
2PARMA: Parallel Paradigms and Run-time Management
Techniques for Many-Core Architectures

C. Silvano∗, W. Fornaciari∗, S. Crespi Reghizzi∗, G. Agosta∗, G. Palermo∗, V. Zaccaria∗, P. Bellasi∗, F. Castro∗,
S. Corbetta∗, A. Di Biagio∗, E. Speziale∗, M. Tartara∗, D. Siorpaes†, H. Hübert‡, B. Stabernack‡, J. Brandenburg‡,

M. Palkovic§, P. Raghavan§, C. Ykman-Couvreur§, A. Bartzas¶, S. Xydis¶, D. Soudris¶,
T. Kempf‖, G. Ascheid‖, R. Leupers‖ H. Meyr‖, J. Ansari‖, P. Mähönen‖, and B. Vanthournout∗∗

∗ Dipartimento di Elettronica e Informazione – Politecnico di Milano, Italy,
† STMicroelectronics, Italy, ‡ Fraunhofer HHI, Germany, § IMEC vzw, Belgium and IBBT, Belgium,
¶ Institute of Communication and Computer Systems – National Tech. University of Athens, Greece,

‖ RWTH – Aachen University, Germany, ∗∗ CoWare, Belgium

Abstract—The 2PARMA project focuses on the development of parallel
programming models and run-time resource management techniques to
exploit the features of many-core processor architectures.

The main goals of the 2PARMA project are: the definition of a
parallel programming model combining component-based and single-
instruction multiple-thread approaches, instruction set virtualisation
based on portable byte-code, run-time resource management policies and
mechanisms as well as design space exploration methodologies for many-
core computing architectures.

I. INTRODUCTION

The main trend in computing architectures consists of integrating

small processing cores in a single chip where the cores are connected

by an on-chip network. Given the technology trend, we would expect,

in the coming years, to move from multi to many core architectures.

Multi-core architectures are nowadays prevalent in general purpose

computing and in high performance computing. In addition to dual-

and quad-core general-purpose processors, more scalable multi-core

architectures are widely adopted for high-end graphics and media

processing, e.g. IBM Cell BE, NVIDIA Fermi, SUN Niagara and

Tilera TILE64. To deal with this increasing number of processing

cores integrated in a single chip, a global rethinking of software and

hardaware desing approaches is necessary.

The 2PARMA project focuses on the design of a class of par-

allel and scalable computing processors, which we call Many-core

Computing Fabric (MCCF) template. This template is composed

of many homogeneous processing cores connected by an on-chip

network. The class of Many-core Computing Fabric promises to

increase performance, scalability and flexibility only if appropriate

design and programming techniques will be defined to exploit the

high degree of parallelism exposed by the architecture.

Benefits of Many-core Computing Fabric architectures include

finer grained possibilities for energy efficiency paradigms, local

process variations accounting, and improved silicon yield due to

voltage/frequency island isolation possibilities. To exploit these po-

tential benefits, effective run-time power and resource management

techniques are needed.

Moreover the Many-core Computing Fabric offers customisation

capabilities to extend and to configure at run-time the architectural

template to address a variable workload.

The 2PARMA project aims at overcoming the lack of parallel

programming models and run-time resource management techniques

to exploit the features of many-core processor architectures focus-

ing on the definition of a parallel programming model combining

component-based and single-instruction multiple-thread approaches,

instruction set virtualisation based on portable bytecode, run-time

resource management policies and mechanisms as well as design

space exploration methodologies for Many-core Computing Fabrics.

The research objectives of the project are intended to meet some

of the main challenges in computing systems:

• To improve performance by providing software programmability

techniques to exploit the hardware parallelism;

• To explore power/performance trade-offs and to provide runtime

resource management and optimisation;

• To improve system reliability in terms of lifetime and yield of

hardware components by providing transparent resource recon-

figuration and instruction set virtualisation;

• To increase the productivity of the process of developing parallel

software by using semi-automatic parallelism extraction tech-

niques and extending the OpenCL programming paradigm for

parallel computing systems.

The rest of this paper is organized as follows. Section II provides an

introduction to the target architectural template. Section III describes

the 2PARMA design flow and the design methodologies employed,

while Section IV introduces the applications targeted in the project.

Finally, Section V draws some conclusions and outlines the future

work.

II. MANY-CORE COMPUTING FABRIC ARCHITECTURE

TEMPLATE

The 2PARMA project focuses on the Many-core Computing Fabric

(MCCF) template composed of many homogeneous processing cores

connected by an on-chip network as shown in Figure 1.

Fig. 1. 2PARMA Many-Core Computing Fabric Template

The project will demonstrate methodologies, techniques and tools

by using innovative hardware platforms provided and developed by

the partners, including the “Platform 2012” – an early implementation

!000111000 IIIEEEEEEEEE AAAnnnnnnuuuaaalll SSSyyymmmpppooosssiiiuuummm ooonnn VVVLLLSSSIII

!777888-­-­-000-­-­-777666!555-­-­-444000777666-­-­-444///111000 $$$222666...000000 ©©© 222000111000 IIIEEEEEEEEE

DDDOOOIII 111000...111111000!///IIISSSVVVLLLSSSIII...222000111000...!333

444!444

of Many-core Computing Fabric provided by STMicroelectronics –

and the many-core COBRA platform provided by IMEC.

A. STMicroelectronics Platform 2012

The P2012 program is a cooperation between STMicroelectronics

and Commissariat a l’Energie Atomique (CEA) to design and pro-

totype a regular computing fabric capable to improve manufacturing

yield. Platform 2012 (P2012) is a high-performance programmable

accelerator whose architecture meets requirements for next gener-

ation SoC products at 32nm and beyond. The goal of P2012 is

twofold: from one side, it is to provide flexibility through massive

programmable and scalable computing power; from the other side, to

provide a solid way to deal with increasing manufacturability issues

and energy constraints.

To achieve these two goals the P2012 program is planning to use

the two following key enablers:

• Emerging 3D stacking techniques to revise the memory hierar-

chy organisation;

• STMicroelectronics deep know-how on applications to inject the

correct specialisation level into the architecture.

Fig. 2. Platform 2012 Template

Organised around an efficient Network-on-Chip communication

infrastructure, P2012 enables connecting a large number of decoupled

STxP70 processors SMP clusters, offering flexibility, scalability and

high computation density. Figure 2 shows the Platform 2012 com-

puting fabric composed of a variable number of ‘tiles’ that can be

easily replicated to provide scalability. Each tile includes a computing

cluster with its memory hierarchy and a communication engine. The

computing fabric operation is coordinated by a fabric controller and

is connected to the SoC host subsystem through a dedicated bridge,

with DMA capabilities. Clusters of the fabric can be isolated to

reduce power consumption (or to switch-off a faulty element) and

frequency/voltage scaling can be applied in active mode.

The P2012 computing fabric is connected to a host processor such

as the ARM Cortex A9, via a system bridge. The fabric is in this

way exposed to legacy operating systems like the GNU/Linux OS.

Many P2012 platform design choices are still open to be explored,

and the 2PARMA Consortium, which is one of the very early adopters

of this technology, effectively contributes to the platform architecture

specification and relevant optimisations.

B. IMEC ADRES-based COBRA Platform

The IMEC’s COBRA platform is an advanced platform template

targeting 4G giga-bit per second wireless communication. One in-

stance of the platform is shown in Figure 3.

Fig. 3. IMEC COBRA platform

This platform can be customised to handle very high data rates

as well as low throughputs in a scalable way. This platform largely

consists of 4 types of cores. DIFFS, an ASIP processor tuned towards

sensing and synchronisation, and optimised for very low power. It

is tuned towards average duty cycle. ADRES [1], a coarse-grained

reconfigurable core template [2] consisting of a number of functional

units connected in a given interconnect network. The core has been

tuned to be capable of doing inner modem processing of various

standards efficiently. FlexFEC [3], a flexible forward error correction

ASIP that is capable of doing different outer modem processing. It

is a SIMD engine template where the instruction set, bit width of the

data-path and the number of SIMD slots can be chosen based on the

set of requirements of the standard to be run. A ARM host processor

for controlling the tasks on the platform (e.g. the run-time manager

task).

The first three cores (DIFFS, ADRES, FlexFEC) cores can be

instantiated for a mix of targeted standards that need to be supported.

Also all parts of the platform are programmable in C (ADRES,

ARM) or assembly (FlexFEC, DIFFS). The communication is en-

sured by customised InterConnect Controller (ICC) cores that are

programmable at assembly level as well.

In this platform, besides the type and the size of each core, the

number of each type of core can be selected based on the different

standards that need to be supported on the platform. For example for

the highest throughput modes for Wireless LAN 802.11n 4x4 MIMO,

the number of DIFFS cores may be 4 and two (multi-threaded)

ADRES cores and two FlexFEC cores. In case the platform has to

support only a low end Wireless LAN SISO standard or a basic LTE

SISO reception, one DIFFS core, ADRES core and one FlexFEC

would be sufficient to meet the requirements of this mode.

III. DESIGN FLOW AND TOOLS

The main goals of the 2PARMA project related to the analysis

and development of the complete software layer able to exploit the

features of future many-core processor architectures presented in the

previous section. This goal has been tackled from several standpoints

as presented in the following subsections.

444!555

The tool environment and design flow of the 2PARMA project is

shown in Figure 4. The basic idea behind the 2PARMA project is to

combine the automatic extraction of parallelism to dynamic compi-

lation to exploit the management of system resources at runtime.

Fig. 4. 2PARMA Design Flow and Tools

Starting from the specifications of the industrial applications and

architecture to be used for the integration and validation of the design

flow, the main goal is to define a parallel compilation tool-chain and

Operating System support. The compilation tool chain starts with the

component-based application source code (C-based) to be assembled

and compiled to byte-code and further dynamically translated to

machine code. Then the machine code execution and deployment

will be supported by an OS layer to provide isolated logical devices

efficiently communicating (device-to-device and host-to-device). The

GNU/Linux operating system will be used as the software reference

common ground for what the host processor is concerned.
Another main goal consists in developing methodologies and tools

to support the application/architecture co-exploration. More in detail,

the project focuses on profiling the parallel applications aimed at

finding the bottleneck of the target platform and on the robust design

space co-exploration of static and dynamic parameters by considering

dynamic workloads, while identifying hints/guidelines for dynamic

resource management.
Then, the Run-Time Resource Manager (RTRM) provides adaptive

task and data allocation as well as scheduling of the different tasks

and the accesses to the data for many-core architectures. Furthermore,

the adequate power management techniques as well as the integration

to the Linux OS will be provided.
To conclude, the concrete results of the project are related to the

analysis and development of the complete software layer able to

exploit the features of future many-core processor architectures, and

can be summarised as follows:

• An integrated compiler toolchain and OS Layer, supporting

Component-Based Software Engineering (CBSE) and expression

of data-level parallelism as well as logical isolation provided by

OS abstractions.

• A design toolset for supporting the HW/SW co-exploration

considering the robustness with respect to the run-time system

workload.

• A set of techniques to manage at run-time the system resources.

Based on the set of operating points given by the DSE tool at

design time and the info collected at run-time on system workload

and resource utilisation, the run-time management techniques will

optimise data allocation and data access scheduling, task mapping

and scheduling and power consumption.

The rest of this Section provides more detail on the techniques

employed in the design flow.

A. Programmability of Many-core Computing Fabrics

2PARMA project tackles the issue of programmability of Multi-

core Computing Fabrics at both the programming language and

Operating System level. On one hand, it leverages the increasingly

popular Component-Based Software Engineering (CBSE) and devel-

ops parallelism extraction techniques to identify opportunities for

parallelisation at a high level in the design phase; 2PARMA then

employs extensions of existing standards for parallel programming,

such as OpenCL, to express data parallelism for Many-core Comput-

ing Fabrics.

The 2PARMA compiler toolchain will benefit from techniques that

automatically handle memories local to processor clusters usually

available in GPGPU architectures, as well as automated lowering of

higher-level code to OpenCL [4]. This will allow the programmer

to first design the application under a shared memory paradigm, and

then perform fine-tuning on a view of the application where the shared

memory abstraction is removed.

Fig. 5. Nucleus-based CBSE Toolchain

For CBSE methodologies, the applicability of the concepts and

tools developed in the cross-disciplinary “Nucleus” flagship project

of the UMIC Research Center [5] at RWTH Aachen University will

be investigated. The key idea pursued by the Nucleus project [6] is to

define critical algorithmic kernels that capture common functionalities

among different communication standards. In a later stage these

Nuclei are assembled to construct the complete application, as shown

444!666

in Figure 5. In contrast to existing CBSE tool-chains, requirements

such as latency and throughput are integrated into the application

description directly. Furthermore, the Nuclei are mapped to Flavors -

efficient and optimized implementations for one Nucleus on a partic-

ular Processing Element (PE) - that are kept within the Board Support

Package of a given HW platform. This allows the mapping tools to

identify possible implementation options by performing interface and

constraint checks. Among these different options designers can select

the final implementation that achieves the best performance.

B. Dynamic Compilation for Instruction Set Virtualisation

A critical issue in the adoption of a new platform is the ability

to provide effective (in terms of performance) support of legacy and

third party code. In the context of 2PARMA, dynamic compilation

is used to solve this issue, by virtualising the instruction set exposed

by the Many-Core Computing Fabric and exposing a bytecode

intermediate language to the application developer.

Given a bytecode program, the dynamic compiler must load the

input bytecode, decode it to an intermediate language, optimize it for

the target platform, translate it to machine code and finally execute it,

thus introducing a latency between method invocation and execution.

In the 2PARMA project, we adopt ILDJIT [7], a dynamic compiler

for ECMA-335 bytecode language that breaks up this sequence in

a software pipeline, where each of pipeline step (a compiler thread)

performs one step of the compilation process on a different method.

The software pipeline allows even sequential programs compiled

in CIL to benefit from multiple hardware cores: while one core

executes the current method, the other ones can be used to pre-

compile and optimize methods that will have to be used in the

future [8]. Moreover, it provides the opportunity of further reducing

overheads by pre-compiling bytecode into a lower-level, but still

machine independent, intermediate format (IR). The compilation of

IR to machine code only represents a minimal fraction of the total

compilation time, thus allowing a lighter compiler framework to be

used in embedded devices [7].

C. Runtime Management

2PARMA project aims at improving energy efficiency w.r.t. con-

ventional power management strategies, by supporting efficient and

optimal task, data and devices managements able to dynamically

adapting to the changing context, taking into account the Quality-of-

Service (QoS) requirements imposed by the user to each application.

In 2PARMA we push the boundary of this trade-off to reduce

the design time effort and move more responsibility to the runtime

resource manager, at different abstraction levels. We accomplish

this task by providing a runtime manager (RTM) with metadata

information covering both runtime and design time knowledge of both

hardware and software. The runtime management performs adaptive

task mapping and scheduling [9], dynamic data management [10] and

system-wide power management [11].

The first role of the RTM is to monitor the dynamic applications

behaviour to control the available and required platform resources

at run time while meeting user requirements. To handle multiple

tasks competing at run time for limited resources, a scenario-based

mapping technique supporting inter-task scenarios will be developed.

Also for many of these applications, obtaining efficient results (per-

formance and power) is impracticable if the quality is not lowered.

Hence a run-time monitoring technique will be developed to tune

well-chosen parameters based on input data to meet the requirements

while maximizing the output quality.

The second role of the runtime manager is to handle the dynamism

in the control flow and data usage (dynamic (de)allocation of data), by

determining a suitable allocation strategies that meet the application

needs. To that end, new fit, coalescing, and split policies, taking

application characteristics into account, may be needed [10].

Finally, the runtime manager is responsible for the adaptive power

management of the many-core computing fabric architecture. This

is achieved by identifying a suitable top-level modelling of the

entities composing the overall systems, in terms of exchanged data,

exposition of control settings and status information of the compo-

nents/devices. The manager is responsible to combine the adaptive

runtime task and data management schemes (component/device spe-

cific optimisations) with the adaptive power management policies,

being aware of the presence of local optimisation strategies exposed

by the rest of the system components (e.g., device drivers and in

general any other resource manager).

The end result is a distributed runtime QoS Constrained Power

Manager (CPM) working at the OS-level [11], based on the fol-

lowing concepts. System-Wide Metrics (SWMs) which are param-

eters describing behaviours of a running system and represent QoS

requirements. They could be either ”abstract” (ASMs) or platform

dependent (PSMs). The firsts are exposed to user-space and can

be used by application to assert QoS requirements. The seconds

instead are defined in the platform code and are used to keep track

of hardware inter-dependencies. Device Working Regions (DWRs)

defining the mapping between the operating modes of a devices and

the SWMs that define the QoS level supported by each operating

mode. Feasible System Configurations (FSCs) which are the n-

dimensional intersections of at least a DWR for each device (where

n is the number of SWMs defined). They identify the system-wide

working points of the target platform where certain QoS levels are

granted. Constraints on SWMs defined at run-time according to the

QoS requirements of applications or drivers on these parameters.

All the QoS requirements on the same SWM are translated on a

constraint using an aggregation function which depends on the type

of the parameter. Multi-Objective optimization, which could consider

different performance parameters, by assigning a weight to each

SWM, and energy consumptions, by assigning a power consumption

measure to each FSC.

In practice, CPM-related activities inside the OS, can be grouped

in three main phases:

• FSC Identification: at boot time all the device drivers registers to

CPM by exposing their DWRs. All FSCs can be automatically

identified by performing the intersection of DWRs.

• FSC ordering: every time the optimization goals change, the

FSC are sorted according to the global optimization policy. This

happens usually when the device usage scenarios change.

• FSC selection: at run-time applications can assert QoS require-

ments on a specific SWM. These requirements are aggregated to

produce a new constraint for each SWM. These constraints could

invalidate some FSC. If the current FSC is also invalidated then

a new candidate is selected according to the ordering defined in

the ordering phase.

Finally all drivers are notified about the new FSC and required to

update accordingly their operating mode.

The CPM model has been preliminary implemented as a Linux

kernel framework (version 2.6.30) and tested under some use-cases

to evaluate its overhead, which is negligible (always less than

0.01%) [11].

444!777

D. Design Space Exploration

Design space exploration plays a crucial role in designing many-

core computing platforms [12], [13], [14]. Design alternatives may

consist of the tuning of processor micro-architectural components,

different mappings of software tasks to resources, different scheduling

policies implemented on shared resources as well as lower level

design parameters. In this context, the 2PARMA project provides

to the designer design space exploration methodologies to trade-off

the system-level metrics (such as energy and delay) by considering

the dynamic evolution of the system. To this end, the MULTICUBE

Explorer framework will be extended to support run time DSE.

Focusing on the combined optimisation of parallel programming

models and architectural paramters for many-core platforms, it is

expected that conventional or state-of-the-art profiling techniques

cannot be used for the task of analysing and profiling. Profiling

memory accesses on a cycle accurate basis [15] is not sufficiently

supported by available profiling tools due to the fact that only

shared memory architectures were modelled at the time. Moreover,

many core platforms will be built upon completely different in-

terconnection networks requiring new profiling techniques taking

into account connection topologies. The influence on the overall

system performance of the implemented connection topology and the

resulting fragmentation of memory accesses abroad the distributed

memory will be evaluated by a set of tools. Based on the profiling

methodologies developed in the project, it will be possible to get

an in depth view of how parallel programming models behave on

many core platforms. The results will be used to co-optimise the

programming model and the architecture of the target platform.

IV. APPLICATIONS

The Many-Core Computing Fabric template is designed as a

coprocessor for computationally intensive applications in high-end

embedded scenarios. To prove its effectiveness, and the effectiveness

of the design flow and tools produced in the 2PARMA project,

it is necessary to employ real world applications of considerable

industrial impact. These applications will be engineered, optimised

and specialised using the methodologies described in Section III,

and tested on the two target implementations of the Many-Core

Computing Fabric template. In this Section, we introduce the three

applications chosen for the 2PARMA project: Scalable Video Coding

(SVC), Cognitive Radio, and Multi View Video (MVV).

A. Scalable Video Coding

SVC [16] also known as layered video coding has already been

included in different video coding standards in the past. Scalability

has always been a desirable feature of a media bit stream for

different services and especially for best-effort networks that are

not provisioned to provide suitable QoS and especially suffer from

significantly varying throughput. Thus a service needs to dynamically

adapt to the varying transmission conditions. E.g., a video encoder

shall be capable of adapting the media rate of the video stream to

the transmission conditions to provide at least acceptable quality

at the clients, but shall also be able to explore the full benefits

of available higher system resources. Within a typical multimedia

session the video consumes the major part of the total available

transmission rate compared to control and audio data. Therefore, an

adaptation capability for the video bit rate is of primary interest in a

multimedia session. Strong advantages of a video bit rate adaptation

method relying on a scalable representation are drastically reduced

processing requirements in network elements compared to approaches

that require video re-encoding or transcoding. Thus, H.264/AVC-

based SVC is of major practical interest and it is therefore highly

important to investigate implementation aspects of SVC.

SVC is an ideal application for demonstrating runtime resource

management, including power management techniques. An SVC

implementation will be provided by Fraunhofer HHI within the

context of the 2PARMA project.

B. Cognitive radio

From the domain of wireless communications, a cognitive radio

application will be provided by RWTH Aachen University. This

application includes both physical and MAC-layer processing. Espe-

cially, the low latency as well as high throughput and reconfiguration

requirements of state-of-the-art wireless communication standards

makes the cognitive radio application as a highly appropriate use

case for the 2PARMA project and its parallel programming models.

Following the Nucleus CBSE approach we identify the commonal-

ities among different wireless MAC protocols. These functional com-

monalities among MAC protocols are identified as the fundamental

building blocks so that a particular protocol can be realized by simply

combining the required set of functionalities together. These unit

blocks for MACs are expressed through well defined interfaces so that

these can generically be re-used in different MAC implementations.

We have developed a tool (called the wiring engine) that combines

the different components of the MAC together by coordinating the

control and data flow among the blocks. The wiring engine will also

be able to exploit the parallelism in a particular MAC realization to

achieve execution efficiency.

Our approach of composing MAC protocols based on the same

set of functional components using the wiring engine, leads to

the realization of a wide range of protocols and allows run-time

adaptation [17]. We are also investigating the design of a MAC

description language and correspondingly a MAC interpreter. In the

future, a host meta-compiler can be used for realizing MAC protocols

in a highly efficient manner. By implementing the MAC modules

demanding high degree of computations and communication in the

silicon as kernel functionalities, our approach allows to meet the strict

timing deadlines thereby giving high degree of performance gains and

flexibility. Furthermore, our methodology also facilitates much deeper

cross-layer designs between MAC and physical layer kernels, which

are demanded by cognitive and spectrum agile MACs [18].

C. Multi-View Video

With the current development of electronic, network, and com-

puting technology, Multi-View Video (MVV) becomes a reality and

allows countering the limitations of conventional single video. MVV

refers to a set of N temporal synchronised video streams coming

from cameras that capture the same scene from different viewpoints.

In particular, within the context of the 2PARMA project, we

consider a cross-based stereo matching algorithm [19], assuming two

aligned left and right cameras. The algorithm compute stereo pixel

depth by means of their disparity (difference on the x coordinate),

which can then be visualised in grayscale encoding, as shown in

Figure 6. The cross-based stereo matching algorithm is an area-based

local method, where the disparity computation at a given pixel only

depends on intensity values within a finite window. The challenge

of this method is that the support window should be large enough

to include enough intensity variation for reliable matching, while

it should be small enough to avoid disparity variation inside the

window. Therefore, to obtain accurate disparity results at reasonable

costs, an appropriate support window should be selected adaptively.

444!888

Fig. 6. Stereo matching algorithm

Figure 7 depicts the overall flow of the stereo matching algo-

rithm. The prefiltering step reduces the image noise. The local

cross construction step identifies for each pixel the support window

likely belonging to the same depth, as follows. It constructs a local

cross around each pixel. Local crosses are obtained by aggregating

neighbouring consecutive pixels, whose colour difference is less than

a given threshold and whose distance is less than a maximum arm

length. The cost aggregation step measures a matching cost for each

stereo pair of pixels. This cost is used in the disparity selection and

refinement step. Pixels contained in the same local support window

mostly originate from the same scene patch, and hence they share

similar disparities. Disparity values can range within a given interval.

Fig. 7. Overall flow of the stereo matching algorithm

V. SUMMARY AND PROJECT OUTCOMES

The 2PARMA project tackles the issue of programming and

managing a Many-Core Computing Fabric – a novel architectural

template represented within the project by STM Platform 2012 and

IMEC Cobra architectures.

A design flow has been defined, starting with the high-level imple-

mentation of the application and leading to runtime management of

the application execution, in a highly-variable context where multiple

applications compete for resources. Design space exploration and

profiling techniques close the feedback loop, helping the designer

in refining the application for each target platform.

Finally, a set of high-impact applications has been selected to

demonstrate the effectiveness of the proposed methodologies.

REFERENCES

[1] V. Derudder, B. Bougard, A. Couvreur, A. Dewilde, S. Dupont,
L. Folens, L. Hollevoet, F. Naessens, D. Novo, P. Raghavan, T. Schuster,
K. Stinkens, J.-W. Weijers, and L. V. der Perre, “A 200mbps+ 2.14nj/b
digital baseband multi processor system-on-chip for sdrs,” in VLSI
Circuits, 2009 Symposium on, june 2009, pp. 292 –293.

[2] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins, “Adres:
An architecture with tightly coupled vliw processor and coarse-grained
reconfigurable matrix,” in FPL, ser. Lecture Notes in Computer Science,
P. Y. K. Cheung, G. A. Constantinides, and J. T. de Sousa, Eds., vol.
2778. Springer, 2003, pp. 61–70.

[3] F. Naessens, V. Derudder, H. Cappelle, L. Hollevoet, P. Raghavan,
M. Desmet, A. AbdelHamid, I. Vos, L. Folens, S. O’Loughlin, S. Sin-
girikonda, S. Dupont, J.-W. Weijers, A. Dejonghe, and L. V. der Perre, “A
10.37 mm2 675 mw reconfigurable ldpc and turbo encoder and decoder
for 802.11n, 802.16e and 3gpp-lte,” in VLSI Circuits, 2010 Symposium
on, june 2010, pp. 292–293.

[4] Andrea Di Biagio and Giovanni Agosta, “Improved Programming of
GPU Architectures through Automated Data Allocation and Loop Re-
structuring,” in Proceedings of the 2PARMA Workshop (ARCS2010
Workshop), Feb. 2010.

[5] “Ultra high-speed Mobile Information and Communication systems
(UMIC) research center, RWTH Aachen University,” http://www.umic.
rwth-aachen.de/.

[6] V. Ramakrishnan, E. M. Witte, T. Kempf, D. Kammler, G. Ascheid,
H. Meyr, M. Adrat, and M. Antweiler, “Efficient And Portable SDR
Waveform Development: The Nucleus Concept,” in IEEE Military
Communications Conference (MILCOM 2009), Oct. 2009.

[7] S. Campanoni, G. Agosta, S. Crespi-Reghizzi, and A. D. Biagio, “A
highly flexible, parallel virtual machine: design and experience of ildjit,”
Softw., Pract. Exper., vol. 40, no. 2, pp. 177–207, 2010.

[8] Michele Tartara, Simone Campanoni, Giovanni Agosta and Stefano
Crespi Reghizzi, “Parallelism and Retargetability in the ILDJIT Dy-
namic Compiler,” in Proceedings of the 2PARMA Workshop (ARCS2010
Workshop), Feb. 2010.

[9] Z. Ma, P. Marchal, D. P. Scarpazza, P. Yang, C. Wong, J. I. Gmez,
S. Himpe, C. Ykman-Couvreur, and F. Catthoor, Systematic Method-
ology for Real-Time Cost-Effective Mapping of Dynamic Concurrent
Task-Based Systems on Heterogenous Platforms. Springer Publishing
Company, Incorporated, 2007.

[10] A. Bartzas, M. Peon-Quiros, C. Poucet, C. Baloukas, S. Mamagkakis,
F. Catthoor, D. Soudris, and J. M. Mendias, “Software metadata: System-
atic characterization of the memory behaviour of dynamic applications,”
Journal of Systems and Software, vol. In Press, Corrected Proof, pp. –,
2010.

[11] P. Bellasi, W. Fornaciari, and D. Siorpaes, “A hierarchical distributed
control for power and performances optimization of embedded systems,”
in ARCS, ser. Lecture Notes in Computer Science, C. Müller-Schloer,
W. Karl, and S. Yehia, Eds., vol. 5974. Springer, 2010, pp. 37–48.

[12] H. Chang, L. Cooke, M. Hunt, G. Martin, A. J. McNelly, and L. Todd,
Surviving the SOC revolution: a guide to platform-based design. Nor-
well, MA, USA: Kluwer Academic Publishers, 1999.

[13] ARTEMIS Strategic Research Agenda Working Group, “Strategic
Research Agenda: Design Methods and Tools,” ARTEMIS, Tech.
Rep., 2006. [Online]. Available: https://www.artemisia-association.org/
downloads/RAPPORT DMT.pdf

[14] M. Duranton, S. Yehia, B. D. Sutter, K. D. Bosschere, A. Cohen,
B. Falsafi, G. Gaydadjiev, M. Katevenis, J. Maebe, H. Munk,
N. Navarro, A. Ramirez, O. Temam, and M. Valero, “The
HiPEAC 2012-2020 vision,” HiPEAC, Tech. Rep. [Online]. Available:
http://www.hipeac.net/roadmap

[15] H. Hübert and B. Stabernack, “Profiling-based hardware/software co-
exploration for the design of video coding architectures,” IEEE Trans.
Cir. and Sys. for Video Technol., vol. 19, no. 11, pp. 1680–1691, 2009.

[16] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video
coding extension of the h.264/avc standard,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 17, no. 9, pp. 1103 –1120,
Sep. 2007.

[17] J. Ansari, X. Zhang, A. Achtzehn, M. Petrova, and P. Mhnen, “De-
composable MAC Framework for Highly Flexible and Adaptable MAC
Realizations,” Demonstration abstract. Proc. of DySPAN (Singapore),
2010.

[18] Claudia Cormio and Kaushik R. Chowdhury, “A survey on MAC
protocols for cognitive radio networks,” Ad Hoc Networks, vol. 7, no. 7,
pp. 1315–1329, 2009.

[19] K. Zhang, J. Lu, and G. Lafruit, “Cross-based local stereo matching
using orthogonal integral images,” IEEE Trans. Cir. and Sys. for Video
Technol., vol. 19, no. 7, pp. 1073–1079, 2009.

444!!

