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Abstract—We analyze a cellular communication system in thus the overall throughput can be significantly improved. The
which a basestation (BTS) or access point transmits packet data gain obtained by scheduling users in such a way is large when
to several mobile data users by means of a TDMA scheme. taqing for all users is fast and has a high dynamic range.
All users estimate their instantaneous signal-to-noise-ratio (SNR) In oi I ith icallv sl fadi . I ith
in each slot and feed this information back to the BTS. A n picoce S_W't typically slow fa I_ng 0r. In macrocells wit
scheduler in the BTS then uses this information to allocate ||tt|e Scatte”ng around the transm|tter, it can be ShOWﬂ that
the channel resource to the user which maximizes a certain employing multiple antennas along with random beamforming
metric. We are interested in assessing the sensitivity of the jncreases multiuser diversity by "randomizing” the channels
system performance in terms of spectral efficiency per cell with [1]. This is a completely new design paradigm, which is in

respect to an imperfect knowledge of the multiuser channel, trast t fi | h h tt ts t
expressed by the estimated SNR of all users. By assuming atontrast 1o conventional approaches where one atlempts to

block fading channel model for each user, data-aided maximum- €xploit diversity in order to average over the fading process.
likelihood intra-slot SNR estimation can be performed if known A number of challenging problems arise if one is interested

pilot symbols are transmitted in each slot. We derive a novel SNR 5 exploiting multiuser diversity in a real system. One common
estimator for the block fading channel, which takes the channel 55q;mption is that the transmitter has knowledge about the
statistics into account. The new estimator clearly outperforms the . ) .
AWGN ML estimator in terms of system performance. Not only chqnnel quality of each user,.upon V\_’h'Ch t_he SCheC_IUIer decides
is the spectra| efﬁciency |arger for the system, but the Optimum which user to schedule. This requires either estimates from
spectral efficiency is also achieved with fewer pilot symbols per uplink transmission which are only available in TDD systems,
slot. or feedback from the users to the BTS. We will assume that
each user estimates its signal-to-noise ratio (SNR) and feeds
this estimate back to the BTS. In this paper, we analyze the
Wireless communications are currently facing a tremeeffect of estimation errors on system throughput in a system
dous boost on the advent of the worldwide introduction afhere the SNR is used both to schedule the users and to
third generation cellular and next-generation wireless LABelect a transmission mode in terms of modulation scheme
standards. Both the amount of internet traffic and celluland code rate. We derive a novel SNR estimator for the
wireless communications have grown strongly in the paststantaneous SNR in block fading channels, which is based on
few years, creating a huge market for high speed wirelegge maximum likelihood (ML) SNR estimator for the AWGN
access. As wireless data traffic is forecasted to be increasinghannel and uses knowledge about the channel statistics.
asymmetrical, the downlink of future systems will constitute The outline of the paper is as follows. In section I, the
the bottleneck and requires optimization. This can only tsgnal and channel models are presented. The novel SNR
achieved by systematically utilizing all available forms oéstimator is derived in section Ill. In section IV we assess the
diversity. Presently, diversity forms such as spatial, multipatiensitivity of a cellular multiuser system with channel-aware
or code diversity aim at either increasing the quality afcheduling to estimation errors in the decision variable, before
a single communication link, or increasing the number &f conclusion is presented in section V.
terminals that can communicate with, say, a basestation. In an
environment where one transmitter communicates with many
mobile receivers, another form of diversity can be exploited Consider a multiantenna basestation (BTS) serving a
in order to improve spectral efficiencynultiuser diversityIf packet-based downlink of a cell in a cellular wireless
the transmitter has knowledge about each receiver's chanoeinmunication system. We assume that a packet scheduler
quality and a packet-based transmission protocol is usedderides on the user to be served at the beginning of each
"smart” channel aware scheduling algorithm transmits dasdot. Each user estimates its instantaneous SNR in each slot
packets only to users with "good” channel conditions. Witand feeds the estimate back to the BTS. There, random
growing number of users in the system, the probability theeamforming (termed "opportunistic beamforming” in [1]) is
at least one user has good channel conditions increases ased to increase the channel dynamic, which can be shown

I. INTRODUCTION

Il. SYSTEM MODEL



to be beneficial for system throughput. We are interestém a zero-mean, complex valued Gaussian noise process,
in assessing the sensitivity of the system performance with real and imaginary parts having variantg2. We are
terms of overall cell throughput with respect to an imperfeatterested in estimating the ratip= B /A, in each slot, and
knowledge of the SNR. We assume the availability of pilawith the block fading assumption we can perform intra-slot
symbols being inserted periodically into the transmitted da&NR estimation using the ML estimator derived for the AWGN
stream, enabling data-aided channel estimation for coherehtinnel. The derivation of the ML estimator for the modified
detection while the user actually receives data. The users m&&&GN channel follows along the lines of [7]. The details (see
use of these available pilot symbols to estimate the SNR ay. [5]) are omitted here. The resulting estimator is given by

all times, i.e. also when they are not scheduled to receive data. - a2
~ P a'r

Our system comprises a basestation Witlntennas, com- v= A Nerfr—[aHr|?
municating withU users with one antenna each via a TDMA

scheme and a fixed slot length Bf symbols,Np of which

(4)

wherea = [ao...aNP,l]T is the vector of transmitted pilot
. N symbols and = [ro...rNP,l]T is the vector of received pilot
are pilot symbols anNp =N—Ne are data_symbols. We symbols, both in the respective slot. The probability density

assume a flat-fading channel for all users. This is a jUStiﬁ?unction of the ML SNR estimator. conditioned on the true
simplification if we use OFDM for frequency-selective fading?nstantaneous SNR is given by [5]’

channels and assume the equivalent narrowband channel on

each OFDM-subcarrier to be flat. We shall focus on the ~ ey NP—1 Ney Y

case when the inherent dynamic of the channel, determined ~ Py(V[Y) = Pym 1k (NPJ?M) ®)
by the motion of the user, is slow, and we employ slot- ] . .
wise random beamforming with uncorrelated complex-valued WhereiFi (a,b;z) is the confluent hypergeometric function,
antenna weights as proposed in [1]. The resulting channeldgfined by

then block fading. The received symbol sequence at user ® [(a+n)l(b) 2
given by 1F1(ab;z) = ZO Wm (6)
P !
Y =c¥al 4 n (1)  The expected value and varianceyptonditioned ory, are

(u) - . - given by [5]
whereg, ™ is the effective channel coefficient seen by user

with | = |k/N | being the slot index, tha‘((“) are the transmitted Np 1
symbols and thenl((”) are samples from a zero-mean white E[Y[Y] = Ne—2 <Y+ Np)
1 ((pr+ 1)?

Gaussian noise process. We do not consider time-varying
Np —2)(Np — 3) Np —2

intercell interference in the scope of this papernganodels  var[y|y] =
only thermal noise in the receiver. The effective channel in (
each slot is given by The ML estimator of the SNR is obviously biased. However,
the bias only depends on the length of the estimaigr is
o =wi Y (2) thus known in the receiver and can be compensated for. An

wherew, ¢ CT*! is the antenna weight vector in slbt U{:/belgsbef version of the ML estimator (termed UML) is then

normalized such that the sum of powers over the antennashé
one (/lew| =1) and cl(”) is the channel vector for userin " N2, 1
slotl. We assume rich scattering around the BTS, such that the YumL = N VNG

i ) . . . :
elements of the physical channel vectd? are uncorrelated It is straightforward to show that the conditional variance

complex Gaussian random variables. It can be shown that fieye npiased estimator is always smaller than that of the
effective channel coefficient™ is also complex Gaussian, astimator [5]. It is given by

distributed with the same variance as the physical channel it
wHw, =1 [6].

()

+ 2Npy + 1) (8)

9)

. (NpY)?>+Np (2Np —2)y+Np — 1
ll. ESTIMATION OF THE SNR varffum Y] = YT (10)
N2 (Np — 3)

A. Maximum Likelihood SNR Estimation B. Novel SNR Estimator

. we WI||.fOCUS on one user for the derivation of the estlma- The ML SNR estimator is characterized by its conditional
tion algorithms. The channel model from (1) can be rewritten .
as pdf (5). If we assume that each receiver knows the mean
SNR of its channel, e.g. by averaging, and we furthermore
i ~ assume Rayleigh fading for each user, resulting in a chi-

— /P el \/
M= VA e act v fi ) squared pdf of the SNR, we can incorporate this knowledge
where A and A, denote the signal and noise powerand devise a better estimator. To that end, we first compute the

respectively,q is the channel phase and tfig are samples conditional pdf of the true instantaneous SNRconditioned




on the knowledge of the estimated instantaneous $hifd on Weaker users are thus also served at the expense of system
the mean SNR of the assumed chi-square distributed channtgiroughput, indicating the fundamental throughput-fairness
SNR. With Bayes’ rule we have tradeoff in scheduling. The average rate for each user can be
. updated according to

(V1v:¥) py(vY)

Py(Y 1Y)

A (11)

W, pW _
where py(Y|y.Y) = py(Y|y) is the conditional pdf of the T|(+ui = { (1_1/t°)T'(u) +R7/te; Umaxi __u
ML estimator, py(y|y) is the pdf of the channel SNR and (1-1/t)T, otherwise
the deno.mmator Is the mtegrgl of the. numerator oyen wheret. represents the memory of the rate averaging for
novel estimator, termed EML, is then given by computing thg, o, user, which can be adapted to higher-layer requirements,
expected value of (11) with respect yo e.g. maximum cell delay. For the mapping of the SNR to
a supportable datarate, we performed link level simulations

(15)

. T . with a system using adaptive modulation and coding and a
ElyI%.y] = /pV(VW’V)VdV simple ARQ protocol, which requests a retransmission of a
o _ packet (slot) when at least one bit error occurs. The results are

_ y N3y (12) shown in Figure 2. The average spectral efficiency, measured

~ 1+Npy 1+Npy+¥y in the number of transmitted bits per channel use, is plotted

The compact closed-form result (12) is derived in thaver the SNR for different modulation schemes and coderates.

appendix. The novel estimator can be interpreted as a postpf§€S€ transmission modes were taken from the IEEE 802.11a

cessing of standard ML SNR estimates, with additional si®@ndard [8].
information about the mean channel SNR, as illustrated in
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Fig. 1. Novel SNR estimator: postprocessing ML estimates
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IV. SYSTEM SENSITIVITY TO ESTIMATED SNR

We consider two different multiuser scenarios and asses )
the system sensitivity to imperfect SNR knowledge. The firs' o=
scenario is a cell with the users having equal mean SN® of
dB. The scheduler performs maximum carrier-to-interference
scheduling (max Cl/l), i.e. it schedules the user with the best
instantaneous SNR:

Umaxl = arg nlax(yl(”)) , ug[l...U] (13)

o
o
T

20

Fig. 2. Link level simulation results: average bits per channel use

The simulation flow for the system simulation is then as
follows:

with yl(”) being the SNR of useu in slot |. In the second

scenario, the users are uniformly distributed in a disc around- N €ach slot, each user estimates its instantaneous SNR
the BTS, with the mean SNR of each user determined by With one of the proposed algorithms ML, UML or EML.
the free space path loss. The cell geometry is chosen such The scheduler schedules the user for the current slot
that the mean SNRs of the users are betw@eand 20 according to the estimated SNR. _

dB. The scheduler uses proportional fair scheduling (PFS$- For the scheduled user, the transmission mode is chosen
[1], where the metric to be maximized is the instantaneous &ccording to the estimated SNR and the actual spectral
supportable rat&", which is an increasing function of the ~ €fficiency is determined by the number of bits per

. ) . channel use of the chosen transmission mode at the true
SNR, normalized to the average received rate in the'p%féi instantaneous SNR.
(u)
R

Umaxl = argmax| —— (14)
u Tl(“) 1All simulations were performed with Synopsys CoCentric System Studio



One interesting tradeoff with data-aided estimation is est _
mation accuracy vs. spectral efficiency [2]. To that end, th N8
results from Figure 2 are multiplied by a factor representini 2
the loss in spectral efficiency due to the transmission of pilc

symbols, common in data-aided estimation [3]: 25
 _ w _No i
= 16 2

RI r]l ND+NP ( ) »Ei

o
where r]l(”> is the spectral efficiency of the chosen *°

transmission mode for user at its true instantaneous SNR
and the second factor is the ratio between the informatic 1f
symbols per slot and the total number of symbols per slo
The measure of interest in then the average spectral efficien os-
of the cell, which is given by the sum of the average
spectral efficiencies of the userfsystem= ZH:l E [R,(”)].

10 users 100 users 10 users 100 users 10 users 100 users 10 users 100 users

Here, E; denotes expectation with respect to timeiq the ML UML EML opt
slot index). In the system simulations for scenafip we
average additionally over several user (and thus mean SNR) Fig. 3. Average spectral efficiency for scenario 2

distributions. The impact of imperfect SNR knowledge on
system performance is shown in Figure 3 for scenario 2 wit" s — ‘ —

t. = 100 For each of the SNR estimation algorithms and fo e o9
perfect SNR knowledge (the rightmost two bars), the avera¢ ;| ; . T L a0t
spectral efficiency of the cell is plotted for 10 and 100 user
in the cell, for a fixed total slot length dfl = 128 symbols
and for estimator lengthd\p = 8 and Np = 16. For the
standard ML estimator and its unbiased version, the specti
efficiency for Np = 8 and 100 users is smaller than for 10
users, i.e. no multiuser diversity can be exploited due t«
poor SNR estimation. This is not the case for the new EM| *°
estimator. It is seen that the spectral efficiency is significant|

Scenario 2, PF scheduling

2

system

larger with EML estimation and that the losses compared 1 if , SEmITEERS 1
perfect SNR knowledge are significantly smaller than witl : o
the two other estimators. 05 1

The tradeoff between estimation accuracy and spectral ¢ . "

ficiency is shown in Figure 4 for scenarios 1 and 2 with 10 Number of Pilot Symbols 10
users. The average spectral efficiency for the sysRefgem . N
is plotted over the number of pilot symbols per sk for Fig. 4. Average spectral efficiency

N =128 Clearly, the expected rate for perfect SNR knowledge

(the solid curves) is a linearly decreasing functionNpt For

a small number of pilots, the rates increase for all estimatasstimator is not sensitive to a mismatch of the assumption
with increasingNp due to increased estimation accuracyhout the channel statistics, i.e. if the channel amplitude

For large Np, the rates decrease due to the increasingistribution is Rice or Nakagami instead of the assumed
unfavourable ratio of pilot to data symbols. The optimurrayleigh distribution.

number of pilot symbols ifp = 15...30. Three observations

are noteworthy: V. CONCLUSION
1. the novel EML estimator yields the largest average spec-A novel data-aided estimator for the signal-to-noise ratio in
tral efficiency in both scenarios block fading channel models was derived in this paper, based
2. its optimum number of pilots is smaller than that of thgn the maximum likelihood SNR estimator for the AWGN
other two estimators channel. Its superior estimation performance was demonstrated
3. the degradation in spectral efficiency is less severe whenmultiuser cellular scenarios with packet-based transmission,
the number of pilots is suboptimal adaptive modulation and coding, ARQ and channel aware

scheduling. It was shown that the new estimator not only yields
Similar results have been obtained for other simulatiam larger system spectral efficiency, but that the maximum
parameterizations. It has also been verified that the nowglectral efficiency is achieved with less pilot symbols per slot.



Further investigations are under way to devise SNR estimationit
algorithms for scenarios where the block fading is no longér= Np¥/((1+9)(N+1/y))

is easily verified that |A] < 1 with

from equation (20) is always

uncorrelated. Also, the system performance and sensitivityvialid for > 0 andy > 0. Inserting (21) into (17) we have,
being analyzed if ARQ with incremental redundancy insteafter some algebra,

of adaptive modulation and coding is used.

APPENDIX

In this section we derive the novel estimator for the instan-
taneous SNR. Using Bayes’ rule, we can express the pdf of

the true instantaneous SNR conditioned on the estimated
instantaneous SN and the mean SNR of the channgl
which we will assume to be known, i.e. through averaging o
the channel, as

1+Npy¥y
1+Npy) (1+V)

1+ Npy
y

py(YI¥,Y)

.

Npyy

1+y) (24)

The expected value of the conditioned ory andy, is then

(

1;

Pmputed by integrating (24) over

Py(Y 1Y) Py(Y[Y) Elylv.y] = /v~py(v|\7,\7>dv
P(YIVY) = an 5
P (V1Y) _ NN
_ _ o _ 1—|—pr< 1+Npy+Yy ) P
We compute the denominator first. It is given by v 1+Ney)(1+Y)
Gy = [ ml y)d Vet E (e 1YY gy (25
py(Y[Y o PV pvlyly)dy ye P LTy )Y (29)
_ _NP _Al /°° e*V(NP%) Using similar technlques as for (19)-(21) we finally get to
YL+ Jo the result
NPVV) _ _
- 1F (N, 1;—21 ) d 18 25¢
' 1( "y ) e E[Y[9.Y) = - —<1+ tevy ) (26)
1+ Npy 1+Npy+Yy
. Np—1 2 /Ne¥\" I'(Ne+n)
oy nZO 1+y/) F(n+1)n!
© 1
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hypergeometric function (6), (20) follows from

0

/Vn efy(Ner%) dV:

0

n! g

(Np + %)Ml (22)

8
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_A) NP
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