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Abstract— We examine the throughput of an opportunistic
beamforming system with proportional fair scheduling and show
for normally distributed channel fading states that for large
numbers of users the average throughput of each user multiplied
by the number of users approaches the maximum possible
throughput of this user achievable by coherent beamforming,
if round robin scheduling was used. Thus, we extend a proof by
Viswanath et al. who showed this for discrete fading states. We
give the average SNR of the scheduled user (averaged across the
fading states) in closed form and the average throughput in form
of an integral as a function of the number of transmit antennas
and users. Simulations of this system confirm the analytical
results. Finally, we show that for a large number of transmit
antennas, the probability density function of the SNR of the
scheduled user and therefore also the throughput asymptotically
approach those of a system with a max SNR scheduler that
always transmits to the user having the largest SNR and thus
maximizes the total throughput.

I. I NTRODUCTION

In a recent publication, P. Viswanath et al. showed that
the average throughput in a cellular mobile communication
system can be considerably increased if multiuser diversity
is exploited [6]. This refers to the fact that there are usually
several mobile terminals in a cell waiting for data transmitted
over the downlink from a base station (BTS) or central access
point. If the mobile terminals estimate their instantaneous
channel quality (Signal-to-Noise Ratio, SNR) and feed it back
to the BTS, a scheduler in the BTS can use this information to
schedule a user that momentarily has an above-average chan-
nel quality and can thereby increase the system throughput.

In order to enable all terminals to get their fair share of
the channel, it must be ensured that all terminals have a
good channel every once in a while. This is either naturally
the case, if the channel dynamic is large enough, i.e. the
channel state varies fast enough, or a sufficient dynamic must
be induced artificially by multiplying the signal with a time
varying weight vector. For this principle, Viswanath et al.have
coined the term ”Opportunistic Beamforming”.

In [6], the authors prove for discrete channel states that if
the number of users goes to infinity and if the distribution of
the weight vector is matched to the distribution of the channel
states, then the average throughput of each user multiplied
by the number of users approaches the maximum possible
throughput of this user if round robin scheduling was used.

We consider the case ofcontinuousGaussian channel states.
We not only extend the proof by Viswanath et al. to this case,
but we derive the pdf and mean of the SNR of the scheduled
user and of the average throughput as a function of the number
of transmit antennasT and the number of usersK. It turns
out that we can give closed form expressions of the average
scheduled SNR and an integral expression of the average
throughput1, which can be evaluated numerically. Simulations
of this system confirm the analytical results. We examine the
asymptotic behavior of the proportional fair scheduler both
for a large number of antenna elements and a large number
of users and show that it approaches the max SNR scheduler
in the first case and coherent beamforming with round robin
scheduling in the second.

The outline of the paper is as follows. In section II, the
system and signal models are introduced. We derive the
probability density function (pdf) of the Signal to Noise
Ratio (SNR) conditioned on the instantaneous channel statein
section III. In section IV we present a modified proportional
fair scheduler (PFS) and calculate the pdf and mean of the
(unconditioned) SNR with this scheduler. For comparison, we
derive the corresponding values for the max SNR scheduler in
section V. In sections VI and VII we examine the asymptotic
behavior of the PFS scheduler for a large number of antenna
elements and users, respectively, followed by a conclusionin
section VIII.

II. SYSTEM MODEL

We consider a single cell like the one depicted in Fig.
1. One base station equipped withT antennas servesK
mobile terminals with one receive antenna each. In each
time slot t, a random vector generator produces a(T × 1)
weight vectorw(t). The data sequencea(t) is multiplied by
w

∗(t) = [w1(t), w2(t), . . . , wT (t)]H , wherew∗ designates the
complex conjugate andwH the transposed complex conjugate
of w. The resulting vectora(t)w∗(t) is transmitted. We
assume the variance of the transmitted symbolsa(t) to be
one. Lethk(t) = [h1k(t), h2k(t), · · · , hTk(t)]T be the vector
of channel coefficients between the antenna array and terminal

1In analogy to the publication by Viswanath et al., we use the relation
R = log

2
(1+SNR), i.e. we are assuming the use of powerful enough codes

such that the data rate achieved in each time slot is given by the Shannon
limit.
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Fig. 1. System Overview

k, i.e. hik(t) is the channel between terminalk and antenna
elementi of the BTS. We assume that the channel coefficients
are independentCN (0, 1) distributed. (For correlated channels
cf. [4].) The signalrk(t) received by userk can then be written
as

rk(t) = h1k(t)w∗

1(t)a(t) + . . . + hTkw∗

T (t)a(t) + n(t)

= w
H(t)hk(t) a(t) + n(t) (1)

wheren(t) is white Gaussian noise with varianceσ2.
In each time slot all users estimate their instantaneous SNR

γk(t) := w
H(t)hk(t)hH

k (t)w(t)/σ2 = sk(t)/σ2, where

sk(t) := w
H(t)Hk(t)w(t) (2)

Hk(t) = hk(t)hH
k (t) (3)

and feed it back to the BTS [3]. A scheduler in the BTS
determines which user to transmit to based on allγk(t). In
order to maximize the throughput in the cell it would always
schedule the user with the largest instantaneous SNR. In the
following, we will call this kind of scheduler a max SNR
scheduler.

In this paper, we will focus on what Viswanath et al. call
slow fading, where the channelhk(t) = hk of each user
k remains constant for allt (over the latency time scale of
interest). We generate the weight vectorsw according to an
isotropic distribution [2], which was also proposed by [6] for
the independently Gaussian fading channel. An isotropically
distributed (i.d.) unit vectorw can be generated by first
generating a T-dimensional random vectorz whose elements
are independentCN (0, 1) distributed, and then normalizing it
according tow = z/

√
zHz, i.e.

p (w) = p

(

z√
zHz

)

. (4)

III. C ONDITIONAL DISTRIBUTION OF THESNR

As we focus on the slow fading case, a max SNR scheduler
is not sufficient to guarantee fairness among the users. Users
that are at a fading peak are likely to be scheduled all the time,
while others that experience deep fades are not scheduled at
all.

For this situation, Viswanath proposes to replace the max
SNR scheduler by a proportional fair scheduler (PFS) which
schedules the users according to their instantaneously sup-
ported throughput normalized by their average throughput.

We examine a slightly modified version of the PFS algorithm
which instead of the throughput considers the instantaneous
SNR normalized by the average SNR to make the scheduling
decision.

In order to analyze the behavior of this scheduler, we
must determine the probability distribution function (pdf) of
the SNRγk conditioned on the instantaneous (and constant)
channelhk. To achieve this, we must analyze the distribution
of sk conditioned onHk. As Hk is obviously hermitian, we
can decompose it into

Hk = UDk U
H (5)

where

Dk =











Hk 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0











(6)

Hk = h
H
k hk (7)

andU is a unitary matrix. Thus

sk = w
H

UDk U
H

w (8)

= w̃
H

Dk w̃ (9)

= Hk |w̃1|2 (10)

wherew̃ = (w̃1, w̃2, . . . , w̃T )
T

= U
H

w is also an i.d. unit
vector. (This follows from the definition of an i.d. unit vector,
cf. [2].)

We finally get the following expression for the SNR:

γk =
Hk |w̃1|2

σ2
(11)

As w̃ is an i.d. unit vector, it must be distributed according
to (4). Thus we can express the pdf of|w̃1|2 by

p(|w̃1|2) = (T − 1)(1− |w̃1|2)T−2; 0 ≤ |w̃1|2 ≤ 1 (12)

A transformation of variables yields the pdf of the SNR
conditioned on the channel:

p(γk|Hk) = (T−1)

(

1 − γkσ2

Hk

)T−2
σ2

Hk
; 0 ≤ γk ≤ Hk

σ2

(13)
and the mean SNR of userk is given by

E(γk|Hk) =
Hk

Tσ2
. (14)

IV. A FAIR SCHEDULER

In the modified version of the PFS algorithm that we
examine here, the instantaneous SNR is normalized by its
mean. Thus, the decision variable for the scheduler is

dk := γk/E(γk|Hk) (15)

=
Tσ2γk

Hk
(16)

The pdf of this decision variable is

p(dk|Hk) =
T − 1

T

(

1 − dk

T

)T−2

; 0 ≤ dk ≤ T (17)



which is no function of the instantaneous channelhk and is
therefore identical for all users. If they were also independent,
we could obtain the pdf of the maximum ofK decision
variables

p(dmax) =

K(T − 1)

T

(

1 −
(

1 − d

T

)T−1
)K−1

(

1 − d

T

)T−2

(18)

Undoing the normalization, we obtain the pdf of the scheduled
SNR, conditioned on the event that userk is scheduled:

p(γPFS |Hk, k) =

K(T − 1)σ2

Hk

(

1 −
(

1 − γσ2

Hk

)T−1
)K−1

·
(

1 − γσ2

Hk

)T−2

(19)

Unfortunately, if the channel is constant, the SNR and
therefore also the decision variables arenot independent. Thus,
(18) and (19) do not give the actual pdfs. However, we are
not interested in the behavior of the system for aspecific
realization of the channel, but rather in the mean behavior.
Thus, we must average over the distribution of the channel
vectorshk. But as we assume independently fading Gaussian
channel vectors, the averaging corrects the simplifications
introduced in (18) and (19).

After averaging over the distribution ofHk, we get

p(γPFS) = Kσ2e−γσ2

∫

∞

0

1

(T − 2)!

·
(

1 −
(

x

x + γσ2

)T−1
)K−1

xT−2 e−x dx (20)

=
K(σ2)T γT−1

(T − 2)!

K−1
∑

i=0

(

K − 1

i

)

·





i(T−1)
∑

j=0

(

(i + 1)T − i − 2

j + T − 2

)

(−1)i+j+T Ej(σ
2γ)

+
T−2
∑

j=1

(

(i + 1)T − i − 2

T − 2 − j

)

(−1)i+T−jαj(σ
2γ)



(21)

whereEj andαj are exponential integrals [1] defined as

Ej(z) =

∫

∞

1

e−zt

tj
dt (22)

αj(z) =

∫

∞

1

e−zttj dt (23)

Its expectation is

E(γPFS) =
T

σ2

(

1 − 1

T − 1

Γ(K + 1)Γ( 1
T−1 )

Γ(K + 1 + 1
T−1 )

)

(24)

whereΓ is the Gamma function [1].
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Fig. 2. Average throughput in b/s/Hz averaged over slow Rayleigh fading at
0 dB SNR with the proportional fair scheduling algorithm. Thecircles show
the simulated values, the dashed lines denote the beamforming throughput
Rbf .

By numeric integration we finally obtain the average
throughput of the modified proportional fair scheduler for any
number of antennas and users, which is plotted in Fig. 2 along
with simulated values for a mean SNR of all users of 0 dB
(σ2 = 1).

V. M AX SNR SCHEDULER

The average throughput in the cell can be maximized if the
PFS scheduler is replaced by a max SNR scheduler which
transmits always to the user having the largest SNR. For this
system, we can calculate the pdf of the scheduled SNR by the
following steps:

First we notice that the distribution of the effective channel
w

H
hk is CN (0, 1). Therefore the pdf of the SNR is

p(γk) = σ2e−σ2γk , γk ≥ 0 (25)

for each userk. The cumulative distribution function (cdf) is
thus

F (γk) = 1 − e−σ2γk , γk ≥ 0 (26)

The cdf of the scheduled SNR is therefore

F (γmax) =
(

1 − e−σ2γmax

)K

, γmax ≥ 0 (27)

and the pdf

p(γmax) = σ2Ke−σ2γmax

(

1 − e−σ2γmax

)K−1

, γmax ≥ 0

(28)
with mean

E(γmax) =
1

σ2

K
∑

n=1

1

n
(29)

Again we can obtain the average throughput by numeric
integration. This curve is also plotted in Fig. 2 (as ”max
Capacity”).



VI. A SYMPTOTIC BEHAVIOR OF THEPFSSCHEDULER FOR

LARGE T

If we take a closer look at Fig. 2, we notice that the average
throughput of the PFS scheduler approaches that of the max
SNR scheduler as the number of antenna elementsT goes to
infinity. We can even proof the following, stronger statement

lim
T→∞

p(γpfs) = σ2Ke−σ2γ
(

1 − e−σ2γ
)K−1

= p(γmax)

(30)
which implies that all moments including mean and variance
of the PFS scheduler approach those of the max SNR scheduler
for largeT .

When we compare (20) and (28), we see that (30) is
obviously true if and only if

lim
T→∞

∫

∞

0

1

T !

(

1 −
(

x

x + y

)T+1
)K

xT e−x dx

= lim
T→∞

K
∑

i=0

(

K

i

)∫

∞

0

xT e−x

T !
(−1)

i

(

x

x + y

)i(T+1)

dx

=

K
∑

i=0

(

K

i

)

(−1)
i

e−iy =
(

1 − e−y
)K

(31)

Thus it remains to show that

lim
T→∞

1

T !

∫

∞

0

(

x

x + y

)i(T+1)

xT e−x dx = e−iy (32)

As the proof is rather lengthy, we will only give a sketch:
First we can show that

e−1
T

∑

i=0

1

i!
≤ 1

T !

∫

∞

1

(

(z + iy)
i+1

(z + (i + 1) y)
i

)T

e−z dz

≤ 1 +
1

⌈T/2⌉ ec +
1

T !
(1 + c)

T
e−1 (33)

with c ≥ 0. Because

lim
T→∞

e−1
T

∑

i=0

1

i!
= e−1e = 1 (34)

and
lim

T→∞

1 +
1

⌈T/2⌉ ec +
1

T !
(1 + c)

T
e−1 = 1 (35)

we obtain

lim
T→∞

1

T !

∫

∞

1

(

(z + iy)
i+1

(z + (i + 1) y)
i

)T

e−z dz = 1 (36)

On the other hand we have

0 ≤ 1

T !

∫ 1

−iy

(

(z + iy)
i+1

(z + (i + 1) y)
i

)T

e−z dz

=
1

T !

∫ 1+iy

0

(

xi+1

(x + y)
i

)T

e−x eiy dx

≤ eiy 1

T !

∫ 1+iy

0

xT dx

= eiy 1

(T + 1)!
(1 + iy)

T+1 (37)

As

lim
T→∞

eiy 1

(T + 1)!
(1 + iy)

T+1
= 0, (38)

we see that

lim
T→∞

1

T !

∫ 1

−iy

(

(z + iy)
i+1

(z + (i + 1) y)
i

)T

e−z dz = 0, (39)

and finally

lim
T→∞

1

T !

∫

∞

−iy

(

(z + iy)
i+1

(z + (i + 1) y)
i

)T

e−z dz = 1 (40)

which is equivalent to

lim
T→∞

1

T !

∫

∞

0

(

xi+1

(x + y)
i

)T

e−x dx = e−iy (41)

Now we show that

1

T !

∫

∞

0

(

x

x + y

)i(T+1)

xT e−x dx

=
1

T !

∫

∞

0

(

xi+1

(x + y)
i

)T

e−x dx

+

i
∑

j=1

(

i

j

)

(−1)
j
yj 1

T !

∫

∞

0

x(i+1)T

(x + y)
iT+j

e−x dx(42)

We notice that

0 ≤ 1

T !

∫

∞

0

x(i+1)T

(x + y)
iT+j

e−x dx ≤ 1

T !

∫

∞

0

xT−j e−x dx

=
(T − j)!

T !
(43)

Because

lim
T→∞

(T − j)!

T !
= 0 ∀ 1 ≤ j ≤ T (44)

we obtain

lim
T→∞

1

T !

∫

∞

0

x(i+1)T

(x + y)
iT+j

e−x dx = 0 ∀ 1 ≤ j ≤ T (45)

and thus

lim
T→∞

1

T !

∫

∞

0

(

x

x + y

)i(T+1)

xT e−x dx

= lim
T→∞

1

T !

∫

∞

0

(

xi+1

(x + y)
i

)T

e−x dx

= e−iy (46)

which completes the proof.



VII. A SYMPTOTIC BEHAVIOR OF THEPFSSCHEDULER

FOR LARGEK

In this section we analyze the properties of the PFS sched-
uler as the number of users approaches infinity. As the term
in parentheses in (24) approaches 1 forK → ∞ we obtain

lim
K→∞

E(γPFS) = T/σ2 (47)

which corresponds to the mean SNR of a user, if the bases-
tation knew the exact channel and formed a beam towards
it. This means that for a large number of users the mean
scheduled SNR approaches the maximum possible SNR of
the beamforming constellation.

In order to examine the behavior of the average throughput
as K approaches infinity, we use (19) to express the mean
throughput, see (50) at the bottom of the page.

Thus

− log2(e)

∫ 1

0

(

1 − (1 − z)
T−1

)K

dz

·
∫

∞

0

Hk

σ2(T − 1)!
e−HHT−1 dH

= − T

σ2
log2(e)

∫ 1

0

(

1 − (1 − z)
T−1

)K

dz (48)

≤ E(RPFS) −
∫

∞

0

log2(1 + Hk/σ2)

(T − 1)!
e−HHT−1 dH

≤ 0 (49)

As the integral in (48) vanishes forK → ∞, we have

lim
K→∞

KR(K) = lim
K→∞

E(RPFS)

=

∫

∞

0

log2(1 + H/σ2)

(T − 1)!
e−HHT−1 dH

= Rbf

whereR(K) is the average throughput a user achieves in the
opportunistic beamforming system when there are K users in
the cell, andRbf is the throughput that a user achieves when it
is in the coherent beamforming constellation, i.e., whenw =

hk/
√

hH
k hk and thus its instantaneous SNR isHk/σ2.

The first equation follows from the fact that the probability
that a user is scheduled is 1/K (all users have identically
distributeddk), which completes the proof that each user’s
throughput approaches the throughput achieved by coherent
beamforming ifK goes to infinity.

E(RPFS)

=

∫

∞

0

∫ Hk/σ2

0

log2(1 + γ)
K(T − 1)σ2

Hk

(

1 −
(

1 − γσ2

Hk

)T−1
)K−1

(

1 − γσ2

Hk

)T−2

dγ
e−HHT−1

(T − 1)!
dH

=

∫

∞

0

[

log2(1 + Hk/σ2) − log2(e)

∫ 1

0

Hk

σ2 + Hkz

(

1 − (1 − z)
T−1

)K

dz

]

1

(T − 1)!
e−HHT−1 dH (50)

The behavior of the max SNR scheduler in this case has
been examined by Sharif and Hassibi [5]. They find

lim
K→∞

E(Rmax)

log2 log K
= 1 (51)

VIII. C ONCLUSION

In order to increase the spectral efficiency of cellular
wireless systems, all available forms of diversity should be
exploited. One novel concept to exploit multiuser diversity is
random beamforming and smart scheduling as proposed in [6],
where the signal is multiplied by a time varying weight vector
to increase the natural dynamic of the channel and a scheduler
in the basestation determines the user to transmit to based on
the instantaneous SNR fed back from the users.

In this paper, we analyzed two schedulers, the max SNR
scheduler which maximizes the total average throughput by
always transmitting to the user having the best channel, anda
modified version of the proportional fair scheduler which guar-
antees that all users are scheduled the same number of times.
We derived the pdf of the scheduled SNR, found closed form
expressions for its mean, calculated the average throughput
by numerical integration and confirmed the analytical results
by means of simulation. Finally, we examined the asymptotic
behavior of the proportional fair scheduler and showed thatit
approaches the max SNR scheduler if the number of antenna
elements becomes large and coherent beamforming with round
robin scheduling if there are many users in the cell.
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