies in the fact that it is the largest DSP application
for which standard�complying� assembly versions for most tar�
gets exist� Unfortunately� not for all� We could not obtain the
assembly versions for the NEC and AT�T processors� so the
results are missing�

The ADPCM benchmark is characterized by a lot of bit��
oriented computation which is a heavy task for a DSP C compi�
lers� The ADPCM C code is written in a way which guarantees

�All the compilers undergo permanent revisions� For the features
of the actual version contact the vendor�

high e�ciency for all compilers in the same time retaining a
readable and maintainable form� The reference programs for
the ADI and the Motorola compiler can be freely obtained from
their BBS and the TI reference code is licensed� Table � pre�
sents the compiler overhead of the ADPCM benchmark� It

AD Motorola TI
���� ����� C��

�c��� ��� ��� ���
�p��� ��	 �� �
�d��� ��� ��� ���
�m��� ��� �� ��

Table �� ADPCM Benchmark� Compiler Overhead�

is evident that the generated code has a very high overhead in
execution time
over ����� and as such is useful only for rapid
prototyping and as a template for the development of the as�
sembly code� The memory overhead is lower but still cannot be
described as acceptable� The relatively low program memory
overhead for some compilers is the consequence of full inlining
in the assembly code and the use of procedures in the C code�

The introduced reference code methodology and the over�
head measures show how well the compiler understands� mat�
ches and uses the underlying architecture� The overhead mea�
sures do not produce the information about the performance
of the processor running the C code� In order to verify this
important di�erence Table � presents the absolute performance
of the compiled and the reference code
given in braces�� The
processor clock periods are taken from �
��� It is obvious that

AD Motorola TI
����
��ns �����
��ns C��
��ns

tg�tr���s� ����		� ������� ��	��	�
load��� ������� 	������ �������
cg�cr� ��������� ����	��	�	� ��	�������
pg�pr� �	������� ���������� ��������	�
dg�dr� �������� �������� ���������
mg�mr� ��������� �	����	��� 	������	��

Table �� ADPCM Benchmark� Absolute Performance�

between compiler overhead and the performance of the compi�
led code large di�erences exist� Both measures are useful for
the user� In the DSPstone the overhead as well as absolute
performance are reported�

What are the reasons for such a high overhead	 The ina�
bility to use the speci�c hardware features of the processor is
surely a very important factor� but not the only one� In the
ADPCM benchmark the bit�manipulations have been a much
heavier problem for the compiler than the parallel instructions�
According to our observations the compilers waste a lot of time
in highly ine�cient data moves in the glue code between ob�
viously independently compiled code fragments�

The ADPCM is an application with almost no standard pro�
cessing blocks� so the time�critical code fragments cannot be
simply taken from a library � they have to be coded manually�
This happens very often in the domain of �xed�point algorithms
and especially in standards� We have coded the time�critical
MSB routine
computation of the most signi�cant bit in the
FMULT routine� in assembly for each processor and calculated
the number of clock cycles needed� The results are presented in
Table ��

AD Motorola TI
���� ����� C��

cg �MSB in Assembly� ���� ����	 ����
improvement ��� �� � �
�c��� ��� 	�� ���

Table �� Compiler Overhead with MSB in Assembly�

Although in our case only a small part of the code was
rewritten in assembly and the performance improvement is not
so high� mixed assembly�C coding is without any doubt the
right way to obtain a trade�o� between desk�time and run�time
e�ciency of the design� By our opinion� the need for mixed
assembly�C programming will persist for a long time� This fact
should not demoralize the compiler designers� They should fur�
ther try to reduce the percentage of the hand�written assembly
code in the program� The developments in the hardware tech�
nology are going to help them in their e�orts�

Some suppliers of DSP equipment have recognized all the
importance of the assembly libraries� However� the problem
is solved only for standard coarse grain functions
FFT� DCT�
LMS� etc��� In those cases the assembly to C context switching
overhead is low compared to the gain obtained by assembly
programming� For �ne grain functions
e�g� bit�manipulation�
inline�assembly macros are the best alternative� However� most
compilers are not able to optimize beyond the inline�assembly
delimiters and the overall improvement is low�

In the future the application suite of the DSPstone should
be extended on a number of other standard applications in order
to equally cover all DSP application domains�

IV��� DSP�Kernel Benchmarks

The benchmarks of the DSP�kernels suite are�
� real updates � complex updates
� matrix product � convolution
� complex product � IIR biquad section
� IIR �lter � FIR �lter
� LMS �lter � FFT
� ��D FIR �lter

The reference assembly programs for the DSP�kernels suite be�
long in the mean�time to the standard equipment of every deve�
lopment package� so we had to write the equivalent C programs
only� The functional equivalence was tested on test inputs which
together with the appropriate outputs form a part of the bench�
mark suite� As an example in Table � the results for the convolu�

tion DSP�kernel
y �
Pi�N��

i��
xi � hN�i��� are given� Almost

AT�T AD Motorola NEC TI
� taps � �� ���� ���� ����� ����� C��

�c��� ��	� 	�� 	�� 	�� ���
�p��� 	�� ��� ��� 	� ��
�d��� � � � � �
�m��� �� �	 �� � ��

Table �� Convolution Benchmark� Compiler Overhead�

all compilers have used the zero�overhead loop� Unfortunately�
they are unable to use the parallel multiply�add instruction with
parallel moves� The problem is in the explicit control over the
memory banks� But even on those compilers which support this

C extension� the generated code stays the same�

IV��� HLL�Kernel Benchmarks

The performance of the compiler on standard C constructs was
benchmarked with the HLL�kernels suite consisting of the fol�
lowing benchmarks�

� CALL � C function call overhead
� FOR � for loop analysis
� NESTED�FOR � nested for loop analysis
� DOWHILE � do while loop analysis
� WHILE � while loop analysis
� FLOAT � float arithmetic performance
� INT � int arithmetic performance
� FRACT � fractional arithmetic performance
� LONGINT � long int arithmetic performance
� MADD � usage of multiply�add instruction
� PARALLEL � instruction parallelism analysis
� INDEXING � indexing vs� pointer addressing
� COMPACTION � e�ects of source code compaction

The motivation to include the suite of HLL kernels was twofold�
to estimate the performance and to �nd out the forms of the C
code which are best suited for the particular compiler� So� e�g�
the FOR benchmark has � programs implementing various for
di�ering in the automatic pre�post increment�decrement of the
iteration variable� The goal was to �nd out those forms which
are compiled to zero�overhead loops�

As an example the results for the CALL benchmark are pre�
sented in Table ��

AT�T AD Motorola NEC TI
���� ���� ����� ����� C��

�c��� ��	 ��� ��� 	�� ���
cg �� 	� �� �� ��

Table �� CALL Benchmark� Compiler Overhead�

The CALL benchmark gives the context switching overhead
which is introduced by C function calls� The benchmarked fun�
ction has �ve integer arguments and returns their sum� Only
those instructions introduced to perform the context switch have
been measured� The results show that the compilers do a lot
of housekeeping around the C function calls� Especially the
GNU�based compilers have problems determining what is the
minimum job which has to be done during a C call�

By our opinion reducing the context switching overhead is
one of the points where HLL programming of DSPs di�ers from
the programming of general�purpose computers and where DSP
compiler improvements are necessary and feasible� The �rst
step in the right direction is the static frame allocation for non�
recursive procedures which is already implemented in some of
the compilers�

V� Conclusions

A new� DSP�oriented benchmarking methodology is introduced�
The DSPstone metric is based on the distance between the C
code and the assembly reference code which is supposed to be
the optimal one which can be written for the given functiona�
lity� The reference code metric gives the user the opportunity

to directly judge about the compiler� processor and joint com�
piler�processor performance� The benchmarking programs are
divided according to granularity into� application� DSP�kernel
and HLL�kernel benchmarks� In order to guarantee the repro�
ducibility of the results a detailed description of the measuring
and reporting is speci�ed�

As an example� the DSPstone benchmarking methodology
is applied on a set of �ve state�of�the�art �xed�point DSP C
compilers and processors� The introduced methodology gave a
clear answer about the performance of the compilers under test�
The results show that a lot of work has to be invested into �xed�
point DSP compiler development in order to make them useful�
not only for rapid prototyping� but also for production quality
programming�

As the next step the DSPstone shall be applied on �oating�
point DSP compilers�

Acknowledgements

The DSPstone project was supported by Analog Devices� AT�T�
Motorola� NEC and Texas Instruments by means of software
and consultations� We would like to thank Manfred Christ
TI��
Je� Enderwick
Motorola�� Tom Gentles
AT�T�� Berthold Heck

NEC�� Kevin Leary
ADI�� George Mock
TI�� Stephan Reite�
meyer
NEC� and Craig Smilovitz
ADI� for their kind support�

VI� References

�
� V� �Zivojnovi�c� J� Mart� nez Velarde� and C� Schl!ager�
"DSPstone� A DSP�oriented benchmarking methodology�#
tech� rep�� Aachen University of Technology� August�
����

��� Analog Devices Inc�� Digital Signal Processing Applications
Using the ADSP����� Family� Vol� I�
����

��� Motorola Inc�� DSP
	����DSP
	��� User
s Manual�
����

��� Motorola Inc�� DSP
	�
	 User
s Manual�
����

��� T� Instruments� "Considerations in choosing a high�
performance �oating�point dsp�# tech� rep�� Texas Instru�
ments� Inc��
����

��� P� Lapsley� J� Bier� and E� Lee� Buyer
s Guide to DSP
Processors� Berkeley Design Technology� Inc��
���� pp�
��������

��� E� Lee� "Programmable DSP architectures� Part I�# IEEE
ASSP Magazine� pp� �$
�� October
����

��� T� Conte and W� Hwu� "Benchmark characterization�#
IEEE Computer Magazine� pp� ��$��� Jan�
��
�

��� R� Weicker� "An overview of common benchmarks�# IEEE
Computer Magazine� pp� ��$��� Dec�
����

�
�� W� Price� "A benchmark tutorial�# IEEE Micro Magazine�
pp� ��$��� Oct�
����

�

� J� Hennessy and D� Patterson� Computer Architecture� A
Quantitative Approach� Morgan Kaufmann Publishers Inc��

����

�
�� R� Stallman� Using and Porting GNU CC� Free Software
Foundation� Inc��
����

�
�� "DSP directory�# EDN Magazine� June �
����

