
Offset Assignment Showdown: Evaluation of DSP
Address Code Optimization Algorithms

Rainer Leupers

Institute for Integrated Signal Processing Systems (ISS)
RWTH Aachen, Germany

leupers@iss.rwth-aachen.de

Abstract. Offset assignment is a highly effective DSP address code optimiza-
tion technique that has been implemented in a number of ANSI C compilers. In
this paper we concentrate on a special class of offset assignment problems called
“simple offset assignment” (SOA). A number of SOA algorithms have been pro-
posed recently, but experimental results and direct comparisons are still sparse.
This makes the practical selection of a suitable SOA algorithm for implementa-
tion in a compiler very difficult. This paper aims at closing this gap by providing
a comprehensive benchmark suite and empirical evaluation based on real-life ap-
plication programs. Our results for the first time permit a detailed assessment of
all major SOA algorithms. In addition, we propose a new and superior combina-
tion of SOA heuristics.

1 Introduction

Due to the increased importance of software in embedded system design, code opti-
mization techniques for embedded processors, particularly fordigital signal processors
(DSPs), have gained high interest in academia and industry. As compared to general-
purpose processors, DSPs show a number of special hardware features, many of which
impose new challenges on compiler construction:

– Harvard architecture with separate program and data buses
– Dual memory banks for high data access bandwidth
– Hardware multiplier for fast product computation
– DSP-specific instructions like multiply-accumulate, multimedia (SIMD) instruc-

tions, and saturating arithmetic
– Limited amount of instruction-level parallelism
– Inhomogeneous register set
– Support for zero-overhead hardware loops
– Real-time capabilities
– Dedicatedaddress generation units(AGUs)

This paper considers code optimization techniques aiming at maximum utilization
of AGUs.

1.1 Address generation units and offset assignment

Offset assignmentis a central code optimization technique in many C/C++ compilers for
DSPs. It exploits the fact that many standard DSPs (e.g. TI C2x/C5x, Motorola 56xxx,
Analog Devices 210x, ST D950) as well as numerous application-specific DSPs com-
prise an AGU that is capable of performing address (or pointer) arithmetic in parallel to
the main data path.

effective
address

modify
register
file

address
register
file

+/−

 r

AR pointer p

AGU

immediate constant c

MR pointer q

Fig. 1.Address generation unit (AGU) architecture in DSPs with address register (AR) and modify
register (MR) files.

A typical DSP AGU (see fig. 1) comprises a file of address registers (ARs) that
store pointers for indirect memory addressing modes. In order to optimize clock speed
and to save silicon area, DSPs, in contrast to CISC and RISC machines, frequently do
not support “base-plus-offset” addressing modes. Instead, in order to compute a new
addressa′ = a ± c from a given addressa stored in some AR, that AR has to be
explicitly modified by adding or subtracting some constantc. The code efficiency of
such AR modifications depends on the concrete value ofc: if the absolute value of
c is small enough such thatc fits into theauto-increment rangeR = [−r, r], then
c can be encoded as an immediate operand into the same instruction that performs a
memory access (LOAD or STORE) at addressa. In that case, the AR modification
can be performed within the AGU in parallel to the memory access by means of an
auto-increment(or auto-decrement, dependent on the sign ofc) operation. Otherwise,

A
B
C

FP

n+2

n+1
n A

B
C

A
B
C

FP A
B
CFP

FP
n+2

n+1
n

n+2

n+1
n

n+2

n+1
n

FP
FP FP

FP

n+2

n+1
n

n+2

n+1
n

n+2

n+1
n

n+2

n+1
n B

A
C

A
C

B
A
C

B
A
C

B

Fig. 2. Illustration of offset assignment

if |c| > r, an extra instruction is required to compute the addressa′ = a± c for the next
memory access.

Hence, the auto-increment based address computation results in the highest code
performance and density, and any C/C++ compiler for DSPs should aim at maximizing
its use when generating code for address computations. One way to do this isoffset
assignment, where the memory layout for program variables is optimized such that the
maximum number of address computations for scalar variables can be implemented by
auto-increment. This is possible due to the fact that the stack layout for the local scalar
variables of a C function can be freely chosen by the compiler.

1.2 Offset assignment example

Fig. 2 illustrates a sample stack frame layout in a DSP-specific compiler. The compiler
typically allocates one of the ARs as aframe pointer(FP), which is used to address local
variables on the stack. Suppose, we have three such variables, A, B, and C, which are
accessed in the sequenceS = (A,C, A, B). Furthermore, suppose the auto-increment
rangeR is restricted to[−1, 1]. This special case of using a single FP andR = [−1, 1]
is calledsimple offset assignment(SOA).

The upper part of fig. 2 illustrates the situation when the variables are assigned
to stack locations (oroffsets, relative to the stack frame boundary)n, n + 1, n + 2,
in alphabetic order. Initially, FP points to variableA at addressn. The next access
goes toC located atn + 2. Due to the missing “base-plus-offset” addressing mode
in DSPs, FP cannot remain constant throughout the entire function execution (as it
normally holds for CISC or RISC compiled code), but needs to be implemented as a
floating or roving frame pointer. Thus, in order to access the variables according to

sequenceS, FP needs to be modified by the values+2,−2,+1, in that order. Due to
R = [−1, 1], only the last FP modification (+1) can be implemented by auto-increment,
while two extra instructions are required to implement the modifications by +2 and -2.
However, as shown in the lower part of fig. 2, the situation changes drastically when the
variables are assigned to memory addresses in the orderB −A− C, in which case the
access sequenceS implies FP modifications by+1,−1,−1, all of which fall into the
auto-increment rangeR. Hence, the latter variable layout will result in better code, and
it is the goal of SOA algorithms to compute such “good” variable layouts.

1.3 Motivation

Experimental surveys indicate that it is not unusual for DSP machine code to comprise
20% - 30% (sometimes even more than 50%) of instructions used for address compu-
tations [1], [2]. In terms of total code size, the effect of performing offset assignment
within a C compiler is typically in the order 5% - 20% [3], which is quite significant
for DSPs with tight ROM size constraints. Due to their high importance for DSP code
quality, offset assignment techniques have been implemented in several research (e.g.
SPAM [3] or RECORD [4]) and industrial compilers (e.g. TI’s C2x/C5x C compiler [5]
or CHESS [6]) for DSPs.

Even though SOA is just a special case of offset assignment problems, it represents
a real-world problem. This is due to the fact, that many DSPs show a relatively small
instruction word length (mostly 16 bits), which allows only for a narrow auto-increment
range like[−1, 1]. Moreover, generalized offset assignment approaches using multiple
frame pointers mostly rely on SOA algorithms as subroutines.

Consequently, a number of different SOA algorithms have been proposed in the
literature. In spite of this, from a scientific viewpoint, the situation is not really satisfac-
tory, since so far there has been no comprehensive benchmarking of the different SOA
algorithms for real-life problems. Some algorithms have been compared to others, but
frequently the comparisons are incomplete and are based on small program fragments
or even random problem instances, so that reported results are hardly reproducible. So
the question of which SOA algorithm is the “best” (w.r.t. their computation time vs
solution quality tradeoff) is still largely open.

Therefore, in this paper we do not just propose yet another SOA algorithm, but
our main goal is to consolidate previous work by means of a comprehensive empirical
study, in which we evaluate a set of different algorithms for a large suite of realistic
SOA problem instances. This allows us to draw conclusions on which algorithms are
most useful in practice and may be promising platforms for future offset assignment
research. In more detail, the contributions of this paper are:

1. We briefly review the major existing SOA algorithms and available experimental
comparisons.

2. We propose an extensible benchmark suite, calledOffsetStone, for offset assign-
ment algorithms together with the necessary tool support.

3. We use OffsetStone to evaluate a total of 8 SOA algorithms and give detailed ex-
perimental results about their performance in terms of computation time and (both
absolute and relative) solution quality.

4. We present a new combination of two fast SOA heuristics that turns out to be supe-
rior to all previous heuristics.

The remainder of this paper is structured as follows. Section 2 discusses related
work and gives a more precise description of the SOA problem. Section 3 outlines the
OffsetStone benchmarking methodology and its tools. In section 4, we provide detailed
experimental results. Finally, section 5 gives conclusions and mentions future work.

2 Related work

2.1 Access graph model

Bartley [5] proposed theaccess graphmodel for the simple offset assignment (SOA)
problem, which forms the baseline for most SOA algorithms. Given a variable setV =
{v1, . . . , vn} and a variable access sequenceS = (s1, . . . , sm) of a basic block with
∀i ∈ [1,m] : si ∈ V , the access graph is an undirected, complete, and edge-weighted
graphG = (V, E, k) with E = {{v, w}|v, w ∈ V }. The functionk : E → N0

assigns a weight to each edgee = {v, w} that denotes the number ofaccess transitions
betweenv andw in S, i.e., the number of subsequences ofS of the form (v, w) or
(w, v). Due to the symmetry of auto-increment and auto-decrement, the ordering of
v andw is irrelevant here. Likewise, self-edges of the form{v, v} can be neglected.
The left part of fig. 3 exemplifies the access graph model forV = {A, B,C, D} and
S = (D, A, C,B,A, D,A, B, C).

A

C D

B2

23
1 0

0

A

C D

B2

23

Fig. 3. Access graph model and maximum weighted Hamiltonian path

Any access transition(v, w) in S can be implemented by auto-increment, if and
only if v andw are assigned neighboring stack locations, i.e. the offset difference ofv
andw is covered by the auto-increment range[−1, 1]. In order to maximize the use of
auto-increment addressing, obviously those variable pairs{v, w} should be neighbors
in the stack frame, whose edge weightk({v, w}) in G is high, since this will save many
extra instructions for address computation.

2.2 Offset assignment heuristics

As pointed out by Liao [3], the SOA problem eventually amounts to finding amaximum
weighted Hamiltonian pathP in G, i.e. a path touching each node once with the maxi-
mum edge weight sum (see right part of fig. 3). The memory layout is derived fromP
by assigning those node pairs to adjacent memory locations, which are also neighboring
in P (i.e. either C-B-A-D or D-A-B-C in the example from fig. 3).

Thecostof an SOA solutionP is defined as the sum of the weights ofG’s edgesnot
covered byP . This corresponds to the number of extra address computation instructions
to be inserted into the machine code. By means of a simple reduction from the classical
Hamiltonian path problem [7] it can be shown that computingP is an NP-complete
problem. Hence, heuristics should be used, except for small problem instances.

Bartley [5] proposed a greedy heuristic for finding pathP . His algorithm iteratively
picks an edgee of highest weightk(e) in G and checks whether inclusion ofe into a
partial pathP would still allow for a valid solution. This is iterated until a complete
path with|V | − 1 edges has been selected.

Liao [3] proposed a more efficient implementation of Bartley’s SOA algorithm,
by temporarily neglecting edges of zero weight (which are frequent in realistic access
graphs) and using an efficient Union/Find data structure for checking for cycles. Besides
the implementation issues, Liao’s algorithms produces the same results as Bartley’s.

In his thesis [1], Liao additionally proposed a branch-and-bound (B&B) algorithm
for SOA, which can be used to construct optimal solutions. The B&B algorithm is
capable of effectively pruning the huge search space, but it can generally only be applied
to small problem instances due to sometimes exhaustive runtime requirements.

Both Bartley’s and Liao’s heuristics do not include a special handling of edges with
equal weight during path construction. However, same-weight edges are very common
in access graphs, and the solution quality may critically depend on the order in which
edges are investigated during path construction. Therefore, Leupers and Marwedel [4]
proposed to extend Liao’s algorithm by atie-breakheuristic for choosing among same-
weight edges. An experimental evaluation for a set of random SOA problem instances
indicated that the tie-break heuristic on average gives a slight improvement over Liao’s
heuristic. This has been confirmed by independent experiments in [8], [9], while other
experiments on some of the DSPStone [10] benchmark programs reported in [2] did not
indicate such an improvement.

A genetic algorithm (GA) based approach to SOA has been presented in [11]. In
contrast to most other methods, it does not use the access graph model, but constructs
offset assignments directly by a (relatively time-consuming) simulation of a natural
evolution process. Actually, the GA has been mainly intended for a more general class
of offset assignment problems, but it can easily be restricted to solve the SOA problem.
A direct comparison to fast heuristics for the special case of SOA has not been reported,
though.

Atri et al. proposed anincrementalSOA algorithm [12]. It starts with an initial SOA
solution, constructed by some heuristic, and performs an iterative improvement by a
local exchange of access graph edges selected for the maximum weighted Hamiltonian
path. An experimental comparison to Liao’s heuristic [3] for a set of random SOA
instances indicated that the initial solution can be improved in 3 - 8% of the cases

considered, where the average improvement is about 5%. Unfortunately, no comparison
to other SOA algorithms was reported.

Besides these approaches, many generalizations of SOA have been considered, in-
cluding thegeneral offset assignment(GOA) problem [3], [4], [17], [11] that handles
multiple frame pointers, DSPs with auto-increment operations between the memory
accesses [13], auto-increment ranges beyond±1 [14], [15], [16], AGUs with modulo
addressing modes [17], exploitation of scheduling freedom in the variable access se-
quence [9], as well as procedure-level offset assignment [18]. Other researchers have
dealt with DSP-specific compiler techniques for address register assignment in case of
arrays and predefined memory layouts (e.g. [2], [19], [20], [21], [22], [23]), which are
not directly related to SOA.

3 Evaluation methodology

Summarizing the discussion of SOA algorithms in section 2, many techniques have not
been directly compared to each other so far, while the few comparisons that do exist
are mostly based on small data bases or random problem instances. However, random
instances generally do not well reflect real-world problems, since the latter tend to show
higher locality in the variable access sequences.

3.1 OffsetStone benchmarks

For sake of a more reliable and reproducible evaluation of available SOA algorithms, we
have composed OffsetStone, a large suite of SOA problem instances extracted from 31
complex real-world application programs written in ANSI C. These include computation-
intensive DSP applications (e.g. MPEG2, MP3, ADPCM, DSPStone, FFT, JPEG, GSM,
Viterbi) but also more control-dominated standard applications (e.g. GZIP, FLEX, BI-
SON, CPP). Altogether, the C applications chosen for OffsetStone comprise more than
300,000 lines of C source code. They are certainly representative and much broader
than what has been used for SOA benchmarking in previous work.

From a benchmarking viewpoint, an interesting observation is that there are no sig-
nificant differences in the behavior of the SOA algorithms for different benchmark types
(i.e. DSP or general-purpose). Therefore, there was no need to restrict the evaluation to
DSP applications only.

For each application program, we extracted SOA problem instances by means of
the following steps:

1. The ANSI C sources for the application are translated into a three address code
intermediate representation (IR) by means of the LANCE C frontend [24], in order
to make the variable access sequences explicit. Additionally, this step inserts tem-
porary variables for intermediate results, that a compiler would normally generate.

2. The IR is optimized by standard techniques used in most compilers, including com-
mon subexpression elimination, dead code elimination, constant folding, jump op-
timization, etc. This step ensures that the IR does not contain superfluous variables
and computations, which a compiler would eliminate anyway.

3. From the optimized IR, the detailed variable access sequence is extracted from each
basic block.

4. Since any offset assignment is valid throughout an entire C function, oneglobal
access graph is constructed per function by merging1 the local access graphs of
the basic blocks. In this way, all local access sequences are represented in a single
graph. Each global access graph forms one instance of the SOA problem.

With this methodology we obtained a total of more than 3000 realistic SOA problem
instances2. The extraction is restricted to variables fitting into a single memory word,
i.e., variables that directly qualify for offset assignment. We also excluded pointer vari-
ables, since these are mostly allocated in address registers and not on the stack frame.

Our approach assumes that all variables extracted will actually be assigned to the
stack. This is not necessarily true, since a compiler generally will be able to keep some
of the variables in the data path registers. However, as DSPs with AGUs typically show
very few data path registers, it is reasonable to assume that the extracted sequences are
very close to the actual access sequences in compiled code.

3.2 SOA algorithms included in OffsetStone

For the extracted benchmarks, we evaluated the following 8 SOA algorithms:

1. SOA-OFU: A trivial offset assignment algorithm, where variables are assigned to
offsets in the order of their first use in the code. This order would typically be used
in non-optimizing compilers without a dedicated SOA phase, and thus serves as a
baseline case for our experiments.

2. SOA-Bartley: Bartley’s SOA heuristic [5] based on the access graph model.
3. SOA-Liao: Liao’s SOA heuristic [3] based on the access graph model.
4. SOA-BB: Liao’s branch-and-bound algorithm [1] for optimally solving SOA.
5. SOA-TB: SOA-Liao extended by the tie-break heuristic proposed in [4].
6. SOA-GA: The genetic algorithm for SOA from [11].
7. SOA-INC: The incremental SOA algorithm from [12], using SOA-Liao for con-

structing initial solutions.
8. SOA-INC-TB : A new combination of SOA algorithms, using SOA-INC in combi-

nation with SOA-TB for constructing initial solutions. As will be shown later, using
SOA-TB instead of SOA-Liao in total results in a higher optimization potential for
SOA-INC.

1 In this formulation, SOA minimizescode size. For performanceoptimization, profiling in-
formation can be exploited by assigning higher edge weights to frequently executed program
paths.

2 The OffsetStone benchmark access sequences are available from the author upon request, in-
cluding the corresponding tools for access sequence extraction and the C++ source code for
our implementation of the 8 SOA algorithms. This allows other researchers to easily repro-
duce the results, to add more offset assignment algorithms to the existing infrastructure, and to
extend the benchmark suite by extracting access sequences from further application programs.

4 Experimental results

The 8 SOA algorithms have been implemented in C++ in the form of different routines
within a single driver program. Naturally, high attention has been paid to uniform soft-
ware engineering practices, in order to ensure a fair comparison. The algorithms have
been applied to all OffsetStone benchmarks, where the costs (according to the metric
defined in section 2) and the CPU times (on a 1.3 GHz Linux PC) have been measured.
An exception, however, is the SOA-BB algorithm. Due to the sometimes excessive run-
time requirements, we restricted its use to problem instances with at most 12 variables
(this already corresponds to 12!≈ 479 · 106 possible solutions).

4.1 Performance relative to SOA-OFU

We first focus on a comparison to the “naive” algorithm SOA-OFU. Table 1 gives the
average percentage of the solution cost of 6 SOA algorithms (SOA-OFU set to 100%,
SOA-BB not included here due to runtime limitations). SOA-Bartley and SOA-Liao are
combined into a single column since they always produce identical results.

The line labeled “average” in table 1 shows the average cost values over all Offset-
Stone benchmarks. As can be seen, all SOA algorithms reduce the cost as compared to
SOA-OFU by about 25% on average, with a relatively small difference to each other
(the reason for this will become clear in table 3). The best results are produced by
SOA-GA, followed by SOA-INC-TB and SOA-TB.

For sake of completeness, we also applied the algorithms to random access se-
quences, as it has been frequently done in previous work. The line labeled “random” in
table 1 shows the average results obtained after applying the SOA algorithms to a set
of 3000 random SOA problem instances with varying numbers of variables and access
sequence lengths as they typically occur in practice. Even though the order of result
quality does not change, the performance difference between the algorithms is smaller,
and the result quality as compared to the naive algorithm SOA-OFU is much lower
(< 8%) than for real SOA problems. This can be explained by the fact that the edge
weights in the access graph are more uniformly distributed for random sequences than
for real sequences. This means that there are no big “peaks“ in the objective function
so that even optimal SOA solutions are not much better than naive (SOA-OFU) solu-
tions. Hence, the optimization potential for SOA algorithms is significantly lower. This
confirms our above statement that random problem instances are not the best choice for
evaluating SOA algorithms.

4.2 Runtimes

Table 2 shows results on the average runtime requirements (CPU milliseconds) per SOA
problem instance. SOA-OFU is not included, since it requires essentially no process-
ing time at all. Note that SOA-Bartley in its original form can only be used for small
problem sizes, due to its very high runtime requirements. However, we found that it
can be easily accelerated by temporarily suppressing the zero-weight edges in the ac-
cess graph. The first line in table 2, therefore, refers to this improved implementation of
SOA-Bartley. Nevertheless, its “twin” algorithm SOA-Liao is still faster on average.

Table 1.Relative cost of SOA algorithms compared to SOA-OFU solutions (100%)

benchmark Liao TB INC INC-TB GA
8051sim 83.1 79.8 80.7 79.0 79.0
adpcm 81.1 79.3 80.1 78.6 78.5
anagram 68.9 66.9 68.2 66.2 65.6
anthr 81.1 79.9 80.9 79.9 79.9
bdd 78.6 76.9 78.4 76.9 76.9
bison 78.2 77.1 78.1 77.0 77.0
cavity 85.1 82.4 84.6 82.2 82.2
cc65 78.4 76.3 77.2 76.3 76.2
codecs 81.5 80.3 81.4 80.3 80.3
cpp 77.4 76.3 77.3 76.3 76.3
dct 77.6 77.8 77.6 77.4 77.4
dspstone 76.4 74.4 76.0 74.3 74.3
eqntott 65.0 65.0 65.0 65.0 65.0
f2c 73.7 72.7 73.6 72.6 72.6
fft 92.0 92.0 92.0 92.0 92.0
flex 71.3 69.3 71.0 69.3 69.3
fuzzy 77.5 74.2 77.0 74.2 74.2
gif2asc 83.1 82.0 83.0 81.7 81.7
gsm 81.5 80.9 81.3 80.9 80.8
gzip 77.1 73.2 76.3 73.2 73.2
h263 70.3 70.0 70.0 70.0 69.6
hmm 70.5 67.4 69.8 67.3 67.3
jpeg 73.7 71.8 73.4 71.7 71.6
klt 68.2 66.1 67.6 66.1 66.0
lpsolve 78.1 77.1 77.8 77.1 77.1
motion 90.6 91.1 90.6 89.6 89.6
mp3 72.3 71.6 72.2 71.6 71.4
mpeg2 77.0 76.0 76.8 75.9 75.8
sparse 75.9 75.1 75.9 75.1 75.1
triangle 65.8 64.4 65.6 64.4 64.3
viterbi 89.3 85.0 89.1 84.9 84.9
average 76.7175.2376.40 75.1675.10
random 92.7492.2492.62 92.1792.13

Table 2.Average runtime per problem instance

Algorithm CPU time (msecs)
SOA-Bartley 0.97
SOA-Liao 0.67
SOA-TB 0.68
SOA-INC 4.60
SOA-INC-TB 23.00
SOA-GA 8296.26

Table 3.Average overhead compared to optimum

Algorithm % overhead
SOA-BB 0.00
SOA-OFU 67.09
SOA-Liao 4.34
SOA-TB 0.16
SOA-INC 2.28
SOA-INC-TB 0.11
SOA-GA 0.00

The average runtimes are mostly in the order of milliseconds or even less, with
SOA-Liao and SOA-TB being the fastest algorithms. There is a big gap to SOA-GA
though, which on average needs about 8.3 CPU seconds per problem instance. This
leads to a clear separation of SOA algorithms intofastandslowones, where the latter
category comprises SOA-GA and SOA-BB.

4.3 Performance relative to optimum

For about 41% of all benchmark problems (i.e. the “small” problems with at most 12
variables), we computed optimal solutions by means of the SOA-BB algorithm. This
allowed us to measure the absolute quality of computed SOA solutions. The results
are given in table 3, which shows the average percentage of cost overhead compared
to the optimal solutions for each algorithm. Naturally, the trivial algorithm SOA-OFU
shows the highest overhead. As can be seen, all heuristics get more or less close to the
optimum, which explains the small differences found in table 1. SOA-Liao yields an
average overhead of 4.34%, while SOA-INC-TB is the best of the fast heuristics, with
an overhead of only 0.11%. SOA-GA found the optimum in all cases. For the test cases
covered by table 3, SOA-BB needed about 3.5 CPU seconds per SOA instance, while
SOA-GA took 0.8 CPU seconds. The CPU times of the fast heuristics are negligible in
practice.

5 Conclusions

Given that the OffsetStone benchmarks provide a good representation of real-world
SOA problems, the experimental data from section 4 permit to draw the following con-
clusions that were not available from previous work:

– Generally, the performance difference between SOA algorithms for real problems
is surprisingly small. Hence, it might appear that the concrete algorithm used in a C
compiler for DSPs does not matter much. However, under the tight cost constraints
of embedded systems where sometimes every program ROM word matters, the best
algorithm with an acceptable runtime should certainly be chosen.

– SOA-Bartley can be easily implemented much more efficiently than in the origi-
nally proposed form, but SOA-Liao is still faster while giving the same results.

– SOA-TB achieves better average results for real-life problems than SOA-Liao/SOA-
Bartley at virtually no increase in computation time, and it also achieves better
solutions than SOA-INC.

– The new combination of SOA algorithms (SOA-INC-TB) proposed in this paper
achieves the best results of all fast heuristics tested here. Hence, it can be recom-
mended for fast compilers and can replace the use of SOA-Bartley/Liao, SOA-TB,
and SOA-INC. At least for “small” problems it achieves an extremely low average
overhead compared to optimal solutions.

– In case priority is given to highest code quality and not to high compilation speed
(say, in a final compiler run with highest optimization effort to generate production
code with minimal ROM size), the SOA-GA algorithm should be preferred. For
“small” SOA problems, SOA-BB can be used to compute optimal solutions, but
we observed that SOA-GA finds the optimum in virtually all cases (even though
it is not guaranteed to do so) at less than 25% of the computation time require-
ments of SOA-BB. SOA-BB is frequently fast but sometimes shows extreme peaks
in computation time due to its branch-and-bound nature, whereas the runtimes of
SOA-GA are predictable.

– The use of random access sequences for evaluation of SOA algorithms, though
quite common in previous research, does not accurately reflect the algorithm behav-
ior for real applications. Our experimental results indicate that random sequences
do allow for a coarse performance comparison between algorithms, but they defi-
nitely do not exhibit their optimization potential for real-life application code.

OffsetStone is the first effort towards fair benchmarking of offset assignment algo-
rithms based on a huge suite of realistic problem instances. It allowed us to provide an
in-depth evaluation of most state-of-the-art SOA algorithms. The results provide valu-
able hints both for compiler developers and researchers working on offset assignment
in C compilers for DSPs. As a secondary contribution, we were able to identify a new
combination of fast heuristics (SOA-INC-TB) that is superior to previous algorithms.

As a first step, in this paper we have focused only on SOA, the most basic class
of offset assignment problems. In the future, the suite of algorithms included in Off-
setStone will be extended to also cover generalized offset assignment problem for-
mulations, e.g. offset assignment with variable live range information, exploitation of
scheduling mobility of instructions, or general offset assignment with multiple address
registers, some of which have been mentioned in section 2.

References

1. S. Liao:Code Generation and Optimization for Embedded Digital Signal Processors, Ph.D.
thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1996

2. S. Udayanarayanan, C. Chakrabarti:Address Code Generation for Digital Signal Processors,
38th Design Automation Conference (DAC), 2001

3. S. Liao, S. Devadas, K. Keutzer, S. Tjiang, A. Wang:Storage Assignment to Decrease Code
Size, ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), 1995

4. R. Leupers, P. Marwedel:Algorithms for Address Assignment in DSP Code Generation, Int.
Conference on Computer-Aided Design (ICCAD), 1996

5. D.H. Bartley:Optimizing Stack Frame Accesses for Processors with Restricted Addressing
Modes, Software – Practice and Experience, vol. 22(2), 1992

6. Target Compiler Technologies:http://www.retarget.com
7. M.R. Gary, D.S. Johnson:Computers and Intractability – A Guide to the Theory of NP-

Completeness, Freemann, 1979
8. B. Wess:Minimization of Data Address Computation Overhead in DSPs, 3rd Int. Workshop

on Code Generation for Embedded Processors (SCOPES), 1998
9. A. Rao, S. Pande:Storage Assignment using Expression Tree Transformations to Generate

Compact and Efficient DSP Code, ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 1999

10. V. Zivojnovic, J.M. Velarde, C. Schläger, H. Meyr:DSPStone – A DSP-oriented Benchmark-
ing Methodology, Int. Conf. on Signal Processing Applications and Technology (ICSPAT),
1994

11. R. Leupers, F. David:A Uniform Optimization Technique for Offset Assignment Problems,
11th Int. System Synthesis Symposium (ISSS), 1998

12. S. Atri, J. Ramanujam, M. Kandemir:Improving Offset Assignment for Embedded Proces-
sors, Languages and Compilers for High-Performance Computing, S. Midkiff et al. (eds.),
Lecture Notes in Computer Science, Springer, 2001

13. N. Sugino, H. Miyazaki, S. Iimuro, A. Nishihara:Improved Code Optimization Method Uti-
lizing Memory Addressing Operations and its Application to DSP Compilers, Int. Symp. on
Circuits and Systems (ISCAS), 1996

14. B. Wess, M. Gotschlich:Constructing Memory Layouts for Address Generation Units Sup-
porting Offset 2 Access, Proc. ICASSP, 1997

15. N. Kogure, N. Sugino, A. Nishihara:Memory Address Allocation Method for a DSP with±
2 Update Operations in Indirect Addressing, European Conference on Circuit Theory and
Design (ECCTD), 1997

16. A. Sudarsanam, S. Liao, S. Devadas:Analysis and Evaluation of Address Arithmetic Capa-
bilities in Custom DSP Architectures, Design Automation Conference (DAC), 1997

17. B. Wess, M. Gotschlich:Optimal DSP Memory Layout Generation as a Quadratic Assign-
ment Problem, Int. Symp. on Circuits and Systems (ISCAS), 1997

18. E. Eckstein, A. Krall:Minimizing Cost of Local Variables Access for DSP Processors, ACM
Workshop on Languages, Compilers, and Tools for Embedded Systems (LCTES), 1999

19. C. Liem, P.Paulin, A. Jerraya:Address Calculation for Retargetable Compilation and Explo-
ration of Instruction-Set Architectures, 33rd Design Automation Conference (DAC), 1996

20. C. Gebotys:DSP Address Optimization Using a Minimum Cost Circulation Technique, Int.
Conference on Computer-Aided Design (ICCAD), 1997

21. R. Leupers, A. Basu, P. Marwedel:Optimized Array Index Computation in DSP Programs,
Asia South Pacific Design Automation Conference (ASP-DAC), 1998

22. W.-K. Cheng, Y.-L. Lin:Addressing Optimization for Loop Execution Targeting DSP with
Auto-Increment/Decrement Architecture, 11th Int. System Synthesis Symposium (ISSS),
1998

23. G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan, S. Malik:Optimal Live Range Merge for Ad-
dress Register Allocation in Embedded Programs, 10th International Conference on Com-
piler Construction (CC), 2001

24. LANCE C Compiler:http://LS12-www.cs.uni-dortmund.de/lance

