
Maximum Ratio Combining of Correlated Diversity
Branches with Imperfect Channel State Information

and Colored Noise
Lars Schmitt∗, Thomas Grundler†, Christoph Schreyoegg†, Ingo Viering‡, and Heinrich Meyr∗

∗Institute for Integrated Signal Processing Systems
ISS, RWTH Aachen University, Germany

Email: {Schmitt, Meyr}@iss.rwth-aachen.de
†Siemens mobile, Germany

{Thomas.Grundler, Christoph.Schreyoegg}@siemens.com
‡Nomor Research, Germany

Viering@nomor.de

Abstract— Recently, an analytical expression for the mean bit
error probability of a binary modulated signal has been derived
for a receiver performing maximum ratio combining of correlated
diversity branches based on imperfect channel state information
[1].
In this work, these results are extended to the general case of
colored additive noise. Furthermore, an alternative solution is
derived which yields numerically stable results also in the case
of the respective channel and interference covariance matrices
having closely-spaced or multi-fold eigenvalues.
Finally, the results are applied to a spatio-temporal W-CDMA
Rake receiver, where the effects of multiple-access-interference
(MAI) and interpath interference (IPI), due to multipath propa-
gation, on the mean bit error probability are investigated.

I. INTRODUCTION

Maximum ratio combining (MRC) is a special form of
general diversity combining, by which multiple replicas of
the same information-bearing signal received over different
diversity branches are combined so as to maximize the instan-
taneous SNR at the combiner output [2]. It is a classical and
powerful technique to mitigate the effects of severe fading,
which occurs particularly in wireless communication systems.
However, in many applications like in CDMA systems, the
channel fading coefficients are in general mutually correlated
and have different second order statistics affecting the perfor-
mance of MRC. Examples for this are closely spaced antenna
elements at the receiver and a multipath intensity profile with
unequal channel tap powers, respectively. In addition, the
channel coefficients are not known at the receiver and have
to be estimated, either by the use of known pilot symbols or
in a blind manner. As it is well known this has a significant
effect on the performance of MRC, [9]. The significance
of imperfect channel knowledge increases with increasing
channel dynamics, since the quality of the channel estimation
worsens for increasing channel dynamics [3].
There are many contributions dealing with the performance
of maximum ratio combining, see e.g. [4]-[9], but neither
of them covers the general case of non-identically mutually
correlated fading diversity branches with only partial channel
state information being available at the receiver. In [10] the
analysis has been carried out for the special case of the down-

link of a BPSK-based W-CDMA system. Recently, Dietrich
and Utschick [1] derived a general analytical expression of
the mean bit error probability for BPSK signalling.
In this contribution we extend the result of [1] to also account
for the general case that the additive noise of the respective
diversity branches is also mutually correlated. Colored inter-
ference arises for example in case of a multi antenna ele-
ment receiver operating in a spatially correlated scenario with
multipath propagation or multiple interfering users. In these
cases there is a mutual correlation between the noise samples
corresponding to the respective antenna element outputs, i.e.
the spatial diversity branches.
If the eigenvalues of the channel covariance matrix are closely
spaced, the evaluation of the expression for the bit error
probability presented in [1] becomes numerically unstable.
This happens for example in the case of a spatial Rake receiver
employing multiple antenna elements where the spatial corre-
lation between the fading coefficients at the antenna elements
is very low. Therefore, we present an alternative numerically
stable expression for the mean bit error probability, which
implies the numerical evaluation of a one-dimensional integral
with a real valued integrand.
This paper is organized as follows. After introducing the
system model in Section II, the derivation of the different
expressions for the bit error probability is shown in Sec-
tion III. Finally, in Section IV, the results are applied to a
spatio-temporal W-CDMA Rake receiver, where the effect of
multiple-access-interference (MAI) and interpath interference
(IPI), due to multipath propagation, on the mean bit error
probability is investigated. Section V concludes the paper.

II. SIGNAL MODEL

A. Information-Bearing Signal

Assume that BPSK modulated data symbols a
(d)
n ∈

{+σd,−σd} are transmitted with ‖a
(d)
n ‖2 = σ2

d and n denoting
the time index. Then, the vector xn = [x0,n, . . . , xL−1,n]T

comprising the L spatio-temporal diversity branches, which
are used for maximum ratio combining at the receiver, may



be generally modelled as

xn = a(d)
n h + vn, (1)

where h = [h0, . . . , hL−1]
T and vn = [v0,n, . . . , vL−1,n]T

denote the effective channel vector and the additive noise
vector, respectively.
According to the assumption of Rayleigh fading, the effective
channel vector hn and the noise vector vn are modelled as
zero-mean complex Gaussian random vectors with covariance
matrix Kh and Kv , respectively, i.e.

h ∼ NC(0,Kh) (2)
vn ∼ NC(0, σ2

vKv), (3)

where σ2
v denotes the noise power. Note, that without loss

of generality, it can be assumed that the noise and channel
covariance matrices are normalized in the way, that it is
‖diag{Kv}‖

2 = 1 and ‖diag{Kh}‖
2 = 1, where diag{·}

is a vector containing the diagonal elements.
Obviously, xn is also zero-mean complex Gaussian distributed
with covariance matrix

Kxn
= E{xnxH

n } = σ2
dKh + σ2

vKv , (4)

where it has been assumed, that the noise samples and the
effective channel coefficients are independent.
In order to stress the generality of the model in (1), note
that xn may be the result of a linear processing of the R
dimensional received signal vector zn, i.e. xn = Wzn with
W being a (L × R)-matrix.

B. Pilot Signal
As in [1], we assume that the receiver does not have perfect

channel state information, but that a noisy channel estimate
ĥ = [ĥ0, . . . , ĥL−1]

T is available. The channel estimate is
obtained by maximum likelihood channel estimation using a
block of M pilot symbols a

(p)
m ∈ {+σp,−σp}, with |a

(p)
m |2 =

σ2
p, and can be expressed as

ĥ = h +
1

Mσ2
p

M−1∑

m=0

a(p)
m

∗
vm. (5)

The covariance matrix of the channel estimation vector is given
by

K
ĥ

= E{ĥĥ
H
} = Kh +

σ2
v

Mσ2
p

Kv , (6)

Now, assuming that the additive noise in (1) and the channel
estimation noise in (5) are independent, the cross-covariance
matrix of xn and ĥ is given by

K
xnĥ

= E{xnĥ
H
} = σdKh, (7)

where without loss of generality a
(d)
n = +σd has been assumed

to be the transmitted symbol.

C. MRC Decision Variable
The decision variable dn, which is obtained by maximum

ratio combining of the diversity branches [4] is given by

dn = Re
{

ĥ
H

xn

}
. (8)

III. BIT ERROR PROBABILITY

In this section, the bit error probability PB , i.e. the proba-
bility that it is sign(dn) 6= sign(an), is calculated by following
the derivation in [1].
By defining

rn =

[
ĥn

xn

]
(9)

and

A =
1

2

[
0 1
1 0

]
⊗ IL, (10)

it is

dn =
1

2

(
ĥ

H

n xn + ĥ
T

nx∗
n

)
= rH

n Arn (11)

a hermitian quadratic form. Hence, according to [11], the
characteristic function of dn is given by

Φd(ω) =

2L−1∏

l=0

1

(1 − jωλl)
, (12)

where the λl are the eigenvalues of AKr and Kr =
E{rnrH

n } is the (2L × 2L) covariance matrix of rn. If all
eigenvalues λl, l = 0, . . . , 2L − 1 are distinct, the pdf of dn

can be calculated via partial fraction expansion and inverse
Fourier transform of Φd(ω) in (12). Subsequently, the bit error
probability is obtained from the pdf via integration (see [1]).
For distinct eigenvalues, one obtains

PB =

2L−1∑

l=0

λl<0

2L−1∏

k=0

k 6=l

λl

λl − λk

. (13)

However, if the eigenvalues are not distinct, but multifold
eigenvalues exist, it is difficult to evaluate a general closed
form solution of the coefficients of the partial fraction expan-
sion. Also, if the eigenvalues get very close to each other, the
calculation of the coefficients of the partial fraction expansion,
and hence the evaluation of (13), becomes numerically unsta-
ble.
An alternative method is to calculate the bit error probability
directly via the characteristic function, which results in a
numerically stable solution. According to the lemma of Gil-
Pelaez (see e.g. [12]), the cumulative density function (cdf)
FX(x) of any random variable X can be calculated via the
characteristic function ΦX(ω) of X as follows

FX(x) =
1

2
−

1

π

∫ ∞

0

Im
{
ΦX(ω)e−jxω

}

ω
dω. (14)

Noting that the bit error probability is obtained from the cdf
of dn as follows

PB = Fdn
(d = 0|an = +σd) (15)

the bit error probability can be expressed in terms of a single
integral

PB =
1

2
−

1

π

∫ ∞

0

Im

{
1

ω
∏2L−1

l=0 (1−jωλl)

}
dω, (16)



which can be evaluated numerically. Note that the integrand
is real valued and decays very fast for increasing ω. The limit
of the integrand for ω → 0 exists and can easily be calculated
as follows

lim
ω→0

Im

{
1

ω
∏2L−1

l=0 (1 − jωλl)

}
=

2L−1∑

l=0

λl. (17)

It remains to give an expression for AKr . Obviously, using
(4), (6) and (7) it is

AKr =
1

2

[
σdKh σdKh + σ2

vKv

Kh +
σ2

v

Mσ2
p
Kv σdKh

]
, (18)

which can be rewritten as

AKr=
1

2

([
σd

0

0

1

]
⊗ IL

)
 Kh Kh +

σ2

v

σ2

d

Kv

Kh +
σ2

v

Mσ2
p
Kv Kh




×

([
1

0

0

σd

]
⊗ IL

)
. (19)

Now, noting that the eigenvalue decomposition is commutative
with respect to matrix multiplication and that it is

([
1

0

0

σd

]
⊗ IL

) ([
σd

0

0

1

]
⊗ IL

)
= σdI2L (20)

and, finally, that scaling all eigenvalues by the same factor
does not effect the bit error probability, as can bee seen in
(13), it can be stated that the eigenvalues λl in (13) and (16)
can be determined by the eigenvalue decomposition of

[
Kh Kh + 1

ρd
Kv

Kh + 1
γρd

Kv Kh

]
. (21)

Note that the matrix in (21) depends on the key system
parameters

ρd =
σ2

d

σ2
v

, γ =M
σ2

p

σ2
d

, (22)

denoting the data bit-energy-to-interference ratio and the effec-
tive pilot-energy-to-data-energy ratio, respectively, the channel
covariance matrix Kh and the interference covariance matrix
Kv .

IV. APPLICATION TO W-CDMA
In this Section we consider the application of the general

results from the previous section to the uplink of a W-
CDMA system [16] employing multiple antenna elements
at the basestation and examine the effect of spatial colored
interference. The receiver structure is illustrated in Figure 1. A
simple fixed beamforming technique is applied [13]. A limited
number of Q static beams are steered in different directions
to cover a 120◦ sector as it is illustrated in Figure 2 for a
4 element uniform linear array (ULA) with λ/2 inter-element
spacing. The number of beams is assumed to equal the number
of antenna elements and the beam directions are assumed
to be equi-spaced resulting in the set of steering directions
{−45◦,−15◦, 15◦, 45◦}.
The beamforming operation can be expressed in terms of a
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Fig. 1. Fixed Beamformer Receiver Structure.

(Q×Q) linear transformation of the antenna outputs, where the
columns of W f are the respective fixed beamforming vectors.
For the relevant channel tap delays the best beam outputs are
selected and used for maximum ratio combining.

A. W-CDMA Spatio-Temporal Signal Model

The following spatio-temporal signal model is applied. In
the delay domain, the channel of each of the K users is
modelled as a tapped delay line with Lk, k = 1, . . . ,K,
independent Rayleigh fading channel taps and normalized total
channel power, i.e.

∑Lk

l=1 σ2
l,k = 1, where σ2

l,k is the mean
channel tap power of the l-th channel tap of user k. Since the
focus is on the effects of the spatial correlations and for the
ease of notation, the multipath delays τl,k are assumed to be
integer multiples of the chip period Tc, i.e. τl,k = dl,kTc with
dl,k integer.
Hence, the Tc-sampled version of the received signal after
pulse-matched filtering at the q − th antenna element can be
written as

z(q)
n = z(q)(nTc) =

K∑

k=1

Lk∑

l=1

h
(q)
l,k bn−dl,k,k + v(q)

n , (23)

where n is the time index and v
(q)
n is AWGN with variance

σ2
v . The quantity bn−dl,k,k denotes the k-th user’s transmitted

QPSK modulated sequence [15] delayed by dl,k chips consist-
ing of the scrambled superposition of the binary pilot signal
[dedicated physical control channel (DPCCH)] and the data
signal [dedicated physical data channel (DPDCH)]

bn,k = cscram,n,k(cdata,n,kck + jβcpilot,n,k)/
√

1 + β2, (24)

where β is the pilot-to-data amplitude ratio, cscram,n,k denotes
the complex scrambling sequence, cdata,n,k and cpilot,n,k denote
the binary data and pilot spreading sequences, and ck is the
k-th user’s transmitted data symbol. Note that it is |bn,k|

2 = 1.
Due to the Rayleigh fading assumption, the channel coef-
ficients are completely characterized by their second order
statistics

E{h(q)
l,k h

(q′)
l′,k′

∗
} = σ2

l,kKS,l,k(q, q′)δ(l, l′)δ(k, k′), (25)

where δ(·) denotes the Kronecker delta and KS,l,k(q, q′)
denotes the element of the spatial correlation matrix KS,l,k



corresponding to the q-th row and q′-th column and the l-th
channel path of user k

KS,l,k =

∫
a(θ)a(θ)Hfθl,k

(θ) dθ. (26)

The quantity fθl,k
(θ) denotes the angular power density func-

tion accounting for an angular spreading of the signal energy.
For a uniform linear array with inter element spacing of
∆ = 1/2 wavelengths, the array response vector is given by

a(θ) = [1, e−j2π∆ sin θ, . . . , e−j2π(Q−1)∆ sin θ]. (27)

Note that the diagonal elements of KS,l,k are unity.

B. Bit Error Probability

In order to derive an expression of the signal vector prior
to maximum ratio combining in Figure 1 we note that the
beamforming and despreading operations can be interchanged.
Let the desired user correspond to k = 1, then the output after
despreading at the q-th antenna element corresponding to the
l-th channel tap is given by

y
(q)
l = 1√

Nd

Nd∑

n=1

cdata,n−dl,1,1c
∗
scram,n−dl,1,1z

(q)
n

=
√

Nd

1+β2 h
(q)
l,1 c1

+ 1√
Nd

L1∑

l′=1

l′ 6=l

h
(q)
l′,1

Nd∑

n=1

bn−dl′,1,1c
∗
n−dl,1,1

+ 1√
Nd

K∑

k=2

Lk∑

l=1

h
(q)
l,k

Nd∑

n=1

bn−dl,k,kc∗n−dl,1,1

+ 1√
Nd

Nd∑

n=1

v(q)
n c∗n−dl,1,1,

(28)

where Nd is the data spreading factor and the cn−dl,1,1 =
cdata,n−dl,1,1cscram,n−dl,1,1 denote the effective chips used for
despreading. Note that the first term in (28) is the desired
component, the second term is the interpath interference (IPI)
component, the third term characterizes the multiple access
interference (MAI) and the last term is AWGN.
Since the scrambling code in the uplink is a fraction of a
very long Gold sequence (length ≈ 224) [15], the imperfect
autocorrelation properties of the pseudo noise sequences can
be statistically described by making use of the following
common approximation [14]:

h
(q)
l′,k

1√
Nd

Nd∑

n=1

bn−dl′,k,kc∗n−dl,1,1 (29)

is approximately NC(0, σ2
l′,k) distributed for k > 1 or l′ 6= l.

By defining yl = [y
(1)
l , . . . , y

(Q)
l ]T , the signal vector of

the desired user corresponding to the l-th channel tap after
despreading is given by

yl = c1

√
Nd

1+β2 h̃l + ṽl, (30)

with h̃l the desired component and ṽl the interference com-
ponent in (28) being zero-mean complex Gaussian distributed.
The respective covariance matrices are given by

K
h̃l

= KS,l,1 (31)

K ṽl
=

L1∑

l′=1

l′ 6=l

σ2
l′,1KS,l′,1 +

K∑

k=2

Lk∑

l=1

σ2
l,kKS,l,k + σ2

vIQ. (32)

Now, accounting also for the fixed beamforming operation we
define

xl = JT
l W H

f yl

= c1

√
Nd

1+β2 JT
l W H

f h̃l + JT
l W H

f ṽl

= c1

√
Nd

1+β2 h̆l + v̆l,

(33)

where Jl is a selection matrix with only one element being ”1”
in each row while the other elements are all ”0”. The matrix J l

accounts for the fact that except from a spatially uncorrelated
scenario only a subset of beams is used for maximum ratio
combining with respect to the l-th channel tap. These are
usually the beams steering into the direction of arrival of the
channel taps.
Due to the linear transformation with JT

l W H
f , h̆l and v̆l are

also zero-mean complex Gaussian distributed and character-
ized by the respective covariance matrices.

K
h̆l

= JT
l W H

f KS,l,1W fJ l (34)

K v̆l
= JT

l W H
f K ṽl

W fJ l. (35)

The total input diversity vector used for maximum ratio
combining is given by stacking the vectors x1, . . . ,xL1

of
all channel taps on top of each other

x =
[
xT

1 , . . . ,xT
L1

]T

= c1

√
Nd

1+β2 h̆ + v̆,
(36)

with h̆ = [h̆
T

1 , . . . , h̆
T

L1
]T and v̆ = [v̆T

1 , . . . , v̆T
L1

]T , respec-
tively. Note that the covariance matrices K

h̆
and K v̆ of h̆

and v̆ are block-diagonal, since the channel taps have been
assumed to be mutually uncorrelated.
The derivation for the ML-channel estimate is analogous.
Finally, if a block of Np pilot chips is used for the channel
estimation, then the bit error probability is given by (16) with
the λl being the eigenvalues of

[
K

h̆
K

h̆
+ 1+β2

Nd
K v̆

K
h̆

+ 1+β2

β2Np
K v̆ K

h̆

]
, (37)

where (37) is in accordance with (21).

C. Example
In the following a 2 user scenario is considered in order

to demonstrate the effect of colored interference. The antenna
configuration and the choice of the fixed beam matrix W f is
as illustrated in Figure 2. A 2 tap fading channel with channel
tap powers {0,−3} dB, channel tap delays {0, 1}Tc, direction
of arrival {15◦, 15◦} and an uniform angular spread of 5◦
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Fig. 2. Considered 2 user scenario: desired user at 15
◦, interfering user

at 18
◦. Antenna configuration: Q = 4 antenna elements with beam steering

directions {−45
◦,−15

◦, 15◦, 45◦}.

is considered for the desired user. According to the 3GPP
standard [16] the data spreading factor is set to Nd = 64
and the pilot-to-data ratio is set to β = 11/15, according to a
typical speech user. The ML-channel estimation is performed
by coherently accumulating over 6 pilot symbols, i.e. Np =
1536 chips. A flat fading channel has been assumed for the
interfering user.
By evaluating (16), the mean bit error probability is plotted
versus the bit-energy-to noise ratio (Eb/N0 = Nd/(1 +
β2)/σ2

v) in Figure 3. It is assumed that only the fixed beam
pointing into the direction of the desired user is used for
maximum ratio combining. The interferer is assumed to have
the same Eb/N0 as the desired user.
The dotted curve shows the result if no IPI and no MAI
are considered. The dashed curve also considers only the
desired user but accounts for IPI. As expected, for high
Eb/N0 a suturation effect can be observed. If the fading
coefficients of the interferer are spatially fully correlated at
the antenna elements (the ◦ markers), the saturation effect
worsens significantly. On the other hand, if the interferer
fading coefficients are spatially uncorrelated (the × markers)
only a slight degradation can be observed.
This is due to the fact that the fixed beam performs some
kind of interference suppression by rejecting the interference
power coming from directions other than that of the desired
user. However, in case of a spatially correlated interferer a
rejection of the interference power is not possible, since the
DOA of the interferer is too close to the DOA of the desired
user.
However, even in the case of a spatially correlated interferer,
a performance gain of nearly 6 dB is obtained compared to
the one antenna case. This is due to the fact that the DOA of
the desired user matches the steering direction of a fixed beam
and hence, nearly the full antenna array gain can be exploited.

V. CONCLUSION

An analytical closed form expression for the mean bit error
probability of a binary modulated signal has been presented for
the general case of maximum ratio combining with imperfect
channel state information accounting also for colored additive
interference. Furthermore, an alternative solution has been
derived, which allows a numerically stable evaluation of the
bit error probability also for the case of closely-spaced eigen-
values of the respective channel and interference covariance
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Fig. 3. BER versus Eb/N0 for a 2-tap multipath fading channel and one
flat fading interfering user.

matrices.
The effect of colored interference has been demonstrated by
applying the results to a multi antenna element receiver in the
uplink of a W-CDMA system, where the signal reception is
disturbed by interpath and multiple access interference.
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