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Abstract

We propose an opportunistic beamforming system in which parallel data streams are transmitted
to several users at the same time and derive the probability density function of the SINR if a max
SINR scheduler is used, which maximizes the total average throughput by always transmitting
to the user having the best channel. In slowly fading scenarios this scheduler is not sufficient
to support fairness among the users. Therefore we propose a novel multibeam scheduler which
guarantees fairness in terms of equal transmission time forall users. For this scheduler, we give
the average SINR of the scheduled user (averaged across the fading states) in closed form and the
average throughput in form of an integral as a function of thenumber of transmit antennas and
users. Simulations of this system confirm the analytical results. Finally, we show that the average
throughput in the multibeam system approaches that of coherent beamforming with round robin
scheduling if the number of users is large.

I. I NTRODUCTION

In a recent publication, P. Viswanath et al. showed that the average throughput in a
cellular mobile communication system can be considerably increased if multiuser diversity is
exploited [8]. This refers to the fact that there are usuallyseveral mobile terminals in a cell
waiting for data transmitted over the downlink from a base station (BTS) or central access
point. If the mobile terminals estimate their instantaneous channel quality (Signal-to-Noise
Ratio, SNR) and feed it back to the BTS, a scheduler in the BTS can use this information
to schedule a user that momentarily has an above-average channel quality and can thereby
increase the system throughput.

In order to enable all terminals to get their fair share of thechannel, it must be ensured
that all terminals have a good channel every once in a while. This is either naturally the
case, if the channel dynamic is large enough, i.e. the channel state varies fast enough,
or a sufficient dynamic must be induced artificially by multiplying the signal with a time
varying weight vector. For this principle, Viswanath et al.have coined the term ”Opportunistic
Beamforming”.

In [5], we examined two schedulers for an opportunistic single beam system where in
each time slot one data packet is transmitted to one single user. In this paper we examine
the extension of our approach in [5] to a broadcasting or multibeam system. This means that
instead of transmitting only one data stream to one single user, we now serve multiple users
at the same time (still assuming that each receiver is equipped with only one antenna). We
develop a novel proportional fair multibeam scheduler and derive the pdf of the SINR of the
scheduled user and the average throughput as a function of the number of transmit antennas
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Fig. 1. System Overview

T and the number of usersK. It turns out that we can give closed form expressions of the
average scheduled SINR and an integral expression of the average throughput1, which can be
evaluated numerically. Simulations of this system confirm the analytical results. We examine
the asymptotic behavior of the proportional fair multibeamscheduler for a large number of
users and show that it approaches coherent beamforming withround robin scheduling.

The outline of the paper is as follows. In section II, the system and signal models are
introduced. We derive the probability density function (pdf) of the scheduled SINR for the
max SINR scheduler in section III. In order to design a novel proportional fair multibeam
scheduler in section V, we derive the pdf of the SINR conditioned on the instantaneous
channel state in section IV. In section VI we show some numerical results and examine
the asymptotic behavior of the PFS scheduler for a large number of users in section VII,
followed by a conclusion in section VIII.

II. SYSTEM MODEL

We consider a single cell like the one depicted in Fig. 1. One base station equipped withT
antennas servesK mobile terminals with one receive antenna each. In this paper we consider
only the case where the number of beams is equal to the number of transmit antennasT . The
data sequence can thus be written as a sequence of T-dimensional column vectorsa(t) with
E{aH(t) a(t)} = 1, so the transmitted power does not increase with the number of antennas.
This sequence is multiplied by(T ×T ) weight matricesW∗(t) = [w∗

1(t),w
∗

2(t), · · · ,w∗

T (t)].
The resulting vectorW∗(t) a(t) is transmitted. The signalrk(t) received by userk can then
be written as

rk(t) = h
T
k (t)W∗(t) a(t) + n(t)

= h
T
k (t) [w∗

1(t),w
∗

2(t), · · · ,w∗

T (t)]









a1(t)
a2(t)

...
aT (t)









+ n(t)

= h
T
k (t) [w∗

1(t) a1(t) + w
∗

2(t) a2(t) + . . . + w
∗

T (t) aT (t)] + n(t)

= a1(t)w
H
1 (t)hk(t) + a2(t)w

H
2 (t)hk(t) + . . . + aT (t)wH

T (t)hk(t) + n(t) (1)

Thus the received signal power of data streami is w
H
i (t)hk(t)h

H
k (t)wi(t)/T , which is

identical to[Sk(t)]ii /T , where

Sk(t) := W
H(t)Hk(t)W(t) (2)

Hk(t) = hk(t)h
H
k (t) (3)

1In analogy to the publication by Viswanath et al., we use the relationR = log
2
(1 + SINR), i.e. we are assuming the

use of powerful enough codes such that the data rate achieved in eachtime slot is given by the Shannon limit.



and the subscriptii denotes the element in columni and rowi. The SINR of data streami
for userk therefore amounts to

γk,i =
1
T

[Sk(t)]ii
1
T

∑T
j=1

j 6=i

[Sk(t)]jj + σ2
(4)

In order to calculate the pdf of the SINR and thus the average throughput, we must therefore
analyze the distribution of the elements on the main diagonal of Sk(t).

In each time slot all users estimate the instantaneous SINRs of all data streams and feed
them back to the BTS. A scheduler in the BTS then determines for each data streami,
which user to transmit to based on allγk,i(t). As the following considerations apply to all
data streamsi, we will drop the index in the remainder of this paper, exceptwhere it is
needed to avoid confusion.

In this paper, we will focus on what Viswanath et al. call slowfading, where the channel
hk(t) = hk of each userk remains constant for allt (over the latency time scale of
interest). As in [7], we assume that the weight matricesW are generated according to
an isotropic distribution [2], which is the natural extension of the single beam case [5], [8].
An isotropically distributed (i.d.) unitary matrix can be generated by first generating aT ×T
random matrixY whose elements are independent circularly symmetric complex normal
CN (0, 1), and then perform the QR decompositionY = WR, whereR is upper triangular
andW is an i.d. unitary matrix. (See [2] for a proof.)

If W is i.d., then the column vectorsw1(t),w2(t), · · · ,wT (t) are orthonormal and iden-
tically distributed with

p (w) = p

(

n√
nHn

)

. (5)

wheren is a T-dimensional column vector whose elements are independentCN (0, 1).

III. M AX SNR SCHEDULER

The average throughput in the cell can be maximized if a max SINR scheduler which
transmits always to the users having the largest SINR is used. For this system, we can
calculate the pdf of the scheduled SINR by the following steps.

First we notice that the distribution of the effective channel hT
k W

∗ is CN (0, IT ). Therefore
the power of the beams is independently chi-square distributed with two degrees of freedom
(real and imaginary parts) and the pdf of the SINR is

p(γk) =
e−Tσ2γk

(1 + γk)T

(

Tσ2(1 + γk) + T − 1
)

, γk ≥ 0 (6)

for each userk (cf. [7]). The cumulative distribution function (cdf) is thus

F (γk) = 1 − e−Tσ2γk

(1 + γk)T−1
, γk ≥ 0 (7)

The cdf of the scheduled SNR is therefore

F (γmax) =

(

1 − e−Tσ2γmax

(1 + γmax)T−1

)K

, γmax ≥ 0 (8)

and the pdf

p(γmax) = K

(

1 − e−Tσ2γmax

(1 + γmax)T−1

)K−1
e−Tσ2γmax

(1 + γmax)T

(

Tσ2(1 + γmax) + T − 1
)

(9)



IV. CONDITIONAL DISTRIBUTION OF THESNR

As we focus on the slow fading case, a max SINR scheduler is notsufficient to guarantee
fairness among the users. Users that are at a fading peak are likely to be scheduled all the
time, while others that experience deep fades are not scheduled at all.

In order to develop a scheduler that guarantees fairness among the users in terms of
equal transmission time, we must determine the pdf of the SINR γk,i conditioned on the
instantaneous (and constant) channelhk. To achieve this, we must analyze the distribution
of the elements on the main diagonal ofSk conditioned onHk (cf. (4)). AsHk is obviously
hermitian, we can decompose it into

Hk = Uk Dk U
H
k (10)

where

Dk =









Hk 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0









(11)

Hk = h
H
k hk (12)

andUk is a unitary matrix.
Thus

Sk = W
H

Uk Dk U
H
k W (13)

= W̃
H
k Dk W̃k (14)

whereW̃k =
(

w̃
(k)
1 , w̃

(k)
2 , . . . , w̃

(k)
T

)

= U
H
k W is also i.d. (This follows from the definition

of an i.d. matrix, cf. [2].)
Therefore the main diagonal elements ofSk can be written as

[Sk]ii = Hk

∣

∣

∣w̃
(k)
i1

∣

∣

∣

2

(15)

wherew̃
(k)
i1 denotes the first element of the column vectorw̃

(k)
i .

We finally get the following expression for the SINR:

γk,i =

1
T
Hk

∣

∣

∣w̃
(k)
i1

∣

∣

∣

2

1
T

∑T
j=1

j 6=i

Hk

∣

∣

∣w̃
(k)
j1

∣

∣

∣

2

+ σ2

(16)

=
Hk

∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2

Hk − Hk

∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2

+ Tσ2

(17)

where the last equation results from
T

∑

j=1

∣

∣

∣
w̃

(k)
j1

∣

∣

∣

2

= 1 (18)

becauseW̃k is unitary.
As W̃k is i.d., its column vectors are distributed according to (5). Thus we can calculate

the pdf of
∣

∣

∣w̃
(k)
i1

∣

∣

∣

2

(cf. [8], p. 1282):

p(
∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2

) = (T − 1)(1 −
∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2

)T−2; 0 ≤
∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2

≤ 1 (19)



A transformation of variables yields the pdf of the SINR conditioned on the channel:

p(γk,i|Hk) = (T − 1)

(

Hk − Tσ2γk,i

Hk(1 + γk,i)

)T−2
Hk + Tσ2

Hk(1 + γk,i)2
; 0 ≤ γk,i ≤

Hk

Tσ2
(20)

and the mean SINR of userk is given by

E(γk,i|Hk) = (T − 1)

[

T−3
∑

i=0

(−1)i (Tσ2)i

(T − 1 − i)(T − 2 − i)H i
k

+ (−1)T−1 (Tσ2)T−2

HT−2
k

+(−1)T−2 (Tσ2)T−2(Hk + Tσ2)

HT−1
k

ln

(

1 +
Hk

Tσ2

)]

(21)

V. PROPORTIONALFAIR MULTIBEAM SCHEDULING

In the literature many definitions of fairness can be found. Our aim is to schedule each
user the same number of times. This is obviously guaranteed if the pdf of the variable that
the scheduling decision is based on is identical for all users (conditioned on the channel).
One possible solution is to choose the decision variable to be uniformly distributed between 0
and 1. This can be achieved if we choosedk = F (γk|Hk) (cf. [3]) whereF is the cumulative
distribution function.

From (20) we obtain

dk := F (γk|Hk) (22)

= 1 −
(

1 − Hk + Tσ2

Hk(1 + γk)
γk

)T−1

; 0 ≤ γk ≤ Hk

Tσ2
(23)

= 1 −
(

1 −
∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2
)T−1

; 0 ≤
∣

∣

∣
w̃

(k)
i1

∣

∣

∣

2

≤ 1 (24)

In order to perform the mapping fromγk to dk, the users must knowHk/(Tσ2). In this
paper we assume that this value is known to the receivers. In apractical system the users
must estimate the mean SINR (e.g. by averaging) and then solve (21) forHk/(Tσ2) (e.g. by
means of a lookup table).

By construction, the pdf of the decision variabledk is

p(dk|Hk) = 1; 0 ≤ dk ≤ 1 (25)

which is no function of the instantaneous channelhk and is therefore identical for all users.
Thus, no user is preferred to the others, independent of their channel quality. In order to find
the pdf of the scheduled SNRγPFMS, we first determine the pdfp(dmax|H1, H2, . . . , HK),
wheredmax is the maximumd for a fixed realization of channel vectorsh1,h2, . . . ,hK .

We have

p(dmax|H1, H2, . . . , HK) =
K

∑

k=1

p(dk, userk is scheduled|H1, H2, . . . , HK) (26)

= K · p(d1, user1 is scheduled|H1, H2, . . . , HK) (27)

because the events ”userk has the maximumd and is scheduled” are mutually exclusive for
different users but have the same probability.



Averaging over the channel realizations (in terms ofU1, . . . ,UK) we obtain

p(dmax|H1, H2, . . . , HK) = K

∫

U1

· · ·
∫

UK

p(U1, . . . , UK |H1, . . . , HK)·

·p(d1, user1 is scheduled|U1, . . . , UK , H1, . . . , HK) dUK . . . dU1 (28)

= K

∫

U1

· · ·
∫

UK

p(U1, . . . , UK |H1, . . . , HK) ·

·
dmax
∫

0

· · ·
dmax
∫

0

p(d1, . . . , dK |U1, . . . , UK , H1, . . . , HK) dd2 . . . ddK dUK . . . dU1 (29)

= K

dmax
∫

0

· · ·
dmax
∫

0

∫

U1

· · ·
∫

UK

p(d1, . . . , dK , U1, . . . , UK |H1, . . . , HK) dUK . . . dU1 dd2 . . . ddK

= K

dmax
∫

0

· · ·
dmax
∫

0

p(d1, . . . , dK |H1, . . . , HK) dd2 . . . ddK (30)

= K

dmax
∫

0

· · ·
dmax
∫

0

p(d1, . . . , dK) dd2 . . . ddK (31)

because the decision variablesdk and the channel powersHk are statistically independent
(cf. (25)).

As U1 can be constructed to be i.d. distributed, and becauseW is a unitary matrix,
W̃1 conditioned onW is i.d. distributed, and thusW̃1 and W are independent. This
argumentation can be repeated forW̃2 to W̃K , so we see that̃W1, . . . ,W̃K and therefore
alsod1, . . . , dK are statistically independent (cf. (24)).

We finally obtain

p(dmax|H1, H2, . . . , HK) = K

dmax
∫

0

· · ·
dmax
∫

0

p(d1) · . . . · p(dK) dd2 . . . ddK (32)

= KdK−1
max ; 0 ≤ dmax ≤ 1 (33)

Remapping fromd to γ, we obtain the pdf of the scheduled SINR, conditioned on the
event that userk is scheduled:

p(γPFMS|Hk, userk is scheduled) =

K(T − 1)

Hk

[

1 −
(

1 − Hk + Tσ2

Hk(1 + γ)
γ

)T−1
]K−1

·
(

1 − Hk + Tσ2

Hk(1 + γ)
γ

)T−2
Hk + Tσ2

(1 + γ)2
; 0 ≤ γk ≤ Hk

Tσ2
(34)



After averaging over the distribution ofHk, we obtain

p(γPFMS) =

∫

∞

Tγσ2

p(γPFMS|Hk)
1

(T − 1)!
e−HHT−1 dH (35)

=
K(Tσ2)T

(T − 2)!

K−1
∑

i=0

(

K − 1

i

)

·
i(T−1)+T−2

∑

j=0

(

(i + 1)T − i − 2

j

)

(−1)i+j 1

(1 + γ)j+2

·
j+1
∑

l=0

(

j + 1

l

)

γT+j−lEl(Tσ2γ) (36)

whereEl is the exponential integral [1] defined as

El(z) =

∫

∞

1

e−zt

tl
dt (37)

Eq. (22) defines one possibility to map the SINR to a decision variable that is identically
distributed for all users. The question arises whether the performance of the system depends
on the choice of the mapping. At least if the mapping is monotonously increasing withγ,
the answer is no according to the following proposition:

Proposition 1: If d = f(γ,H) is a monotonously increasing function inγ, so thatp(d|H)
is identical for all users (i.e. no function ofH), then the pdf of the scheduled SINR after
mappingd back toγ does not depend on the actual choice of the mapping functionf .

Proof: We have
d = f(γ,H) (38)

so the pdf of the maximum decision variable ofK users is

p(dmax) = K (F (d))K−1 p(d) (39)

whereF (d) is the cumulative distribution function ofd.
A change of variables (γ = f−1(d,H) =: g(d,H)) leads to

p(γpfs|H) = K (Fd(f(γ,H)))K−1 pd(f(γ,H))

∣

∣

∣

∣

∂

∂γ
f(γ,H)

∣

∣

∣

∣

(40)

= K

[∫ γ

g(−∞,H)

pd(f(γ′, H))
∂

∂γ′
f(γ′, H) dγ′

]K−1

pd(f(γ,H))

∣

∣

∣

∣

∂

∂γ
f(γ,H)

∣

∣

∣

∣

= K

[∫ γ

g(−∞,H)

pd(f(γ′, H))

∣

∣

∣

∣

∂

∂γ′
f(γ′, H)

∣

∣

∣

∣

dγ′

]K−1

pd(f(γ,H))

∣

∣

∣

∣

∂

∂γ
f(γ,H)

∣

∣

∣

∣

where the last equation follows from the assumption thatf(γ,H) is monotonously increasing
in γ. So we end up with

p(γpfs|H) = K

[∫ γ

g(−∞,H)

p(γ′|H) dγ′

]K−1

p(γ|H) (41)

= K [F (γ|H)]K−1 p(γ|H) (42)

which depends only on the conditional distribution of the SINR, but not on the mapping
function f(γ,H). This concludes the proof.
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VI. N UMERICAL RESULTS

The average throughput of each beam is calculated by2

E(R) = T

∫

∞

0

log2(1 + γ)p(γ) dγ (43)

which can be evaluated by numerical integration for any number of antennas and users, and
which is plotted in Fig. 2 for both the proportional fair multibeam scheduler and the max
SINR scheduler along with simulated values for a scenario where all users have a mean SNR
of 0 dB (σ2 = 1).

We notice that the loss of the PFMS scheduler compared with the max SINR scheduler
becomes smaller as the number of antenna elements increases. Similar results can be obtained
for the single beam case [5]. The same phenomenon but from another perspective was
reported in [7]. Here, the authors examined the max SINR scheduler and noticed that it
becomes fairer as the number of antennas increases.

In order to see the increase in throughput for a multibeam system compared with a single
beam system, we repeat the results from [5] for a single beam system in Fig. 3.

2This is the ergodic capacity. Other measures can easily be obtained if the functional relationship between these measures
and the SINR is known.
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VII. A SYMPTOTIC BEHAVIOR OF THEPFMSSCHEDULER FOR LARGEK

In this section we analyze the properties of the PFMS scheduler as the number of users
approaches infinity. We use (34) to express the mean throughput:

E(RPFMS)

= T

∫

∞

0

∫
Hk
Tσ2

0

log2(1 + γ)
K(T − 1)

Hk

(

1 −
(

1 − Hk + Tσ2

Hk(1 + γ)
γ

)T−1
)K−1

·
(

1 − Hk + Tσ2

Hk(1 + γ)
γ

)T−2
Hk + Tσ2

(1 + γ)2
dγ

1

(T − 1)!
e−HkHT−1

k dHk

= T

∫

∞

0

[

log2(1 +
Hk

Tσ2
) − log2(e)

∫ 1

0

Hk

Hk + Tσ2 − Hkz

(

1 − (1 − z)T−1
)K

dz

]

· 1

(T − 1)!
e−HkHT−1

k dHk (44)

Thus

− log2(e)

∫ 1

0

(

1 − (1 − z)T−1
)K

dz

·
∫

∞

0

Hk

σ2(T − 1)!
e−HkHT−1

k dHk

= − T

σ2
log2(e)

∫ 1

0

(

1 − (1 − z)T−1
)K

dz (45)

≤ E(RPFMS) − T

∫

∞

0

log2(1 + Hk/Tσ2)

(T − 1)!
e−HkHT−1

k dHk ≤ 0 (46)



As the integral in (45) vanishes forK → ∞, we have

lim
K→∞

KR(K) = lim
K→∞

E(RPFMS)

= T

∫

∞

0

log2(1 + H/Tσ2)

(T − 1)!
e−HHT−1 dH

= T

∫

∞

0

log2(1 + SINRbf )p(H) dH

= Rbf

whereR(K) is the average throughput a user achieves in the opportunistic multibeam beam-
forming system when there are K users in the cell, andRbf is the throughput that a user
achieves when it is in the coherent beamforming constellation for all beams but with no
interference between beams, i.e. when the instantaneous SINR on allT beams isH/Tσ2.

The first equation follows from the fact that the probabilitythat a user is scheduled is
1/K (all users have identically distributeddk), which completes the proof that each user’s
throughput approaches the throughput achieved by coherentbeamforming and round robin
scheduling ifK goes to infinity.

VIII. C ONCLUSION

In order to increase the spectral efficiency of cellular wireless systems, all available forms
of diversity should be exploited. One novel concept to enhance the exploitation of multiuser
diversity is random beamforming and channel aware scheduling as proposed in [8], where
the signal is multiplied by a time varying weight vector to increase the natural dynamic of
the channel and a scheduler in the basestation determines the user to transmit to based on
the instantaneous SNR fed back from the users. This diversity can be further increased if the
base station transmits multiple data streams at the same time potentially to different users,
because with this technique the probability that a user has agood channel quality can be
increased.

In this paper, we analyzed two schedulers, the max SINR scheduler which maximizes the
total average throughput by always transmitting to the users who have the largest SINR, and
a novel proportional fair multibeam scheduler which guarantees that all users are scheduled
the same amount of time. We derived the pdf of the scheduled SINR, calculated the aver-
age throughput by numerical integration and confirmed the analytical results by means of
simulation.

Finally, we examined the asymptotic behavior of the proportional fair multibeam scheduler
and showed that it approaches coherent beamforming with round robin scheduling if there
are many users in the cell.
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