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Abstract : 
 
Current and future SoC designs will contain an 
increasing number of programmable units to 
meet flexibility, performance and cost 
constraints. Only when integrating processor 
IP blocks into the SoC system model as early 
as possible, architectural alternatives can be 
evaluated effectively. Furthermore, the 
embedded SW can best be developed, 
debugged and profiled when simulating it in 
system context. 
CoWare provides a comprehensive system 
level SoC design environment which supports 
the designer in creating processor IP blocks as 
well as in using them to design and program 
optimal SoC platforms. 
 
 
1. Problem Statement 
 
The emerging platform based design paradigm 
poses enormous challenges to conceptualize, 
implement, verify and program today’s complex 
SoC designs. System architects are obliged to 
employ heterogeneous computational fabrics to 
meet conflicting requirements with respect to 
performance, flexibility and power efficiency.  The 
complexity problem of increased heterogeneity also 
applies  for the on-chip communication: numerous 
busses of different types are necessary to cope with 
the escalating data traffic [1].  

In the predominant industrial praxis, design of 
complex and programmable SoCs still follows the 
traditional flow, where the textual architecture 
specification phase is followed by  sequential and 
mostly decoupled implementation of HW and SW 
parts. Finally processors, busses, memories and 
dedicated logic blocks are integrated on the HDL 
based implementation level.  The high complexity 
and poor simulation speed on this level prohibits 
consideration of architectural tradeoffs and 

integration of the embedded SW has to wait even 
until the silicon is available.  

Due to the lack of early system integration, 
complex SoC are either over-designed or fail to 
fulfill the performance specification. Especially the 
performance related to the SW part, like e.g. CPU 
load, impact of the RTOS, or SW response time, 
can hardly be analyzed without a cycle accurate 
simulation model. Furthermore the SW 
performance is heavily affected by the 
communication and memory architecture, so an 
isolated consideration of a single processor may 
hide potential bottlenecks due to bus utilization and 
memory access latency. This kind of issues has to 
be addressed as early in the design flow as possible 
to prevent from late and costly changes of the 
architecture specification. 

In this article, we first introduce the underlying 
technology for system level design and smooth 
integration of processor IP into the system context. 
Then we highlight further design steps at the 
platform level: multiprocessor debugging and 
performance analysis. Finally, a case study of a 
complex dual processor JPEG image processing 
system is presented. 

 

2. System Level Design 
 
Today any embedded processor is just a component 
in a complete system, which may include further 
programmable processors, accelerators, and I/O 
blocks as well as a heterogeneous communication 
architecture. System-level simulation is required in 
order to verify correctness and performance of the 
entire hardware/software system.  

In this context, SystemC [2] is considered as the 
emerging industry standard for system architecture 
design, because on the one hand side being a native 
C++ library it fits well into any SW flow. On the 
other hand side, SystemC incorporates mandatory 
HW semantics like concurrency, module hierarchy, 
and explicit timing to create architectural models.  

 IP Based Design 2003 
 

Session :   Open Forum on SystemC 
 

SOC INTEGRATION OF PROGRAMMABLE CORES 
 

Andreas Wieferink, Tim Kogel  :  RWTH Aachen, Germany 
 

Andreas Hoffmann, Olaf Zerres, Achim Nohl  :  CoWare Inc., San Jose, USA 
  



IP Based SoC Design 2003 - November 13-14, 2003 2

However, having an expressive language alone is 
not sufficient to enable system-level design, instead 
the major bottleneck in terms of simulation speed 
and modeling efficiency is caused by the highly 
detailed Register-Transfer Level (RTL) modeling 
style. Therefore, SystemC 2.0 advocates the 
Transaction-Level Modeling (TLM) paradigm [3], 
where the pin-accurate communication between 
modules is replaced by condensed Interface Method 
Calls (IMC). Especially for complex bus protocols 
like AMBA AHB, this simplification attains up to 
two orders in simulation efficiency [4] without 
sacrificing cycle accuracy. TLM along with the 
concept of dynamic sensitivity also results in a very 
condensed modeling style, which is essential to 
motivate the creation and maintenance of a separate 
model for architectural exploration at the system 
level.  

 

3. CoWare’s Solution 
 
Based on the SystemC TLM paradigm, CoWare® 
Inc. has recently introduced the ConvergenSC™ 
product family, an EDA solution addressing 
system-level design and verification of Multi-
Processor SoCs (MP-SoC). The  integration of the 
LISATek Processor Design Suite into the CoWare 
N2C tools family establishes a comprehensive 
design and verification environment addressing all 
aspects of platform based design. As depicted in 
figure 1, the combined solution enables early IP 
integration, and by that profiling driven exploration 
and optimization of the complete SoC. 
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Figure 1: system level IP integration 

The bus architectures as well as processor cores are 
basically considered as 3rd party IP reuse. The 
processor cores alternatively can optimally be 
tailored for the respective application by using the 
LISATek Processor Design Suite. 

Transaction-Level Modeling (TLM) is the enabling 
technology for fast but also accurate simulation of 

MP-SoCs. Instead of costly modeling and 
simulating the complex RT-level pin-wiggling 
communication, the Interface Method Call (IMC) 
principle is applied. This allows simulation speed 
beyond 100kcycles/second, as well as easy and 
early IP integration. 

The concept of dynamic sensitivity applied here 
does not only enable higher simulation speed, but 
also allows intuitive modeling and high code 
density. For example, the bus FSM resides inside 
the bus model with the connected modules being 
sensitive to the expected events. This is much more 
efficient than implementing the bus protocol FSM 
or parts of it in every module. 

Within the large class of TLM communication, the 
system designer can choose between a blocking 
transaction API and a non-blocking transfer API 
for a fine-grain trade-off between modeling effort 
and simulation accuracy. The transaction API 
enables modeling inter module communication very 
early just by redirecting any read and write access 
of an instruction accurate processor simulator to the 
outside. The transfer API, in contrast,  is tailored 
for cycle accurate processor models and invokes 
any atomic communication event explicitly in the 
respective processor cycle. 

The LISATek bus model provides a generic set of 
communication primitives for blocking as well as 
non-blocking bus access. This generic memory 
interface allows any LISATek processor model to 
be hooked to any bus model. 

After an executable virtual prototype has been 
created, we will now focus on the verification of 
the MP-SoC architecture and the embedded 
Software.  

 

4. Multi-Processor Debugging 
 
For user friendly debugging and online profiling of 
the embedded SW and its platform, the user always 
- at simulation runtime - has the possibility of 
getting the full SW centric view of an arbitrary SW 
block. All other SW blocks that are currently not 
considered still run at maximum speed. 

To keep the potential for highest possible 
simulation speed in a complex SoC simulation, the 
data exchange between the processors and their 
respective SoC environment – which is always 
necessary independent of the user's system 
observation - must be highly optimized. This can 
only be guaranteed if all processor simulators 
reside within one executable on the host such that 
no slow Inter Process Communication (IPC) is 
necessary for this task. IPC is applied if and only if 
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the user decides to observe or take control over a 
certain processor simulator. 

The processors to focus on can be selected at 
simulation runtime. Thus, only one or two 
debugger GUIs are sufficient even to debug 
complex multiprocessor systems. 

The remote debugger frontend instance offers all 
observability and controllability features for 
multiprocessor simulation as known from 
standalone processor simulation. Even resources 
external to a processor module but mapped into its 
address space like peripheral registers and external 
memories can be visualized and modified by the 
multiprocessor debugger GUI. 
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Figure 2: dynamic connect multiprocessor 
debugger 

The SW developer can dynamically connect to 
relevant processors, set break/watch points in 
respective code segments, disconnect from 
simulation and automatically re-connect when a 
breakpoint is hit. 

After the functional verification of the complete 
HW/SW platform, the next important task is the 
verification of the performance requirements.  

 

5. Platform Profiling 
 
The system architect needs to create a platform that 
meets the performance requirements at the lowest 
possible cost. Having assembled own as well as 3rd 
party IP for processors, SW and the communication 
in between, the designer needs information as 
detailed and accurate as possible about the system’s 
performance to be expected. Thus, CoWare’s 
analysis capabilities cover all aspects of platform 
profiling. 

The bus analysis evaluates bandwidth requirements 
and can detect bottlenecks in the communication 
architecture. The SW analysis enables execution 
time profiling on application level. For example, a 
gantt diagram shows a detailed cycle count for 

every function call. The LISATek processor 
profiling exactly shows the utilization of the 
processor resources (registers, functional units) and 
also highlights performance critical loops in the 
application on assembly level, for example. 
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Figure 3: comprehensive profiling environment 

The platform profiling information is collected 
during system simulation. The user always can 
trade simulation performance against depth of 
profiling by selecting only the relevant parameters, 
e.g. the bus utilization. The tight integration of 
CoWare’s bus and SW analysis with the processor 
simulator enables the system developer to trace 
which part of the application is currently executed 
and what bus transactions are initiated. 

These powerful profiling capabilities are provided 
automatically for every system platform to be 
analyzed. The complex APIs for bus analysis and 
SW analysis all are generated together with the 
platform simulator. Also the processor simulator 
itself, when newly generated using the LISATek 
tool suite, automatically is equipped with the 
processor profiling capabilities. The turnaround 
time for modifying and re-integrating a processor is 
about 10 minutes. This gives an enormous 
productivity gain to the designer! 

 

6. JPEG Case Study 
 
The outlined design methodology has successfully 
been applied to the development of a JPEG image 
processing system (figure 4). The system reads 
compressed image data from the flash memory of a 
digital camera and decompresses it to apply 
filtering algorithms and special effects to the photo. 
An LCD connected to the video memory displays 
the result. 

It turns out to be reasonable to use two different 
processor cores for this system: A MIPS32 core for 
decoding the JPEG and controlling the system, as 
well as an ASIP called FPcore, which has optimally 
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been tailored for performing image filtering and 
special effects. Both processors access the common 
video RAM using an AMBA bus. The MIPS is 
connected to a second AMBA bus for accessing its 
remaining memory including the flash memory. 

 

Figure 4: image processing system 

The CoWare tools allow both: First, they check the 
correct functionality of the complete system in 
every design step; and second, they can give an 
estimation for the overall system performance very 
early in the design flow. 

Having the system model available, quantitative 
values for different architectural alternatives can be 
obtained quickly. In case of this exemplary 
architecture, the MIPS32 core executing the 
standard JPEG decryption software [5] decodes a 
256x192 sized bitmap in about 871 million cycles. 
Introducing a suitable instruction cache drastically 
reduces this value to 81.3 million cycles. In both 
cases, the FPcore is permanently competing for 
access to the video memory via the AMBA bus to 
show additional objects, messages, or to start 
filtering the image concurrently. In the latter case, 
12.4 million cycles of the overall JPEG decoding 
time are caused by the FPcore’s activity. What the 
system designer needs for optimal design decisions 
is a reliable estimation concerning such 
characteristic values as early as possible. 

 

7. Conclusion 
 
The platform designer absolutely needs optimal 
tool support during the architecture exploration and 
implementation phase, and for programming and 
verifying the complex multiprocessor SoC 
platforms. CoWare’s powerful tool suite meets 
these challenging requirements. 
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