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Abstract— We analyze a cellular communication system in
which a basestation (BTS) or access point transmits packet data
to several mobile data users by means of a TDMA scheme.
All users estimate their instantaneous signal-to-noise-ratio (SNR)
in each slot and feed this information back to the BTS. A
scheduler in the BTS then uses this information to allocate
the channel resource to the user which maximizes a certain
metric. We are interested in assessing the sensitivity of the
system performance in terms of spectral efficiency per cell with
respect to an imperfect knowledge of the multiuser channel,
expressed by the estimated SNR of all users. By assuming a
block fading channel model for each user, data-aided maximum-
likelihood intra-slot SNR estimation can be performed if known
pilot symbols are transmitted in each slot. We derive a novel SNR
estimator for the block fading channel, which takes the channel
statistics into account. The new estimator clearly outperforms the
AWGN ML estimator in terms of system performance. Not only
is the spectral efficiency larger for the system, but the optimum
spectral efficiency is also achieved with fewer pilot symbols per
slot.

I. I NTRODUCTION

Wireless communications are currently facing a tremen-
dous boost on the advent of the worldwide introduction of
third generation cellular and next-generation wireless LAN
standards. Both the amount of internet traffic and cellular
wireless communications have grown strongly in the past
few years, creating a huge market for high speed wireless
access. As wireless data traffic is forecasted to be increasingly
asymmetrical, the downlink of future systems will constitute
the bottleneck and requires optimization. This can only be
achieved by systematically utilizing all available forms of
diversity. Presently, diversity forms such as spatial, multipath
or code diversity aim at either increasing the quality of
a single communication link, or increasing the number of
terminals that can communicate with, say, a basestation. In an
environment where one transmitter communicates with many
mobile receivers, another form of diversity can be exploited
in order to improve spectral efficiency:multiuser diversity. If
the transmitter has knowledge about each receiver’s channel
quality and a packet-based transmission protocol is used, a
”smart” channel aware scheduling algorithm transmits data
packets only to users with ”good” channel conditions. With
growing number of users in the system, the probability that
at least one user has good channel conditions increases and

thus the overall throughput can be significantly improved. The
gain obtained by scheduling users in such a way is large when
fading for all users is fast and has a high dynamic range.
In picocells with typically slow fading or in macrocells with
little scattering around the transmitter, it can be shown that
employing multiple antennas along with random beamforming
increases multiuser diversity by ”randomizing” the channels
[1]. This is a completely new design paradigm, which is in
contrast to conventional approaches where one attempts to
exploit diversity in order to average over the fading process.

A number of challenging problems arise if one is interested
in exploiting multiuser diversity in a real system. One common
assumption is that the transmitter has knowledge about the
channel quality of each user, upon which the scheduler decides
which user to schedule. This requires either estimates from
uplink transmission which are only available in TDD systems,
or feedback from the users to the BTS. We will assume that
each user estimates its signal-to-noise ratio (SNR) and feeds
this estimate back to the BTS. In this paper, we analyze the
effect of estimation errors on system throughput in a system
where the SNR is used both to schedule the users and to
select a transmission mode in terms of modulation scheme
and code rate. We derive a novel SNR estimator for the
instantaneous SNR in block fading channels, which is based on
the maximum likelihood (ML) SNR estimator for the AWGN
channel and uses knowledge about the channel statistics.

The outline of the paper is as follows. In section II, the
signal and channel models are presented. The novel SNR
estimator is derived in section III. In section IV we assess the
sensitivity of a cellular multiuser system with channel-aware
scheduling to estimation errors in the decision variable, before
a conclusion is presented in section V.

II. SYSTEM MODEL

Consider a multiantenna basestation (BTS) serving a
packet-based downlink of a cell in a cellular wireless
communication system. We assume that a packet scheduler
decides on the user to be served at the beginning of each
slot. Each user estimates its instantaneous SNR in each slot
and feeds the estimate back to the BTS. There, random
beamforming (termed ”opportunistic beamforming” in [1]) is
used to increase the channel dynamic, which can be shown



to be beneficial for system throughput. We are interested
in assessing the sensitivity of the system performance in
terms of overall cell throughput with respect to an imperfect
knowledge of the SNR. We assume the availability of pilot
symbols being inserted periodically into the transmitted data
stream, enabling data-aided channel estimation for coherent
detection while the user actually receives data. The users make
use of these available pilot symbols to estimate the SNR at
all times, i.e. also when they are not scheduled to receive data.

Our system comprises a basestation withT antennas, com-
municating withU users with one antenna each via a TDMA
scheme and a fixed slot length ofN symbols,NP of which
are pilot symbols andND = N−NP are data symbols. We
assume a flat-fading channel for all users. This is a justified
simplification if we use OFDM for frequency-selective fading
channels and assume the equivalent narrowband channel on
each OFDM-subcarrier to be flat. We shall focus on the
case when the inherent dynamic of the channel, determined
by the motion of the user, is slow, and we employ slot-
wise random beamforming with uncorrelated complex-valued
antenna weights as proposed in [1]. The resulting channel is
then block fading. The received symbol sequence at useru is
given by

r(u)
k = c(u)

l a(u)
k +n(u)

k (1)

wherec(u)
l is the effective channel coefficient seen by useru

with l = bk/Nc being the slot index, thea(u)
k are the transmitted

symbols and then(u)
k are samples from a zero-mean white

Gaussian noise process. We do not consider time-varying
intercell interference in the scope of this paper, sonk models
only thermal noise in the receiver. The effective channel in
each slot is given by

c(u)
l = wH

l c(u)
l (2)

where wl ∈ CT×1 is the antenna weight vector in slotl ,
normalized such that the sum of powers over the antennas is
one (wH

l wl = 1) and c(u)
l is the channel vector for useru in

slot l . We assume rich scattering around the BTS, such that the
elements of the physical channel vectorc(u) are uncorrelated
complex Gaussian random variables. It can be shown that the
effective channel coefficientc(u) is also complex Gaussian
distributed with the same variance as the physical channel if
wH

l wl = 1 [6].

III. E STIMATION OF THE SNR

A. Maximum Likelihood SNR Estimation

We will focus on one user for the derivation of the estima-
tion algorithms. The channel model from (1) can be rewritten
as

rk =
√

Pl ejφl ak +
√

N l ñk (3)

where Pl and N l denote the signal and noise power,
respectively,φl is the channel phase and theñk are samples

from a zero-mean, complex valued Gaussian noise process,
with real and imaginary parts having variance1/2. We are
interested in estimating the ratioγl = Pl/N l in each slot, and
with the block fading assumption we can perform intra-slot
SNR estimation using the ML estimator derived for the AWGN
channel. The derivation of the ML estimator for the modified
AWGN channel follows along the lines of [7]. The details (see
e.g. [5]) are omitted here. The resulting estimator is given by

γ̂ =
P̂
N̂

=
|aH r |2

NP rH r −|aH r |2 (4)

wherea = [a0 . . .aNP−1]T is the vector of transmitted pilot
symbols andr = [r0 . . . rNP−1]T is the vector of received pilot
symbols, both in the respective slot. The probability density
function of the ML SNR estimator, conditioned on the true
instantaneous SNRγ, is given by [5]

pγ̂(γ̂ |γ) = e−NPγ NP−1
(1+ γ̂)NP

1F1

(
NP,1;

NP γ γ̂
1+ γ̂

)
(5)

where1F1 (a,b;z) is the confluent hypergeometric function,
defined by

1F1 (a,b;z) =
∞

∑
n=0

Γ(a+n)Γ(b)
Γ(a)Γ(b+n)

zn

n!
(6)

The expected value and variance ofγ̂, conditioned onγ, are
given by [5]

E[γ̂ |γ ] =
NP

NP−2

(
γ+

1
NP

)
(7)

var[γ̂ |γ ] =
1

(NP−2)(NP−3)

(
(NPγ+1)2

NP−2
+2NPγ+1

)
(8)

The ML estimator of the SNR is obviously biased. However,
the bias only depends on the length of the estimatorNP, is
thus known in the receiver and can be compensated for. An
unbiased version of the ML estimator (termed UML) is then
given by

γ̂UML =
NP−2

NP
γ̂− 1

NP
. (9)

It is straightforward to show that the conditional variance
of the unbiased estimator is always smaller than that of the
ML estimator [5]. It is given by

var[γ̂UML |γ ] =
(NP γ)2 +NP (2NP−2)γ+NP−1

N2
P (NP−3)

(10)

B. Novel SNR Estimator

The ML SNR estimator is characterized by its conditional
pdf (5). If we assume that each receiver knows the mean
SNR of its channel, e.g. by averaging, and we furthermore
assume Rayleigh fading for each user, resulting in a chi-
squared pdf of the SNR, we can incorporate this knowledge
and devise a better estimator. To that end, we first compute the
conditional pdf of the true instantaneous SNRγ, conditioned



on the knowledge of the estimated instantaneous SNRγ̂ and on
the mean SNR̄γ of the assumed chi-square distributed channel
SNR. With Bayes’ rule we have

pγ(γ | γ̂, γ̄) =
pγ̂(γ̂ |γ, γ̄) pγ(γ | γ̄)

pγ̂(γ̂ | γ̄)
(11)

where pγ̂(γ̂ |γ, γ̄) = pγ̂(γ̂ |γ) is the conditional pdf of the
ML estimator, pγ(γ | γ̄) is the pdf of the channel SNR and
the denominator is the integral of the numerator overγ. A
novel estimator, termed EML, is then given by computing the
expected value of (11) with respect toγ:

E[γ | γ̂, γ̄ ] =
∞Z

0

pγ(γ | γ̂, γ̄)γ dγ

=
γ̄

1+NPγ̄

(
1+

N2
P γ̄ γ̂

1+NP γ̄+ γ̂

)
(12)

The compact closed-form result (12) is derived in the
appendix. The novel estimator can be interpreted as a postpro-
cessing of standard ML SNR estimates, with additional side
information about the mean channel SNR, as illustrated in
Figure 1.

Fig. 1. Novel SNR estimator: postprocessing ML estimates

IV. SYSTEM SENSITIVITY TO ESTIMATED SNR

We consider two different multiuser scenarios and assess
the system sensitivity to imperfect SNR knowledge. The first
scenario is a cell with the users having equal mean SNR of0
dB. The scheduler performs maximum carrier-to-interference
scheduling (max C/I), i.e. it schedules the user with the best
instantaneous SNR:

umax;l = argmax
u

(
γ(u)
l

)
, u∈ [1. . .U ] (13)

with γ(u)
l being the SNR of useru in slot l . In the second

scenario, the users are uniformly distributed in a disc around
the BTS, with the mean SNR of each user determined by
the free space path loss. The cell geometry is chosen such
that the mean SNRs of the users are between0 and 20
dB. The scheduler uses proportional fair scheduling (PFS)
[1], where the metric to be maximized is the instantaneous
supportable rateR(u)

l , which is an increasing function of the

SNR, normalized to the average received rate in the pastT(u)
l :

umax;l = argmax
u

(
R(u)

l

T(u)
l

)
(14)

Weaker users are thus also served at the expense of system
throughput, indicating the fundamental throughput-fairness
tradeoff in scheduling. The average rate for each user can be
updated according to

T(u)
l+1 =

{
(1−1/tc)T(u)

l +R(u)
l /tc, umax;l = u

(1−1/tc)T(u)
l , otherwise

(15)

where tc represents the memory of the rate averaging for
each user, which can be adapted to higher-layer requirements,
e.g. maximum cell delay. For the mapping of the SNR to
a supportable datarate, we performed link level simulations1

with a system using adaptive modulation and coding and a
simple ARQ protocol, which requests a retransmission of a
packet (slot) when at least one bit error occurs. The results are
shown in Figure 2. The average spectral efficiency, measured
in the number of transmitted bits per channel use, is plotted
over the SNR for different modulation schemes and coderates.
These transmission modes were taken from the IEEE 802.11a
standard [8].
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Fig. 2. Link level simulation results: average bits per channel use

The simulation flow for the system simulation is then as
follows:

1. In each slot, each user estimates its instantaneous SNR
with one of the proposed algorithms ML, UML or EML.

2. The scheduler schedules the user for the current slot
according to the estimated SNR.

3. For the scheduled user, the transmission mode is chosen
according to the estimated SNR and the actual spectral
efficiency is determined by the number of bits per
channel use of the chosen transmission mode at the true
instantaneous SNR.

1All simulations were performed with Synopsys CoCentric System Studio



One interesting tradeoff with data-aided estimation is esti-
mation accuracy vs. spectral efficiency [2]. To that end, the
results from Figure 2 are multiplied by a factor representing
the loss in spectral efficiency due to the transmission of pilot
symbols, common in data-aided estimation [3]:

R(u)
l = η(u)

l
ND

ND +NP
(16)

where η(u)
l is the spectral efficiency of the chosen

transmission mode for useru at its true instantaneous SNR
and the second factor is the ratio between the information
symbols per slot and the total number of symbols per slot.
The measure of interest in then the average spectral efficiency
of the cell, which is given by the sum of the average
spectral efficiencies of the users:Rsystem= ∑U

n=1 El [R
(u)
l ].

Here, El denotes expectation with respect to time (l is the
slot index). In the system simulations for scenario2, we
average additionally over several user (and thus mean SNR)
distributions. The impact of imperfect SNR knowledge on
system performance is shown in Figure 3 for scenario 2 with
tc = 100. For each of the SNR estimation algorithms and for
perfect SNR knowledge (the rightmost two bars), the average
spectral efficiency of the cell is plotted for 10 and 100 users
in the cell, for a fixed total slot length ofN = 128 symbols
and for estimator lengthsNP = 8 and NP = 16. For the
standard ML estimator and its unbiased version, the spectral
efficiency for NP = 8 and 100 users is smaller than for 10
users, i.e. no multiuser diversity can be exploited due to
poor SNR estimation. This is not the case for the new EML
estimator. It is seen that the spectral efficiency is significantly
larger with EML estimation and that the losses compared to
perfect SNR knowledge are significantly smaller than with
the two other estimators.

The tradeoff between estimation accuracy and spectral ef-
ficiency is shown in Figure 4 for scenarios 1 and 2 with 100
users. The average spectral efficiency for the systemRsystem

is plotted over the number of pilot symbols per slotNP for
N = 128. Clearly, the expected rate for perfect SNR knowledge
(the solid curves) is a linearly decreasing function ofNP. For
a small number of pilots, the rates increase for all estimators
with increasing NP due to increased estimation accuracy.
For large NP, the rates decrease due to the increasingly
unfavourable ratio of pilot to data symbols. The optimum
number of pilot symbols isNP = 15. . .30. Three observations
are noteworthy:

1. the novel EML estimator yields the largest average spec-
tral efficiency in both scenarios

2. its optimum number of pilots is smaller than that of the
other two estimators

3. the degradation in spectral efficiency is less severe when
the number of pilots is suboptimal

Similar results have been obtained for other simulation
parameterizations. It has also been verified that the novel
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estimator is not sensitive to a mismatch of the assumption
about the channel statistics, i.e. if the channel amplitude
distribution is Rice or Nakagami instead of the assumed
Rayleigh distribution.

V. CONCLUSION

A novel data-aided estimator for the signal-to-noise ratio in
block fading channel models was derived in this paper, based
on the maximum likelihood SNR estimator for the AWGN
channel. Its superior estimation performance was demonstrated
in multiuser cellular scenarios with packet-based transmission,
adaptive modulation and coding, ARQ and channel aware
scheduling. It was shown that the new estimator not only yields
a larger system spectral efficiency, but that the maximum
spectral efficiency is achieved with less pilot symbols per slot.



Further investigations are under way to devise SNR estimation
algorithms for scenarios where the block fading is no longer
uncorrelated. Also, the system performance and sensitivity is
being analyzed if ARQ with incremental redundancy instead
of adaptive modulation and coding is used.

APPENDIX

In this section we derive the novel estimator for the instan-
taneous SNR. Using Bayes’ rule, we can express the pdf of
the true instantaneous SNRγ, conditioned on the estimated
instantaneous SNR̂γ and the mean SNR of the channelγ̄,
which we will assume to be known, i.e. through averaging of
the channel, as

pγ(γ | γ̂, γ̄) =
pγ̂(γ̂ |γ) pγ(γ | γ̄)

pγ̂(γ̂ | γ̄)
(17)

We compute the denominator first. It is given by

pγ̂(γ̂ | γ̄) =
Z ∞

0
pγ̂(γ̂ |γ) pγ(γ | γ̄)dγ

=
NP−1

γ̄(1+ γ̂)NP

Z ∞

0
e
−γ

(
NP+ 1

γ̄

)

· 1F1

(
NP,1;

NP γ γ̂
1+ γ̂

)
dγ (18)

=
NP−1

γ̄(1+ γ̂)NP

∞

∑
n=0

(
NP γ̂
1+ γ̂

)n Γ(NP +n)
Γ(n+1)n!

·
Z ∞

0
e
−γ

(
NP+ 1

γ̄

)
γndγ (19)

=
NP−1

γ̄(1+ γ̂)NP (NP + 1
γ̄ )

∞

∑
n=0

(NP +n−1)!
(NP−1)! n!

·
(

NP γ̂
(1+ γ̂)(N+ 1

γ̄ )

)n

(20)

=
NP−1

γ̄

(
NP + 1

γ̄

)NP−1

(
(1+ γ̂)(NP + 1

γ̄ )−NP γ̂
)NP

(21)

where for (19) we use the series definition of the confluent
hypergeometric function (6), (20) follows from

∞Z
0

γ ne
−γ

(
NP+ 1

γ̄

)
dγ =

n!

(NP + 1
γ̄ )

n+1
(22)

which is computed by repeated integration by parts, and for
(21) we use the binomial series with negative exponent [9]:

∞

∑
n=0

(NP +n−1)!
(NP−1)! n!

An = (1−A)−NP NP > 0, |A|< 1 (23)

It is easily verified that |A| < 1 with
A = NP γ̂/((1+ γ̂)(N+1/γ̄)) from equation (20) is always
valid for γ̂ > 0 and γ̄ > 0. Inserting (21) into (17) we have,
after some algebra,

pγ(γ | γ̂, γ̄) =
1+NPγ̄

γ̄

(
1+NP γ̄ γ̂

(1+NP γ̄)(1+ γ̂)

)NP

·e−γ
(

NP+ 1
γ̄

)
1F1

(
NP,1;

NP γ γ̂
1+ γ̂

)
(24)

The expected value of theγ, conditioned on̂γ and γ̄, is then
computed by integrating (24) overγ:

E[γ | γ̂, γ̄ ] =
∞Z

0

γ · pγ(γ | γ̂, γ̄)dγ

=
1+NPγ̄

γ̄

(
1+NP γ̄+ γ̂

(1+NPγ̄)(1+ γ̂)

)NP

·
∞Z

0

γ e−γ(NP+ 1
γ̄ )

1F1

(
NP,1;

NP γ γ̂
1+ γ̂

)
dγ (25)

Using similar techniques as for (19)-(21) we finally get to
the result

E[γ | γ̂, γ̄ ] =
γ̄

1+NPγ̄

(
1+

N2
P γ̄ γ̂

1+NP γ̄+ γ̂

)
(26)
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