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ABSTRACT
In order to meet flexibility, performance and energy efficiency con-
straints, future SoC (System-on-Chip) designs will contain an in-
creasing number of heterogeneous processor cores combined with
a complex communication architecture. Optimal platforms are ob-
tained by customizing both computation and communication mod-
ules to the application’s needs. In our design flow both kinds of
SoC modules are automatically derived from abstract specifica-
tions. This work focuses on generating the communication adap-
tors, which are tailored to the processor as well as to the bus side.
For early system simulation, the adaptors are capable of bridging
an abstraction gap by implementing a bus interface state machine.
The generated processor cores, adaptors and bus nodes are applied
in the exemplary design of a JPEG decoding platform.

Categories and Subject Descriptors: B.8.2 [Performance and Re-
liability] Performance Analysis and Design Aids ; C.1.2 [Processor
Architectures] Multiple Data Stream Architectures (Multiproces-
sors) - Interconnection architectures; I.6.7 [Simulation and Mod-
eling] Simulation Support Systems - Environments

General Terms: Design, Performance, Measurement

Keywords: MP-SoC, Architecture Exploration, Retargetability,
TLM, SystemC, Simulation

1. INTRODUCTION
The ever increasing complexity of modern electronic devices to-

gether with the ever shrinking time-to-market and product lifetimes
pose enormous SoC design challenges to meet flexibility, perfor-
mance and energy efficiency constraints with a good design effi-
ciency.

Programmable platforms are the best way of fulfilling today’s
and tomorrow’s flexibility constraints, and tailoring them specifi-
cally for the target application domain is the key to meet the per-
formance demands with a good energy efficiency. Designing these
platforms requires a systematic methodology and suitable tooling
for obtaining optimal results in a reasonable design time.

In order to identify a suitable platform for a specific application
or application domain, design space exploration on a higher level
of abstraction is mandatory. The better the tool support for a thor-
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Figure 1: Simulator Generation Flow

ough investigation of the full design space, the more likely optimal
design decisions are made in early stages of the design flow. This
avoids the high costs of long redesign cycles or the risk of placing
suboptimal products on the market.

The largest design space is opened by heterogeneous platforms
with application specific instruction set processor (ASIP) cores on
the computation side together with a highly optimizable intercon-
nect structure (Network-on-Chip, NoC) on the communication side.
For best possible performance and energy efficiency, in this work
computation as well as communication modules can freely be spec-
ified instead of instantiating predefined IP (Intellectual Property)
blocks.

As shown on the left hand side of Fig. 1, a processor compiler
tool automatically generates a processor simulator on multiple pos-
sible abstraction levels, taking an abstract textual processor speci-
fication as input. Besides the Instruction Set Simulator (ISS), also
C compiler, assembler and linker are generated to be able to run
the target application on the respective processor. Analogously, as
shown on the right hand side of Fig. 1, a bus compilergenerates
a simulator for the communication modules. These bus simula-
tors apply the Transaction Level Modeling (TLM) communication
paradigm, which allows very efficient but still fully cycle accurate
simulation.

With P being the number of different processor cores and B be-
ing the number of different bus modules, in a heterogeneous Multi-
Processor SoC (MP-SoC) generally P > B > 1 holds true. The
processor compiler and the bus compiler take care of generating the
P processor and the B bus simulators. But in order to do meaning-
ful overall SoC exploration, these simulators have to be coupled,
which at maximum leads to P ·B combinations. During the design
flow the adaptors often also have to bridge a gap in model abstrac-
tion, which calls for implementing a bus interface state machine in
the adaptor. Thus, manually developing these P · B couplings is
much too tedious and error prone.



This paper describes a methodology and the tooling for automat-
ically generating these P · B couplings which are called Processor
Support Packages (PSP). As shown in Fig. 1, this is done in a two-
step approach. A PSP compiler generator generates a set of B PSP
compilers, one for each bus model. A PSP compiler, in turn, gener-
ates the simulator coupling for any of the P processors to a specific
bus. In the recent years, some PSP compilers for very common bus
protocols have been developed manually. This already enabled au-
tomatic retargetability to the processor side. The main focus of this
work is on generating a bus interface state machine, which is the
main task of the PSP compiler generator. This enables automatic
retargetability also the the bus side.

The rest of the paper is organized as follows: After discussing the
related work in section 2, we introduce the processor compiler and
the bus compiler in more detail, focusing on their integration into
the design flow. The main body of the paper in section 4 presents
the concept and implementation of the PSP generation chain. A
case study of a JPEG decoding system is the topic of section 5.
Finally, section 6 concludes this work and gives a short outlook on
future research topics.

2. RELATED WORK
It is commonly agreed that RTL models are not suitable anymore

to simulate or even explore the system behavior of today’s and to-
morrow’s complex heterogeneous MP-SoC platforms. Virtually all
recent work addressing the increasing MP-SoC design complexity
is based on leveraging the abstraction level considered by the sys-
tem designer.

Communication models on multiple levels of abstraction for early
processor integration have been proposed since a long time to over-
come the simulation performance and modeling efficiency bottle-
neck [1, 2]. This principle is now leveraged by the TLM paradigm
[3] by providing standardized, system level bus-interfaces with dif-
ferent levels of abstraction [4, 5, 6, 7]. Based on the SystemC lan-
guage as the emerging EDA standard for system-level design, Sys-
temC TLM communication models are supported by a new gen-
eration of Electronic System Level (ESL) SoC design tools [8, 9].
However, techniques to automatically generate customized cycle
accurate TLM bus models from an abstract formal specification are
not published yet.

In order to efficiently design customized processor cores, ab-
stract Architecture Description Languages like EXPRESSION [10],
ISDL [11], LISA [12], MIMOLA [13] and nML [14] have become
popular. Basically, those environments which generate fast simula-
tors with good system integration capabilities could have been used
for this work. We chose the LISA platform, because additionally,
it provides support for C-Compiler and full RTL generation.

For integrating processor cores and communication modules into
the final MP-SoC platform, most approaches follow the component-
based design principle [15, 16]. In this bottom-up approach, rela-
tively coarse grained fixed IP blocks are quickly combined to com-
plex MP-SoCs, but this is done at the expense of flexibility losses.
Even if the NoC topology is modifiable, the limited set of com-
munication modules, protocol IP, and especially processor cores
significantly narrows the design space.

Our approach is capable of solving this shortcoming by provid-
ing modifiablecommunication and processor IP. An optimization
in an abstract model is relatively quickly propagated to the models
and simulators on the lower levels of abstraction. The TLM com-
munication adaptors dealt with in this work are generated using the
same data base which already served for building up the involved
SoC modules.

However, the main focus of this work is to automatically gen-
erate the necessary couplings on multiple abstraction levels for an
efficient successive top-down refinement flow [17], which bears the
best potential for designing optimal platforms.
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Figure 2: Abstraction Levels

3. MP-SOC DESIGN FLOW WITH RETAR-
GETABLE SIMULATORS

For the top-down design of very complex MP-SoC platforms,
models on multiple levels of abstraction are used in a successive
refinement flow. On every level of abstraction, important design
decisions are made to guide the implementation or the IP selection
on the lower abstraction levels. In less complex designs, of course,
some levels can be skipped. In Fig. 2, the refinement flow is out-
lined separately for the programmable computation modules and
the communication modules.

During this flow, the abstract processor and bus models are re-
fined to full cycle accuracy. This is a good starting point for directly
generating optimized synthesizable RTL models automatically as
well. However, these tools are far beyond the scope of this paper.
In this section, only retargetable simulators for abstraction levels
above RTL are considered.

3.1 Initial Design Space Exploration
For very complex MP-SoCs, design space exploration starts with

an executable functional specification of the processor modules,
which communicate over a generic, parameterizable Network-on-
Chip (NoC) model. On this level, the temporal and spacial task
mapping to the processor modules is done on the computation side,
while a suitable interconnect topology and adequate bus or net-
work engine properties are detected on the communication side.
For these examinations, no generated simulators are necessary yet.
Generic models are parameterized or equipped with the target ap-
plication code, executing on the simulation host with annotated tim-
ing budgets. Communication is modeled very efficiently on this
level by treating a whole packet or burst transfer as a single event
instead of separately simulating every word transfer or clock cycle
(Packet Level TLM).

The next refinement step towards fully cycle accurate system
simulation uses a new set of models which actually simulates the
system model instruction-by-instruction, word-by-word, or already
cycle-by-cycle instead of annotating respective budgets.

3.2 Generated Instruction Set Simulators
In order to get reliable information concerning the performance

of the application software, its execution on the target processor
platform must be simulated. Also, such an ISS is needed for early
starting the implementation of the final application software. Since
it is very tedious and error prone to develop and maintain the ISS as
well as the software tools C-compiler, assembler and linker man-
ually, abstract Architecture Description Languages (ADLs) have
become popular. They allow modeling a processor architecture on
a high level of abstraction; the respective tools are generated auto-
matically.

The LISA [12] ADL allows modeling processor architectures on
two main levels of abstraction: Instruction Accurate (IA) and Cy-
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Figure 3: Cycle Accurate Bus Communication Modeling

cle Accurate (CA). The simulator generated from an IA model is
already aware of the full instruction set. It executes the applica-
tion code instruction-by-instruction, but without interleaving their
execution, as it is typically done in the real processor’s pipeline.
Whenever a memory access is necessary, in an IA simulator the
ideal or functionalmemory interface is accessed. Both interfaces
basically offer two methods to the processor core: one for read and
one for write access. To enable easy processor modeling on this
level, these interface calls are expected to return successfully in
any case. If such an IA simulator is embedded into a TLM sys-
tem simulation, a call to the functional memory interface typically
blocks the respective processor simulator a number of cycles until
the access is fully completed.

An IA simulator is very suitable to do instruction set exploration
and to start implementation of the embedded software. However,
for a fully cycle accurate simulator, the ADL model has to be re-
fined to the CA abstraction level. In this manual process, the de-
signer adds a pipeline to the model and assigns the atomic opera-
tions of the instructions to a suitable pipeline stage. Furthermore,
activation chains are defined according to the processors execution
scheme. In a further step, the memory accesses are refined to ac-
cess the cycle accuratememory interface. Since memory or bus
accesses generally take more than one cycle, at least portions of
this latency should be hidden in the processor’s pipeline. The cy-
cle accurate memory interface offers the possibility to invoke the
different phases of a memory or bus access from within different
pipeline stages. As long as a read data word is not yet available in
the respective pipeline stage, for example, the processor simulator
dynamically reacts on that by inserting stall cycles.

3.3 Generated Bus Simulators
On the communication side, there are basically two main degrees

of freedom. The SoC designer can differentiate or tweak the com-
munication part of the design by two means. First by changing the
implementation of the communication modules or nodes, and sec-
ond, by changing their interconnect topology. Already on the ab-
straction level of TLM models, manually exploiting this freedom
becomes very tedious and error prone. Thus, again tools support
the designer by reducing his work to the more creative part. The
interconnect topology is mostly specified applying graphical user
interfaces [8, 9, 18], while the customized creation of the communi-
cation modules most efficiently is done using a formalized abstract
textual description. The generated TLM bus nodes allow cycle ac-
curate communication modeling by exchanging small data packets,
called transfers, with their environment every cycle during an on-
going transaction.

The nodes can be connected to active initiator modules, reactive
target modules, or additional communication nodes to form cross-
bars or other NoC interconnect hierarchies. On every connection,
information exchange happens according to a specific communi-
cation protocol. As shown in the example of an AMBA AHB[19]
node in Fig. 3, the protocols for the initiator side and the target side
of the AHB node at TLM can exchange a limited set of transfers in
fixed directions. This transfer exchange replaces the detailed pin
wiggling being simulated on RTL. Every transfer carries a set of
attributes, which is information associated with this transfer. An
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Figure 4: Simulator Structure

address transfer (addrTrf), for example, carries the address and an
access direction flag.

The abstract textual bus model is a formal description and con-
sists of three parts. First, a generic protocol section defines all
transfers being part of any protocol of a whole bus family, with
the maximum possible set and width of their attributes. Second, a
protocol definition section introduces all protocols with that sub-
set of generic transfers and those transfer attributes they comprise,
respectively. And third, a node definition section formally defines
the pipelines and state machines inside every node of a bus fam-
ily. The generated bus simulator then allows sending and receiving
the protocol transfers only in valid time slots. Simple attached tar-
get modules very efficiently declare themselves sensitive to events
occurring in the bus simulator instead of modeling their own state
machine.

4. BUS INTERFACE RETARGETABILITY
This section presents the new technique to automatically couple

the generated simulators for early TLM system simulation.

4.1 Structure of the Platform Simulator
The system simulator structure is outlined in Fig. 4. Not only

the processor simulator core, also the internal processor memory
hierarchy is generated by the processor compiler according to the
ADL specification. During simulation, the memory requests are
directed to the ideal, the functionalor the cycle accurateAPI 1 of
the memory or the bus modules. Alternatively, if the respective
memory location is modeled outside the processor simulator, the
request is directed to an adaptor.

Automatically generating and instantiating these adaptors de-
pends on the respective processor as well as the bus model, and it
is the main focus of this work. Our approach is presented in more
detail in the following paragraphs.

The bus node implementations are generated by the bus com-
piler, together with a definition file that provides a GUI2 tool with
the necessary information how the nodes can be parameterized and
interconnected. This enables modeling complex NoC topologies at
fully cycle accurate level. However, details about these capabilities
are outside the scope of this paper.

The TLM memory modules and peripherals normally are rela-
tively simple and are not generated automatically.

4.2 PSP Generation
As indicated in Fig. 4, the main task of the PSP compiler is to

generate the SystemC processor wrapper module by instantiating
and connecting the LISA processor simulator and one LISA TLM
adaptor per TLM port. Additionally, the wrapper is equipped with
the necessary code to enable powerful analysis and debugging ca-

1API = Application Programming Interface
2GUI = Graphical User Interface
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Figure 5: Pipeline Example: STR @0x1000, R[0]

pabilities for the processor core in its system environment. The
PSP compiler also generates a module definition file for the GUI.

However, the TLM adaptor class itself is a fixed building block
of every PSP compiler. Due to the generic LISA memory API, the
adaptor does not depend on the processor side. A LISA processor
core is tailored for a specific bus or memory only by distributing
the generic cycle accuratefunction calls suitably over the pipeline
and by issuing commands for special communication features like
sub-block-access or read-modify-write.

The adaptor maps the generic LISA memory API calls to the
bus specific API of the respective bus simulator. Thus, the main
challenge of the PSP compiler generator is to build up these TLM
adaptors for arbitrary bus protocols.

4.3 The Adaptor Concept
The task of the adaptor is to couple a processor model with a bus

model, independent of whether an IA or a CA processor simulator
is involved. 3

On fully cycle accurate level, if both sides are driven by the same
system clock, a simple adaptor maps the API calls from the proces-
sor pipeline one-to-one to the bus pipeline. As shown in Fig. 5
on an exemplary data memory store instruction, an optimally tai-
lored processor pipeline can hide multiple cycles of bus latency. In
the decodestage, the processor already requests access to the data
memory, without already knowing the address or even the write
data. If bus access has been granted, then the address genera-
tion stage calculates the write address and forwards it to the adap-
tor, which in turn sends a respective addrTrf transfer to the bus.
The processor determines the write data one cycle later in the read
stage, which is exactly the time it is expected by the bus pipeline.

Fully integrating the bus interface protocol into the processor
pipeline is a very tedious and error prone task and prevents the
designer from early system simulation. What is necessary is an
adaptor that implements an own bus interface state machine. By
that, cycle accurateAPI calls that are not optimally distributed over
the pipeline yet, or even abstract calls to the functionalAPI lead to
a well working communication. Also, independent clocks for the
processor core and the bus node require a more intelligent adaptor.

The bus interface state machine automatically buffers data ar-
riving too early from one side, and vice versa, stalls a pipeline if
a data item arrives too late. An IA processor model applying the
functionalAPI is blocked until the bus protocol has completely fin-
ished the requested transaction.

Either this bus interface state machine later on is synthesized to
an RTL module, or, more efficiently, the timing statistics of the
TLM adaptor guide the designer in fully integrating the bus proto-
col manually into the processor pipeline.

3Or, to be more precise, if the functional or the cycle accurate
memory API is applied.

class lisa_memory_api
{

/** ideal/debug interface */
virtual int dbg_read(U32 addr, U32* data)=0;

virtual int dbg_write(U32 addr, U32* data)=0;

/** functional/blocking interface */
virtual int read(U32 addr, U32* data)=0;

virtual int write(U32 addr, U32* data)=0;

/** cycle true interface */
virtual int request_read(U32 addr, U32* data)=0;

virtual int request_write(U32 addr, U32* data)=0;

virtual int try_read(U32 addr, U32* data)=0;

virtual int could_write(U32 addr)=0;

};

class adaptor_base:

public lisa_memory_api
{

/** bus independent methods */

int dbg_read(U32 addr, U32* data);

int dbg_write(U32 addr, U32* data);

int read(U32 addr, U32* data);

int write(U32 addr, U32* data);
};

class bus_adaptor:

public adaptor_base
{

/** bus dependent methods */

int request_read(U32 addr, U32* data);

int request_write(U32 addr, U32* data);

int try_read(U32 addr, U32* data);

int could_write(U32 addr);
};

class lisa_memory_api
{

/** ideal/debug interface */
virtual int dbg_read(U32 addr, U32* data)=0;

virtual int dbg_write(U32 addr, U32* data)=0;

/** functional/blocking interface */
virtual int read(U32 addr, U32* data)=0;

virtual int write(U32 addr, U32* data)=0;

/** cycle true interface */
virtual int request_read(U32 addr, U32* data)=0;

virtual int request_write(U32 addr, U32* data)=0;

virtual int try_read(U32 addr, U32* data)=0;

virtual int could_write(U32 addr)=0;

};

class adaptor_base:

public lisa_memory_api
{

/** bus independent methods */

int dbg_read(U32 addr, U32* data);

int dbg_write(U32 addr, U32* data);

int read(U32 addr, U32* data);

int write(U32 addr, U32* data);
};

class bus_adaptor:

public adaptor_base
{

/** bus dependent methods */

int request_read(U32 addr, U32* data);

int request_write(U32 addr, U32* data);

int try_read(U32 addr, U32* data);

int could_write(U32 addr);
};

Figure 6: Implementing the ADL API

4.4 Automatically Generating the Adaptors
Basically, the TLM adaptor must provide an implementation for

the ideal, the functionaland the cycle accurateparts of the generic
ADL API. These are the methods the generated processor simu-
lators need to access. Fig. 6 displays a simplified version of the
respective API methods.

The implementation is done in two parts. In a first API class
derivation, the bus independent methods are implemented. Since
the ideal interface basically bypasses the bus, its implementation
is done once, using the generic access methods of the simulation
environment. The functional interface itself also is implemented
once for all generated bus protocols. For the bus specific parts, it
uses the methods of the cycle accurate interface, which are virtually
defined in the base class and thus accessible [20].

In the second implementation part, the bus specific functions are
implemented in a further class derivation. Basically, the functions
define how to feed data into the bus interface state machine and
how to get the results back. This C++ class is generated automat-
ically from the abstract bus definition. It makes sense to keep the
flexibility of also implementing alternative C++ or SystemC APIs
for accessing a bus node, e.g. the standardized OCP abstraction
levels TL2 and TL1 [4] or the Programmer’s View (PV) and Archi-
tect’s View (AV) [6] APIs. Thus, the properties of the bus specific
API are defined in a special section of the bus specification: the
interface specification.

4.5 Bus Interface Specification
The same formal syntax which is used to specify the bus nodes

and their protocols also is used to specify the C/C++ interface func-
tions to be generated. One interface specification defines adaptors
for all initiator protocols of the whole bus family.

busInterface LISA_AMBA,
connect = [AHBInitiator,AHBLiteInitiator,APBInitiator]

{
stateMachine, ...
{ ...

sequence seq_single_read, ...
catch burst_continue, ...

};
...
function request_write, ...
{ ...
};

};

This example interface LISA AMBA generates adaptors for the
protocols AHBInitiator, AHBLiteInitiator and APBInitiator of the
AMBA 2.0[19] bus family. Basically it consists of two parts. First,
a characterization of the state machine. Here, the state sequences
to traverse as well as code to execute additionally to the default be-
havior of a state can be defined. The second part specifies the API
functions the processor calls in order to feed data into the state ma-
chine or get information back. The following fragment defines the



signature of the request write() method and specifies how it
feeds a write burst into the state machine.

function request_write,
returnType = int

{
parameter addr,

type = U32;
parameter data,

type = U32*,
value = 0;

parameter n,
type = int,
value = 1;

section feed_data
{
buffer,

type = allocateNew,
size = n,
behaviorFailed =

[ return = -1; ];
...

After having declared the function name, the return type and the
function parameters, the buffer is defined the implementation is
working on. This function allocates a new buffer with one entry
per burst item.
behavior = [
buffer[current].reqTrf.reqMode = reqUntilUnreq;
buffer[current].addrTrf.type = writeAtAddress;
buffer[current].addrTrf.address = addr + 4*current;
buffer[current].writeDataTrf.writeData = data[current];
buffer[current].sequence =

if (n==1) then seq_single_write
elseif ( current == 0) then seq_first_write
elseif ( current == n-1) then seq_last_write
else seq_burst_write;

return = 0; ] }; };

In the corresponding behavior section, the buffer is filled for ev-
ery burst item. This function already provides attribute values for
the AMBA 2.0transfers reqTrf, addTrfand writeDataTrf, which are
stored in the buffer. If the API does not specify properties, fixed
default values can be set here. Additionally, a state sequence is se-
lected the state machine has to use the succeeding cycles in order to
process the request. The state sequences are defined in the central
section of the interface definition.
stateMachine,
extraStates = [ burstContState, finishState ]

{
sequence seq_single_write,

value = [ reqTrf , addrTrf , writeDataTrf ,
eotTrf , unreqTrf , finishState ];

sequence seq_first_write,
value = [ reqTrf , addrTrf , writeDataTrf ,

finishState ];
sequence seq_burst_write,

value = [ burstContState ; addrTrf ,
writeDataTrf , finishState ];

sequence seq_last_write,
value = [ burstContState ; addrTrf , writeDataTrf ,

eotTrf , unreqTrf , finishState ];
};

The first state sequence is to be used for a single word write
access. The other three sequences are for the first burst item, the
middle burst items, or the last item of a write burst, respectively.

Every bus transfer has an associated state. If a state is entered
during simulation, then the respective transfer is sent to or received
from the bus. The attribute values are taken from or written to the
buffer, and the next state according to the sequence definition is
entered. If a transfer could not yet be exchanged with the bus, then
the generated adaptor will try it again the next cycle.

In the right hand side of Fig. 5, a simplified write sequence is de-
picted. Here, the state sequence to traverse is reqTrf, addrTrf, write-
DataTrf, eotTrf. Independent when exactly the processor model
delivers the write address or the write data, the respective transfers
will be exchanged in the correct time slots. Information arriving
too early will be buffered in the adaptor, information arriving too
late will cause a stall of the bus pipeline.

Additional states can be defined that do not have an associated
transfer, and thus do not forward automatically. In the example,
the burstContStateis the state burst items have as long as they are
waiting for their predecessor having finished the first access phase.
In order to define the behavior of these additional states, or to alter
the default behavior of the transfer states, catch statements can be
inserted into the state machine.

catch burst_continue,
state = addrTrf,
condition = (buffer[next].state == burstContState),
behavior = [ buffer[next].state = addrTrf; ];

Since the state sequences for all items of a burst except the first
start with the passive burstContState, they are explicitly forwarded
to the addrTrf state as soon as the preceding burst item succeeded
sending the addrTrf. In a similar manner, a burst can completely be
re-sent if the target reported a retry in the eotTrfresponse transfer.

After the bus interface state machine went through the state se-
quences, the result can be returned. The implementation of the
try read() function, for example, works on a buffer of type
searchFinishedand checks if the address matches and if the cor-
responding state sequences have succeeded. In case of success the
read data is copied into the target array.

Similarly, by using a buffer of type searchProcessing, an API
function can supplement an already running write transaction with
the write data. The adaptor will not sent the writeDataTrfuntil the
write data has been provided.

4.6 Advantages
This single condensed interface specification 4 is suitable to cus-

tomize the generation of the bus interface for all initiator protocols
of a bus family. Given information can be verified automatically,
e.g. if the state sequences are a valid path through the state graph
of the respective bus nodes. Information excessive for a specific
bus protocol is skipped. In AMBA 2.0, for example, all information
concerning the bus request phase is used for generating the AHBIni-
tiator interface, but is ignored for generating the AHBLiteInitiator
and the APBInitiator bus interfaces.

Manually implementing these state machines specifically for ev-
ery bus protocol would be a very tedious and error prone task. Us-
ing the new approach, working adaptors are obtained very quickly.
Additional features like bursts and sub-block access are added suc-
cessively by refining the initial specification. Further annotations
indicate the applicability of specific optimizations. Using them,
the simulation speed of platforms with generated and handwritten
adaptors is roughly the same [17].
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Figure 7: Platform Topologies with AHB resp. AXI

5. CASE STUDY
The generators have been used to build the components of a

JPEG decoding platform. Several incarnations of the MIPS32 ar-
chitecture access the program and data memory modules over a
generated AMBA bus architecture. For the experiments, an AMBA
AHB bus node and an AMBA AXI multistage matrix have been
applied, respectively (Fig. 7).

The application is the same for all system simulations: A JPEG
decoding algorithm, as it is freely available from the JPEG group’s
web page [22]. Our indicator for a platform’s performance is the
number of cycles it takes to decode a small 150x100 sized bitmap.

In this section, several platform alternatives are evaluated.

5.1 Processor Variants
The initial MIPS32 4K core [23] has a 5-stage pipeline: Instruc-

tion Fetch(I), Execution(E), Memory Fetch(M), Align/Accumulate
(A) and Writeback(W). The instruction fetch takes place between
the I and E stage; data accesses occur between stage M and A.
Thus, in both cases only one cycle of memory access latency can

4500...800 lines of code for the AMBA 2.0 [19] and AMBA AXI
[21] bus families



MIPS32 pipeline stages / data mem cycles
AHB IA 5/1 6/2 7/3 8/4 5/1+ 6/2+ 7/3+ 8/4+

no cache 23.9 19.5 17.7 16.5 16.1 17.7 15.9 15.0 15.0
1x2 lines 23.1 21.8 21.1 20.6 20.5 20.2 19.5 19.4 19.7

1x32 lines 16.0 15.2 14.4 14.0 13.8 13.5 12.8 12.8 13.3

pr
og

ra
m

ca
ch

e
si

ze

2x256 lines 14.5 13.8 13.0 12.6 12.4 12.1 11.3 11.3 11.9

Table 1: MIPS Performance with AMBA AHB Bus (MCycles/Image)

MIPS32 pipeline stages / data mem cycles
AXI IA 5/1 6/2 7/3 8/4

no cache 29.9 21.5 19.5 19.5 18.2
1x2 lines 30.5 22.7 21.8 21.5 21.4

1x32 lines 16.4 16.4 15.4 14.9 14.7

pr
og

ra
m

ca
ch

e
si

ze

2x256 lines 13.5 15.0 13.9 13.4 13.2

Table 2: MIPS Performance with AMBA AXI
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Figure 8: Data Memory Access from the MIPS Pipeline

be hidden in the pipeline. Since an AMBA AHB or AXI bus fea-
tures a latency of 3 cycles or more, a lot of stall cycles are executed
when directly connecting such a bus to the MIPS pipeline.

In order to reduce the instruction fetch latency, a program cache
is applied. In case of a cache hit, the full latency can be hidden
in the pipeline, otherwise a burst line containing 16 words needs
to be fetched over the bus. To avoid cache consistency problems
in multi-processor systems, the data memory is not cached. In-
stead, additional stages have been inserted into the MIPS pipeline.
As shown in Fig. 8 for the initial 5-stage and the 6-stage pipeline
(variant 5/1 respective 6/2), additional access latency cycles can be
hidden this way. The MIPS bypass mechanism takes care that no
data hazards occur. Only if necessary, the pipeline is stalled to en-
sure data consistency. The assembly application does not need to
be modified because of this.

A further optimization is to invoke the bus request already one
stage earlier (see variants 5/1+ and 6/2+). Many buses can already
start the arbitration phase without knowing the address yet.

5.2 Results
In this section, several implementation alternatives are compared

against each other by integrating the automatically generated mod-
ules into a SoC simulation. In the rows of Table 1 and 2, different
program cache sizes have been evaluated, which optimize the in-
struction fetch. The columns contain different pipeline variants,
which influence the data access. The values are million cycles con-
sumed to decode the small bitmap.

In the first column of both tables, the simulation results of an
abstract instruction accurate (IA) processor model are given, which
does not model the processor pipeline at all. Its cycle count nor-
mally is higher since the IA simulator blocks until a whole cache
line is loaded. In contrast, the cycle accurate models as well as the
real processor already continue execution as soon as the question-
able words are available in the cache.

The next four columns of Table 1 show the performance of the
MIPS processor variants without early bus request being connected
to the AMBA AHB bus node. The optimal pipeline length is a
trade-off between hiding memory access delay and avoiding data
hazards. Obviously, the 8-stage pipeline does not significantly im-
prove performance any more. In the right hand side columns of
Table 1, the MIPS processor variants with early bus request are
evaluated. The performance is even better compared to an elon-
gated pipeline. This is the case because no additional data hazards
occur due to the constant pipeline length. As can be seen on the
8/4+ variant, making the pipeline too long results in worse results.

Without modifying the processor models at all, the generator also
can build a coupling to the AMBA AXI multistage communication

infrastructure (Table 2). It does not feature a request phase, thus
the early request MIPS versions do not have an advantage against
the standard versions any more. In case of our single processor
experiments, the performance is even worse compared to the AHB
nodes. The AXI bus modules are optimized concerning through-
put, but not concerning latency. When moving to a multi-processor
platform, an AXI infrastructure scales much better.

6. SUMMARY
In order to exploit the enormous potential of customized MP-

SoC modules, a suitable tooling needs to unburden the designer
from the tedious and error prone tasks during design space explo-
ration. This paper presented a technique to automatically integrate
application specific processor cores and customized bus nodes into
the SoC. The adaptors allow bridging an abstraction gap to enable
early system simulation on several abstraction levels. The bus in-
terfaces generated in this work cover abstraction levels down to
fully cycle accurate TLM. Future work will reuse the condensed
interface specification to also generate a coupling on RT-Level.
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