
IP Based SoC Design 2003 - November 13-14, 2003 1

Abstract :

Current and future SoC designs will contain an
increasing number of programmable units to
meet flexibility, performance and cost
constraints. Only when integrating processor
IP blocks into the SoC system model as early
as possible, architectural alternatives can be
evaluated effectively. Furthermore, the
embedded SW can best be developed,
debugged and profiled when simulating it in
system context.
CoWare provides a comprehensive system
level SoC design environment which supports
the designer in creating processor IP blocks as
well as in using them to design and program
optimal SoC platforms.

1. Problem Statement

The emerging platform based design paradigm
poses enormous challenges to conceptualize,
implement, verify and program today’s complex
SoC designs. System architects are obliged to
employ heterogeneous computational fabrics to
meet conflicting requirements with respect to
performance, flexibility and power efficiency. The
complexity problem of increased heterogeneity also
applies for the on-chip communication: numerous
busses of different types are necessary to cope with
the escalating data traffic [1].

In the predominant industrial praxis, design of
complex and programmable SoCs still follows the
traditional flow, where the textual architecture
specification phase is followed by sequential and
mostly decoupled implementation of HW and SW
parts. Finally processors, busses, memories and
dedicated logic blocks are integrated on the HDL
based implementation level. The high complexity
and poor simulation speed on this level prohibits
consideration of architectural tradeoffs and

integration of the embedded SW has to wait even
until the silicon is available.

Due to the lack of early system integration,
complex SoC are either over-designed or fail to
fulfill the performance specification. Especially the
performance related to the SW part, like e.g. CPU
load, impact of the RTOS, or SW response time,
can hardly be analyzed without a cycle accurate
simulation model. Furthermore the SW
performance is heavily affected by the
communication and memory architecture, so an
isolated consideration of a single processor may
hide potential bottlenecks due to bus utilization and
memory access latency. This kind of issues has to
be addressed as early in the design flow as possible
to prevent from late and costly changes of the
architecture specification.

In this article, we first introduce the underlying
technology for system level design and smooth
integration of processor IP into the system context.
Then we highlight further design steps at the
platform level: multiprocessor debugging and
performance analysis. Finally, a case study of a
complex dual processor JPEG image processing
system is presented.

2. System Level Design

Today any embedded processor is just a component
in a complete system, which may include further
programmable processors, accelerators, and I/O
blocks as well as a heterogeneous communication
architecture. System-level simulation is required in
order to verify correctness and performance of the
entire hardware/software system.

In this context, SystemC [2] is considered as the
emerging industry standard for system architecture
design, because on the one hand side being a native
C++ library it fits well into any SW flow. On the
other hand side, SystemC incorporates mandatory
HW semantics like concurrency, module hierarchy,
and explicit timing to create architectural models.

 IP Based Design 2003

Session : Open Forum on SystemC

SOC INTEGRATION OF PROGRAMMABLE CORES

Andreas Wieferink, Tim Kogel : RWTH Aachen, Germany

Andreas Hoffmann, Olaf Zerres, Achim Nohl : CoWare Inc., San Jose, USA

IP Based SoC Design 2003 - November 13-14, 2003 2

However, having an expressive language alone is
not sufficient to enable system-level design, instead
the major bottleneck in terms of simulation speed
and modeling efficiency is caused by the highly
detailed Register-Transfer Level (RTL) modeling
style. Therefore, SystemC 2.0 advocates the
Transaction-Level Modeling (TLM) paradigm [3],
where the pin-accurate communication between
modules is replaced by condensed Interface Method
Calls (IMC). Especially for complex bus protocols
like AMBA AHB, this simplification attains up to
two orders in simulation efficiency [4] without
sacrificing cycle accuracy. TLM along with the
concept of dynamic sensitivity also results in a very
condensed modeling style, which is essential to
motivate the creation and maintenance of a separate
model for architectural exploration at the system
level.

3. CoWare’s Solution

Based on the SystemC TLM paradigm, CoWare®
Inc. has recently introduced the ConvergenSC™
product family, an EDA solution addressing
system-level design and verification of Multi-
Processor SoCs (MP-SoC). The integration of the
LISATek Processor Design Suite into the CoWare
N2C tools family establishes a comprehensive
design and verification environment addressing all
aspects of platform based design. As depicted in
figure 1, the combined solution enables early IP
integration, and by that profiling driven exploration
and optimization of the complete SoC.

BSP

Logic / Memory
Models

Processor
compiler

Processor
compiler

Heterogeneous Multi - Processor SoC

DSP Embedded
Memory

µC Logic

LISA 2.0

ISP

ASIP

ASIP Bus
Bus

Bridge Bridge

3rd Party
Processor IP

3 rd Party
Bus IP

Figure 1: system level IP integration

The bus architectures as well as processor cores are
basically considered as 3rd party IP reuse. The
processor cores alternatively can optimally be
tailored for the respective application by using the
LISATek Processor Design Suite.

Transaction-Level Modeling (TLM) is the enabling
technology for fast but also accurate simulation of

MP-SoCs. Instead of costly modeling and
simulating the complex RT-level pin-wiggling
communication, the Interface Method Call (IMC)
principle is applied. This allows simulation speed
beyond 100kcycles/second, as well as easy and
early IP integration.

The concept of dynamic sensitivity applied here
does not only enable higher simulation speed, but
also allows intuitive modeling and high code
density. For example, the bus FSM resides inside
the bus model with the connected modules being
sensitive to the expected events. This is much more
efficient than implementing the bus protocol FSM
or parts of it in every module.

Within the large class of TLM communication, the
system designer can choose between a blocking
transaction API and a non-blocking transfer API
for a fine-grain trade-off between modeling effort
and simulation accuracy. The transaction API
enables modeling inter module communication very
early just by redirecting any read and write access
of an instruction accurate processor simulator to the
outside. The transfer API, in contrast, is tailored
for cycle accurate processor models and invokes
any atomic communication event explicitly in the
respective processor cycle.

The LISATek bus model provides a generic set of
communication primitives for blocking as well as
non-blocking bus access. This generic memory
interface allows any LISATek processor model to
be hooked to any bus model.

After an executable virtual prototype has been
created, we will now focus on the verification of
the MP-SoC architecture and the embedded
Software.

4. Multi-Processor Debugging

For user friendly debugging and online profiling of
the embedded SW and its platform, the user always
- at simulation runtime - has the possibility of
getting the full SW centric view of an arbitrary SW
block. All other SW blocks that are currently not
considered still run at maximum speed.

To keep the potential for highest possible
simulation speed in a complex SoC simulation, the
data exchange between the processors and their
respective SoC environment – which is always
necessary independent of the user's system
observation - must be highly optimized. This can
only be guaranteed if all processor simulators
reside within one executable on the host such that
no slow Inter Process Communication (IPC) is
necessary for this task. IPC is applied if and only if

IP Based SoC Design 2003 - November 13-14, 2003 3

the user decides to observe or take control over a
certain processor simulator.

The processors to focus on can be selected at
simulation runtime. Thus, only one or two
debugger GUIs are sufficient even to debug
complex multiprocessor systems.

The remote debugger frontend instance offers all
observability and controllability features for
multiprocessor simulation as known from
standalone processor simulation. Even resources
external to a processor module but mapped into its
address space like peripheral registers and external
memories can be visualized and modified by the
multiprocessor debugger GUI.

control and observation of
any processor core

control and observation of
any processor core

display / modify
memory state

display / modify
memory state

Multiprocessor Debugger

Multiprocessor Platform

DSPDSP

µCµC ASIPASIP

ASIPASIP

Embedded Embedded
Memory Memory

Logic Logic
Bu
s Bus

BridgeBridge
Bu
s Bu
s

Figure 2: dynamic connect multiprocessor
debugger

The SW developer can dynamically connect to
relevant processors, set break/watch points in
respective code segments, disconnect from
simulation and automatically re-connect when a
breakpoint is hit.

After the functional verification of the complete
HW/SW platform, the next important task is the
verification of the performance requirements.

5. Platform Profiling

The system architect needs to create a platform that
meets the performance requirements at the lowest
possible cost. Having assembled own as well as 3rd
party IP for processors, SW and the communication
in between, the designer needs information as
detailed and accurate as possible about the system’s
performance to be expected. Thus, CoWare’s
analysis capabilities cover all aspects of platform
profiling.

The bus analysis evaluates bandwidth requirements
and can detect bottlenecks in the communication
architecture. The SW analysis enables execution
time profiling on application level. For example, a
gantt diagram shows a detailed cycle count for

every function call. The LISATek processor
profiling exactly shows the utilization of the
processor resources (registers, functional units) and
also highlights performance critical loops in the
application on assembly level, for example.

SW Analysis

Processor Profiling

Bus Analysis

Figure 3: comprehensive profiling environment

The platform profiling information is collected
during system simulation. The user always can
trade simulation performance against depth of
profiling by selecting only the relevant parameters,
e.g. the bus utilization. The tight integration of
CoWare’s bus and SW analysis with the processor
simulator enables the system developer to trace
which part of the application is currently executed
and what bus transactions are initiated.

These powerful profiling capabilities are provided
automatically for every system platform to be
analyzed. The complex APIs for bus analysis and
SW analysis all are generated together with the
platform simulator. Also the processor simulator
itself, when newly generated using the LISATek
tool suite, automatically is equipped with the
processor profiling capabilities. The turnaround
time for modifying and re-integrating a processor is
about 10 minutes. This gives an enormous
productivity gain to the designer!

6. JPEG Case Study

The outlined design methodology has successfully
been applied to the development of a JPEG image
processing system (figure 4). The system reads
compressed image data from the flash memory of a
digital camera and decompresses it to apply
filtering algorithms and special effects to the photo.
An LCD connected to the video memory displays
the result.

It turns out to be reasonable to use two different
processor cores for this system: A MIPS32 core for
decoding the JPEG and controlling the system, as
well as an ASIP called FPcore, which has optimally

IP Based SoC Design 2003 - November 13-14, 2003 4

been tailored for performing image filtering and
special effects. Both processors access the common
video RAM using an AMBA bus. The MIPS is
connected to a second AMBA bus for accessing its
remaining memory including the flash memory.

Figure 4: image processing system

The CoWare tools allow both: First, they check the
correct functionality of the complete system in
every design step; and second, they can give an
estimation for the overall system performance very
early in the design flow.

Having the system model available, quantitative
values for different architectural alternatives can be
obtained quickly. In case of this exemplary
architecture, the MIPS32 core executing the
standard JPEG decryption software [5] decodes a
256x192 sized bitmap in about 871 million cycles.
Introducing a suitable instruction cache drastically
reduces this value to 81.3 million cycles. In both
cases, the FPcore is permanently competing for
access to the video memory via the AMBA bus to
show additional objects, messages, or to start
filtering the image concurrently. In the latter case,
12.4 million cycles of the overall JPEG decoding
time are caused by the FPcore’s activity. What the
system designer needs for optimal design decisions
is a reliable estimation concerning such
characteristic values as early as possible.

7. Conclusion

The platform designer absolutely needs optimal
tool support during the architecture exploration and
implementation phase, and for programming and
verifying the complex multiprocessor SoC
platforms. CoWare’s powerful tool suite meets
these challenging requirements.

[1] O. Ogawa, K. Shinohara, Y. Watanabe, H. Niizuma,
T. Sasaki, Y. Takai, S. Bayon de Noyer and P. Chauvet,
"A Practical Approach for Bus Architecture Optimization
at Transaction Level", International Conference on
Design, Automation and Test in Europe (DATE), 2003

[2] Open SystemC Initiative, www.systemc.org

[3] T. Gröker, S. Liao, G. Martin, S. Swan, "System
Design with SystemC", Kluwer Academic Publishers,
2002

 [4] G. Braun, A. Wieferink, O. Schliebusch, R. Leupers,
H. Meyr, A. Nohl ”Processor/Memory Co-Exploration on
Multiple Abstraction Levels”, International Conference
on Design, Automation and Test in Europe (DATE),
2003

[5] Official JPEG homepage, http://www.jpeg.org

