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ABSTRACT
This paper proposes an architecture exploration methodology
for application specific instruction set processors (ASIPs)
including a C compiler and a VHDL model in the explo-
ration loop. For a given application the target architecture
is an instance of the scalable ALICE VLIW architecture
which will be presented in this paper. In a case study it
will be explained how the LISA processor design platform
in conjunction with the CoSy compiler environment signifi-
cantly reduces the time for exploration cycles. Using a typ-
ical telecommunications application, the quality of the re-
sulting architecture and its performance are compared to the
ICORE2 processor - a manually designed ASIP for efficient
processing of computation intensive kernels.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream
Architectures—VLIW architectures; C.3 [Computer Sys-
tems Organization]: Special-purpose and Application-
based Systems—Signal processing Systems; D.3.4
[Programming Languages]: Processors—Code Gen-
eration

General Terms
Design, Experimentation

Keywords
ASIP, architecture exploration, retargetable compiler

1. INTRODUCTION
In the implementation phase of an embedded system, the
developer is confronted with decisions in a design space of
at least five major axes: performance, power consumption,
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flexibility, design time, and silicon area. One of the first
questions which is usually answered by the designer’s
experience is the target architecture class or combination
of architectures. ASICs, FPGAs, application specific
instruction set processors (ASIPs), DSPs, µCs or general
purpose processors (GPPs) form the bounds in the design
space mentioned above.
In high volume application domains where a certain
degree of flexibility is indispensable and where power
and performance matter — which is the case for many
telecommunication applications — ASIPs are an important
compromise between hardwired ASICs/FPGAs and power
hungry and slower architectures of GPP vendors.

To find the optimal design space parameter tradeoff for
a given application domain, the evaluation of several
architectural alternatives is essential. Unfortunately, the
development and verification effort of ASIP based designs
significantly increases the time required for this so called
architecture exploration. Within a given development time
this can easily lead to suboptimal and less competitive
solutions or even complete project failures. The limited
reusability of the ASIP’s HDL specification and its corre-
sponding software development and verification tools like
code generation utilities and simulator additionally increase
the development costs. Furthermore, shorter and shorter
product cycles put very high requirements on the design
methodology and the design tool support.

In this paper we illustrate a typical compiler/architecture
codesign methodology and evaluate its efficiency in the
form of a case study: For a given mobile telecommunication
application we designed an ASIP with the corresponding
code generation-, profiling, and debugging software. To
achieve meaningful results all components of the system
were generated by sophisticated design tools consisting
of the CoSy r©1 [5] compiler development system, the
LISA [3] processor design platform, and Synopsys’ Design
Compiler [24]. We analyzed the complete design flow from
the application specified as a C program down to the
hardware/software implementation in the form of a netlist
and machine code: On the one hand the quality of the

1CoSy is an international trademark of ACE Associated
Computer Experts bv.



generated compiler was evaluated by comparing a modified
version of the CoSy compiler to GCC [21]. On the other
hand the hardware efficiency was analyzed by comparing
our design results to an ASIP called ICORE2 which was
designed exclusively for the telecommunication kernel with
an assembly programmer’s model in mind.

Our ASIP development is based on a scalable processor ar-
chitecture called ALICE. ALICE was designed to be eas-
ily targetable by a C compiler. Nevertheless it should be
extensible and flexible enough to meet the performance re-
quirements of given applications with the smallest possible
architectural overhead.
The key element of our case study is the C compiler in the
exploration loop: We demonstrate that the CoSy compiler
can easily be retargeted to take advantage of new architec-
tural features and that it significantly speeds up the software
creation and verification. In conjunction with the profiling
capabilities of the LISA platform these environments signif-
icantly reduce the time for the exploration loop depicted in
figure 1.

Simulator

& Profiler

VHDL Model

Assembler

& Linker

Compiler

application

.c

Design

Criteria

met?

ALICE

Processor

Model

manual

modifications

no

yes

done

generation

check

Figure 1: ALICE architecture exploration loop

An overview of related work is given in section 2. The LISA
and CoSy environments are explained in sections 3 and 4,
respectively. Section 5 introduces the ALICE processor tem-
plate and points out the reconfigurable parameters of AL-
ICE. The telecommunication application used for our case
study and the architecture exploration methodology are il-
lustrated in section 6. The results of the case study are
presented in section 7 followed by conclusions in section 8.

2. RELATED WORK
All ASIP design environments that comprise an integrated
development of both software tools and architectural spec-
ification can be classified into two categories: On the one

hand environments are bound to a single processor template
whose tools and architecture can be modified to a certain
degree. On the other hand there are approaches that per-
mit a free specification of the processor at the expense of
restrictions on the quality and/or availability of the tools.
Examples for processor template based approaches are
Xtensa and Jazz which are commercially available from Ten-
silica and Improv, respectively. Xtensa [27] is a scalable
RISC processor core. Configuration options include the
width of the register set, memory, caches etc. New instruc-
tions and functional units (FUs) can be added using the Ten-
silica Instruction Language (TIE). All software tools includ-
ing (GNU based) C-compiler, assembler, linker, simulator,
debugger, and a synthesizable hardware model (HDL-code)
can be generated.
Improv’s Jazz [13] Processor is a VLIW processor and part
of the so called Programmable System Architecture (PSA)
which permits the modeling and simulation of a system con-
sisting of multiple processors, memories, and peripherals.
The data width of the Jazz processor, the number of regis-
ters, the depth of the hardware task queue are configurable.
It is also possible to add FUs (e.g. ALUs, MACs, Shifters)
and to define custom functionality (in Verilog). Code gener-
ation and simulation tools can be automatically generated.
Both approaches have limitations when implementing hard-
ware concepts that are not provided by the environment or
when modifications to the provided software are necessary.
A hardware/compiler co-development methodology for the
Vector IRAM media processor is described in [9]. By
utilizing the Cray compiler environment for supercomputers
(PDGCS) this scalable vector processor targets the domain
of multimedia applications, too. In contrast to our approach
this proposal does not focus on the instruction level paral-
lelism exploitable by a VLIW architecture but on data par-
allelism that must be contained in the target application for
the vector processor to be effectively utilized.
PICO [22] (Program In Chip Out) and Trimaran [29]
are both part of the Compiler and Architecture Research
Program (CAR) of HP Labs. PICO is an environment
that automatically designs parallel computing systems for
applications written in C. VHDL-descriptions for non-
programmable processors (systolic-array processors) as well
as custom EPIC or VLIW processors can be generated. Tri-
maran uses the MDes processor description language to
retarget compiler, assembler and cycle-level simulator to
a range of VLIW architectures called HPL-PD. Since the
PICO environment utilizes Trimaran’s Elcor compiler back-
end its architectural scope for programmable architectures
is limited to HPL-PD.
PEAS [18] is an ongoing hardware/software codesign
project at Osaka University. A GUI based architecture de-
scription drives generators for HDL code, compiler, assem-
bler, linker, and simulator. There is support for several ar-
chitecture types (e.g. VLIW) and a library of configurable
resources. Instruction set and micro-operations are sepa-
rately described. Unfortunately, no detailed results about
the target architecture range and code quality have been
published yet.
BUILDABONG [14] from the University of Paderborn is
an architecture exploration framework aiming at ASIP op-
timization by architecture/compiler codesign. The target
processor model is an Abstract State Machine (ASM) which
is derived from the XASM description language or from a



schematic entry tool. Besides the RTL model a simulator
and a compiler can be generated. However there is few in-
formation available concerning the simulation speed, the ar-
chitectural scope, and the code quality.
Approaches that permit a free definition of the processor
in the form of a dedicated language can further be divided
into environments that focus on the instruction set or on
the processor’s architectural structure. Typical instruction
set (IS) based languages are nML and ISDL. The nML [1]
language describes the processor’s instruction set as an at-
tributed grammar with extensions reflecting the set of legal
instructions. The Chess/Checkers tool-suite [26] which is
commercially available from Target Compiler Technologies
is based on nML with extensions for describing architectural
aspects like pipelining. The architectural scope is limited to
DSPs and ASIPs. Compiler, instruction set simulator and
HDL generation are provided.
Using the ISDL [11] environment compiler, assembler, and
simulator can be generated from an ISDL instruction set
description. The architectural focus are “orthogonal” VLIW
architectures: since constraints on the coding of instructions
have to be explicitly specified it is very hard to describe
architectures that have complex decoders.
An architecture description language that describes the tar-
get machine by a hierarchical RTL netlist isMIMOLA [20].
There are two MIMOLA based compilers: The MSSQ com-
piler is very flexible but the quality of the generated code
is sometimes insufficient. The RECORD [16] compiler pro-
duces better code but it is restricted to DSPs.
The UPFAST [23] system uses a microarchitecture de-
scription written in the Architecture Description Language
(ADL). A cycle level simulator, an assembler, and a dis-
assembler can be generated automatically. The generated
simulator is less than two times slower than a handwritten
simulator.
FlexWare2 [19] from STMicroelectronics provides support
for generating compiler, assembler, linker, simulator, and
profiler using the Instruction Description Language (IDL) in
a database oriented approach. The compiler is based on the
CoSy [5] compiler development system described in section
4. Its code quality is comparable to hand written assembly
although the verification effort for the different code gener-
ation tools is quite high due to separate descriptions. The
system is intended for in-house use only and is not publicly
available.
An approach for addressing both the processor’s behavior
and its structure is also introduced by the EXPRESSION
[2] environment from UC Irvine. The behavior is described
in the form of operations that are contained in the slots of
ILP instructions and that are mapped to generic compiler
operations. Besides a specification of the architectural com-
ponents the structural description characterizes the pipeline,
the data transfer paths and the memory subsystem. Using
this information a cycle-accurate structural simulator and
an optimizing ILP compiler can be generated. It is cur-
rently not possible to generate HDL-models. Architectures
described so far include TI C6x and Motorola 56k DSPs.
However experimental results on code quality for these tar-
gets have not yet been published.
Instead of generating a processor HDL-model and corre-
sponding code generation tools from a processor description
or a processor template it is also possible to generate an
ASIC hardware model directly from the system specifica-

tion. Adelante’s AR|T designer [7] (C based) and Synop-
sys’ Behavioral Compiler [24] (behavioral VHDL based)
are examples for this approach. Disadvantages are the re-
duced flexibility of the hardware and a limited hardware
efficiency.
The methodology we present in this paper combines the
advantages of the processor template based environments
and the free processor specifications: Our architecture ex-
ploration phase is based on a scalable ASIP. Like in other
processor template based approaches this restriction of the
design space permits a highly optimizing C compiler and
fast analysis of hardware performance and costs. Thus de-
sign space iterations are quick and produce precise results.
If the exploration shows that the architecture range of the
processor template is too restrictive for an implementation
most template based environments do not provide further
solutions. In our approach the designer can take the LISA
and CoSy models as a starting point for further separate
optimizations: On its own, LISA is capable of describing a
much wider range of processors and CoSy provides an ex-
tensible library of engines that permit the targeting of many
architectural features.

3. LISA PROCESSOR DESIGN PLAT-
FORM

The LISA processor design platform LPDP [3] is an environ-
ment that provides a consistent design flow for system level-,
processor architecture-, and software design. A commercial
version is available from LISATek Inc. [17]. The key compo-
nent of the environment is the Language for Instruction Set
Architectures (LISA) that describes the behavior, the struc-
ture, and the I/O interfaces of a processor architecture. The
environment has been used to describe a wide variety of ar-
chitectures including ARM7, C62x, C54x, MIPS32 4K, and
to develop ASIPs like ICORE2 (see section 7.2).
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Figure 2: The LISA Processor Design Platform

The LPDP provides an Integrated Design Environment
(IDE) to support the manual creation and configuration of
the LISA model. From the IDE the so called LISA processor
compiler is invoked. It parses the description and generates



the tools and models necessary for software design and ar-
chitecture implementation:

• assembler

• disassembler

• linker

• simulator GUI including model debugger and profiler

• simulator core with API for HW/SW cosimulation

• HDL model of the processor’s control path

To provide a seamless integration and verification of the
LISA processor model into a system context the simulator
comprises interfaces permitting cosimulation of the LISA
model within a system simulation environment. In [4] the
integration of several LISA models into the SystemC [28]
environment is described. SystemC was used to model the
processor’s interconnection, external peripherals, memories,
and buses on a cycle-accurate level.
The key functionality of the LISA processor design platform
is its support for architecture exploration: In the phase of
tailoring an architecture to an application domain LISA per-
mits a graceful degradation of the model’s abstraction level
by supporting instruction set models and cycle based mod-
els. Beside the instruction’s functionality the latter involves
modeling of pipelines (stalls and flushes), registers, and la-
tencies. Resources can also be modeled on several levels of
abstraction. For example memories can be defined as a C
type array on the simulation host or they can be modeled
as the HDL model of a complex cache hierarchy that is in-
terfaced over an address bus. The consequences of design
decisions can seamlessly be monitored in the exploration
process by utilizing the profiling capabilities of the LISA
simulator. If profiling is enabled the simulator automati-
cally observes the cumulative execution of instructions and
LISA operations. It detects and counts loops, it sums up
read and write accesses on registers and it collects pipeline
execution statistics like the number of stalls and flushes.

4. COSY COMPILER ENVIRONMENT
Using the CoSy [5] Compiler Environment a designer can
retarget HLL-compilers for a broad range of architectures
in a flexible and modular manner. Programming languages
supported by CoSy are C, C++, an extension to ANSI-C
called DSP-C that introduces fixed point data types and
arithmetic, Java, Fortran 95, and HPF. Beside the sources
for standard libraries a regression test suite called SuperTest
is included in the environment. CoSy provides a rich set of
optimization and restructuring engines that include typi-
cal high level optimizations like copy/constant propagation,
code motion, loop unrolling, fusion etc.
Figure 3 illustrates the modular concept of CoSy. The
CoSy IR data structures are easily extensible and are gener-
ated in conjunction with corresponding interfacing functions
from the so called Structure Description Language (SDL).
The dynamic calling sequence of the built-in or handwritten
CoSy engines is described in the Engine Description Lan-
guage (EDL). However, for retargeting a compiler the most
important component of the CoSy environment is the Back-
end Generator BEG. It takes Code Generator Description
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Figure 3: The CoSy Environment

(CGD) files as input and generates most parts of the com-
piler’s backend. Generated components are a tree pattern
matching based code selector, a scheduler that can also be
used as a code compactor after register allocation, a global
register allocator, and a code emitter. CGD permits specify-
ing lowering rules that modify IR patterns before the pattern
matcher starts its work. For complex restructuring it is pos-
sible to write lowering engines manually. The compiler envi-
ronment is additionally parameterized by a so called Target
Description File (TDF) that specifies sizes and alignments
of data types.

5. ALICE ARCHITECTURE TEMPLATE
Our methodology for compiler/architecture codesign is
based on a scalable architecture called ALICE which is de-
picted in figure 4.
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Figure 4: The ALICE Architecture

The main design goal of ALICE was to construct an archi-
tecture that could efficiently be targeted by a compiler and
that could easily be modified to provide a processor with low
overhead and high performance for a specific application.
Today many off-the-shelf DSPs solve the perfor-
mance/cost/power tradeoff by introducing special pur-
pose functional units (FUs) with dedicated register files,
buses and a rich set of addressing modes. For these
non-orthogonal architectures the recent trend of moving
the entry point of the design flow from assembly to C level
causes several problems in C compiler design. Some of the
most important are:



• The C code has to be rewritten into a form that the
code selector can map code to the special FUs.

• The phases of the compiler backend (code selection,
scheduling, register allocation) become dependent on
each other (phase coupling problem): decisions in one
phase prevent possibilities in other phases.

To overcome these problems we have designed ALICE as a
load/store RISC architecture with a singe general purpose
register file.
Many high level languages like C make use of stack frames
to implement function calls, local variables etc. To provide
an efficient access relative to a stack pointer we chose
register/offset memory access as the only addressing mode.

Using these design decisions the resulting architecture is
very similar to the MIPS32 [10] architecture which ALICE
is based on. Obviously, MIPS32 is a general purpose proces-
sor and is not suited for signal processing applications. In
order to achieve the necessary computational performance
ALICE parallelizes the execution of instructions. To reduce
energy consumption and die size the decision of which in-
structions are to be executed in parallel are transfered into
the compiler (in contrast to superscalar designs).
The resulting Instruction Level Parallelism (ILP) is depicted
in figure 4 in the form of the parallel fetch slots in the first
pipeline stage. To eliminate the typical code size problem of
pure VLIW architectures that directly fetch the VLIW word
from memory we introduced a two stage decoder that in
the first phase decompresses a packet of instructions fetched
from memory. A detailed explanation of the technique is
given in [25]. The basic design properties of ALICE are
reflected by its pipeline structure:

fetch: loads the next instruction packet from the memory
banks.

decode 1: the instruction packet is expanded to an internal
VLIW word.

decode 2: decodes the VLIW word for each unit, reads the
register file, and calculates potential branch destina-
tions.

execute: comprises the functional units for arith-
metic/logic calculations or read/write memory.

writeback: writes results back into the register file.

The easily scalable design parameters of ALICE include:

• the number of equivalent functional units (FUs) (e.g.
number of multipliers)

• the introduction of special purpose FUs (e.g. a FFT
butterfly or a CORDIC)

• latency of pipelined/non-pipelined functional units

• number and connectivity of forwarding paths

• number of registers

• number and sharing of register file or memory ports

• word lengths

A detailed explanation how these parameters are utilized for
tailoring ALICE to a given application will be given in the
following section.

6. ARCHITECTURE EXPLORATION

6.1 The Application
In a case study we tailored the ALICE architecture to a
typical mobile telecommunication kernel. The selected al-
gorithm is an eigenvalue decomposition (EVD) of a com-
plex matrix. The EVD is needed by estimation algorithms
like the multiple signal classification (MUSIC) algorithm or
direction-of-arrival (DoA) [12] algorithms. It is given in the
form of a C procedure that calls two additional C functions
which implement a COrdinate Rotation DIgital Computer
(CORDIC) based calculation of sine, cosine, and arc tan-
gent. All functions have undergone a float to fixed conver-
sion which means that they contain only integer data types
with scaling shifts. The CORDIC is a shift-add algorithm
consisting of a single loop which makes it very suitable for
hardware implementations. Its sources consist of 89 lines of
C code. The length of the complete application is 474 lines.
The EVD comprises several nested loops. The control flow
through the loops depends on the result of the CORDIC cal-
culation. This control flow orientation and the fact that the
matrix dimension needs to be configurable make the EVD an
algorithm predestinated for a programmable architecture.

6.2 Profiling
The first step of tailoring ALICE is to compile the algorithm
with a CoSy based C compiler and to profile it on a highly
parallelized version of the architecture.
Within the LISA model of the ALICE architecture the
LISA Simulator was configured to obtain extensive execu-
tion statistics. As one can see in figure 5 the number of
execution cycles is accumulated in virtual registers and the
number of activations of all functional units is counted. Ad-
ditional counters can easily be added to the model. In the
disassembly window some of the simulator’s profiling capa-
bilities are depicted. Besides analyzing and counting loops
they are visualized graphically. The execution of each in-
struction is counted and set into relation with the total
amount of control steps. The graphical representation pro-
vides an intuitive way to find the hot spots in the assem-
bly sources. The profiling results of the EVD kernel run-
ning on an ALICE architecture comprising 4 parallel ALUs,
load/store units, and multipliers are depicted in figure 6.
Using this configuration of ALICE it takes 107.895 cycles to
compute the result of the EVD. The figure illustrates the
percentage of cycles the different units were activated.

6.3 Exploring the Number of equivalent Func-
tional Units

As one can see the CoSy Compiler was able to utilize all
functional units to a certain degree. The CoSy scheduler
description that was required to obtain the results in fig-
ure 6 was automatically generated from the corresponding
LISA model. This automation significantly reduces the ver-
ification effort between the two descriptions. An in depth
explanation of this functionality is beyond the scope of this
paper, though. The generated compiler does not only ex-
ploit parallelism inherently contained in the algorithm but
it additionally increases parallel executions by heuristic loop
unrolling. The scheduler’s allocation strategy of mapping
parallel instructions on functional units is to start with low
unit indices and then rise to higher indices. For example, if
two ALU instructions are scheduled to be executed in the



Figure 5: Profiling the ALICE architecture with LISA: simulation of parallelized assembly instructions,
counting/visualization of loops, instruction executions, total execution cycles, activations of functional units
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Figure 6: ALICE Resource Utilization using 4
ALUs, 4 MEMs, 4 MULs

same cycle they will be executed on ALU 1 and ALU 2.
Consequently three parallel ALU instructions would occupy
ALUs 1,2, and 3. Thus figure 6 also gives an impression of
how much parallelism was exploitable by the compiler.
To analyze the effect of reducing the number of functional
units a small manual change of the CoSy scheduler descrip-
tion is sufficient. The relevant excerpt from the CoSy sched-
uler description for the ALICE configuration in figure 6 looks
like this:

RESOURCES

alu1, alu2, alu3, alu4,

mem1, mem2, mem3, mem4,

mul1, mul2, mul3, mul4,

jmp, div, cor;

TEMPLATES

DEFTMPL := ();

ALU_op := alu1 | alu2 | alu3 | alu4;

MEM_op := mem1 | mem2 | mem3 | mem4;

JMP_op := jmp;

MUL_op := mul1 | mul2 | mul3 | mul4;

DIV_op := div;

COR_op := cor;

After the declaration of all resources, alternative
possibilities of resources allocations are listed in
the TEMPLATES section. For example, the line
ALU_op := alu1 | alu2 | alu3 | alu4; indicates
that a utilization of an ALU involves the allocation of either
alu1, alu2, alu3, or alu4. To restrict the compiler to use
only two of the four ALUs this line must be changed into
ALU_op := alu1 | alu2; If the other lines are changed
accordingly and after re-generating the C compiler it is
quickly possible to analyze the performance of an ALICE
architecture that contains two ALUs, two multipliers and a
single memory unit as depicted in figure 7. Note that the
overall execution time rises from 107,895 to 129,102 cycles.
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6.4 Exploring Special Purpose Units
Since the profiling reveals that the EVD makes extensive use
of the CORDIC functions the performance/power efficiency
can be increased significantly by introducing a hardware im-
plementation of the CORDIC algorithm into the architec-
ture. Therefore an additional so called LISA operation is
inserted into the ALICE model which increases the width of
the architecture’s internal VLIW word. For the LISA model
and thus for the corresponding generated tools there is no
verification problem because the C code of the CORDIC
functions can be reused in the description of the new LISA
operation. On the CoSy side the new unit can be addressed
by an intrinsic which can be introduced to the compiler’s
parser by a single pragma and a pattern matcher rule that
covers the intrinsic like a function call.

6.5 Exploring Latencies, Forwarding, and
Register File Size

The modeling and exploration of latencies resulting from
design alternatives (e.g. forwarding logic) can be done by
changing the CoSy scheduler description. It is not necessary
(though possible) to model latencies in the LISA model. In
the ALICE LISA model all results are directly available after
their calculation and latencies inside of functional units are
not existent. The latencies and forwarding logic are mod-
eled with a latency matrix which is part of the compiler’s
scheduler description. A reduced example looks like this:

TRUE ALU_In MUL_In:

ALU_Out 1 1,

MUL_Out 2 2;

This means that the ALU result is available in the next
cycle whereas the multiplication result is available for
both ALU and multiplier after two cycles. Together with
the MUL_op template depicted above this CoSy descrip-
tion models the two stage pipelined multiplier which was
used for figure 7. An architecture with two non-pipelined
multipliers would have the following resource template:
MUL_op := (mul1 & mul1)|(mul2 & mul2) Note that the
ampersand indicates an allocation in a subsequent cycle.
In [15] it was pointed out that the register file size has a
significant impact on energy consumption, code size, and
execution time. Using ALICE the exploration of this im-
portant design parameter can easily be done by restricting

the number of registers that are available for the compiler’s
register allocator. The corresponding statement in the CoSy
description is depicted below. It makes registers R0 to R28
and R31 available for the compiler’s register allocator.

AVAIL <R0..R28,R31>;

The sizes and alignments of C data types are modeled in
CoSy by the Target Description File (TDF). LISA provides
an integer data type of arbitrary bit size for this purpose.

7. RESULTS
The time for a design cycle in the architecture exploration
loop which has been presented in section 6 is dependent
on the time required for rebuilding the CoSy- and LISA
model and the simulation time. A complete rebuild of the
CoSy compiler takes about thirty minutes on a Solaris Ultra
10. A compiler rebuild due to a change of the scheduler
description takes about 5 minutes. This is the same amount
of time required by LISA to generate its code generation
tools and the simulator. The simulation time of the complete
application in the LISA simulator is negligible, due to the
use of high speed compiled simulation [6].

7.1 Execution Cycles
Figure 8 gives a good impression of the compiler’s and the
architecture’s performance and the improvements that are
achievable by tailoring ALICE to the EVD application.
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Figure 8: Performance of Compiler and Architec-
ture

To evaluate the compiler’s performance we modified the AL-
ICE compiler to generate code for the MIPS32 [10] architec-
ture and compared the assembly code of the EVD to the one
generated by the freely available GNU compiler for MIPS32
[8]. The modifications took about one week and involved the
elimination of all parallel units by reducing the fetch stage
to a single instruction slot. Since MIPS only supports load-
ing of 16 bit immediates and potentially stalls the pipeline
dependent on the control flow some other modifications were
necessary as well. However the high level optimizations for
the MIPS32 CoSy compiler were inherited from the ALICE
compiler. The CoSy compiler was called with the highest
optimization level. GCC was called with -O3 so that both
compilers make use of all available optimizations except for
function inlining 2. Both compilers generated more than

2In contrast to other GCC backends the MIPS32 compiler
performs inlining only with option -O4



1500 lines of assembly code. As one can see in figure 8 the
EVD compiled with the MIPS CoSy compiler requires about
50000 cycles less than EVD compiled with GCC.
The third bar from the left depicts the number of cycles
required by an instance of the ALICE architecture to exe-
cute the EVD codec compiled with the corresponding CoSy
compiler. This architecture comprises all functionality of the
MIPS32 processor but parallelizes the utilization of a single
ALU, a jump unit, a memory unit, and a multiplier. In
contrast to MIPS32 there is no forwarding logic used in this
architecture which causes a latency of two or three cycles
for all operations. As one can see in the fourth bar only the
introduction of forwarding logic lets the compiler efficiently
use the parallel units: the total cycle count is reduced by 52
percent.
After further design space iterations the resulting ALICE
architecture contains two ALUs, two pipelined multipliers
with a latency of two cycles, a single memory unit, and a
special purpose unit for the CORDIC algorithm. Indepen-
dent of the compiler used for MIPS32 code generation this
architecture evaluates the EVD codec in 18 percent of the
cycles required on a MIPS32 processor.

7.2 Hardware Efficiency
To estimate the efficiency of the tailored ALICE architecture
we compared it to another ASIP called ICORE2 using Syn-
opsys’ Design Compiler for logic synthesis. The design goal
of ICORE2 was to provide an efficient and configurable pro-
cessor for matrix and other linear algebra kernels that occur
in mobile telecommunication applications. The important
properties of ICORE2 are:

Complex data types: The registers are split into two
parts to comprise real and imaginary part of a complex
value. The mathematical operations of ICORE2 work
on these complex values.

Vector and matrix instructions: There is extensive
Single Instruction Multiple Data (SIMD) support.
Beside vector-vector operations it is also possible to
execute matrix-matrix and matrix-vector operations
with a single instruction.

Addressing modes: There are dedicated addressing
modes for fetching vector- or matrix elements.

CORDIC unit: The tailored ALICE processor and
ICORE2 comprise the same CORDIC unit.

Hardware loops: There is support for zero overhead
loops.

Hidden pipeline: The processor’s pipeline is not visible to
the programmer.

Since most of these features are quite difficult to address
from an ANSI-C compiler the architecture was designed to
be programmed in assembly. The rightmost column in figure
8 depicts the number of cycles a complete calculation of the
10×10 matrix EVD requires on the ICORE2 architecture.
The absolute execution time of the EVD which is calcu-
lated by the quotient of the number of execution cycles and
the clock frequency is depicted in table 1. The table also
lists the maximum clock frequency and the die size of the
MIPS32, the tailored ALICE, and the ICORE2 architec-
ture. All numbers have been obtained for a typical 0.18µm

Architecture: MIPS32 ALICE ICORE2
Frequency (MHz): 170-200 190 140
Die Size (mm2): ≤ 1.0 ≤ 1.5 ≤ 0.4
Time for EVD (ms): 4.19-3.57 0.43 0.32

Table 1: Architecture Comparison

CMOS technology using defined worst case conditions for
temperature, voltage, and fabrication. To support assembly
programming, memory access and arithmetic/logic function-
ality are located in the same pipeline stage of ICORE2 which
is also the reason for its reduced clock frequency compared
to ALICE. This way the result of an instruction is available
in the next cycle without the overhead of implementing a
pipeline hazard detection.

8. CONCLUSIONS AND OUTLOOK
In this paper we demonstrated an architecture exploration
methodology with a C compiler in the iteration loop. In
a case study it was pointed out how the LISA processor
design platform and the CoSy compiler environment can ef-
fectively be used to tailor the scalable ALICE architecture
to a typical telecommunication kernel. The methodology
and results were compared to the ICORE2 ASIP which was
designed for the same application domain but comprises ar-
chitectural features that require an assembly entry into the
design flow.
Using the C compiler the software- and architecture design-
ers can study the application’s performance requirements
immediately after the algorithm designer has finished his
work. Afterwards the time required for the exploration steps
presented in this paper is in the range of minutes or hours.
In contrast, for ICORE2, even the writing and verification
of the assembly code only took one week. Even worse this
time is in the exploration loop each time the architecture is
changed. An additional benefit of the compiler in the ex-
ploration loop is the fact that a compiler/architecture com-
bination which is tailored for a certain application domain
can easily be adapted to further applications of the same
domain without the need to rewrite hundreds of assembly
lines.
Of course the reusability and the restriction of architectural
alternatives do not come for free: The hardware synthesis
results show that the performance of ALICE stays about 30
percent behind ICORE2 and the die size is larger. The rea-
son for this are ICORE2’s zero-overhead loops, dedicated ad-
dressing modes, and special purpose instructions on the one
hand and a less complex decoder and the absence of forward-
ing logic on the other. If these parameters are unaccept-
able the architecture used for exploration can nevertheless
be used as a starting point for more complex refinements: In
our example the designer could manually extend the C com-
piler to utilize the hardware loop support that comes with
the CoSy environment or he could implement further intrin-
sics and optimization engines to target ICORE2’s hardware
features from the C compiler. Alternatively, he could use
the LISA profiling capabilities to identify the hot spots of
the algorithm and program them in assembly.
Future research will focus on a closer integration of the LISA
and the CoSy environments to minimize the verification ef-
fort between the corresponding model descriptions. Beside



the generation of compiler components from LISA we want
to extend the architectural scope that can be addressed by
our compiler/architecture codesign methodology. The im-
plementation of C level source code debugging is planned as
well.
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