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Abstract— The ever increasing complexity and heterogeneity
of modern System-on-Chip designs demands early consideration
and exploration of architectural alternatives, which is hardly
practicable on the low abstraction level of implementation mo-
dels.

In this paper, a system level design methodology based on
the SystemC 2.0 library is proposed, which enables the designer
to reason about the architecture on a much higher level of
abstraction. Goal of this methodology is to define a system
architecture, which provides sufficient performance, flexibility
and cost efficiency as required by demanding applications like
broadband networking or wireless communications. The method-
ology also provides capabilities for co-simulating multiple levels
of abstraction simultaneously. This enables reuse of the simu-
lation environment for functional verification of synthesizable
implementation models against the abstract architecture model.

During a cooperation with Synopsys Professional Services,
this methodology is applied to the development of a 2.5 GB IP
forwarding chip with Quality-of-Service (QoS) support. In this
paper we share our experiences of this real-life case-study with
special emphasis on the architecture exploration phase, where
several architectural alternatives are evaluated with respect to
their impact on the system performance.

I. INTRODUCTION

One of the most challenging tasks in modern System-
on-Chip design projects is to map a complex application
onto a heterogeneous platform architecture in adherence to
the specified flexibility, performance and cost requirements.
Under stringent cost constraints, the required flexibility and
performance is best delivered by a heterogeneous platform em-
ploying standard as well as application specific programmable
architectures and dedicated hardware blocks, which are con-
nected by a sophisticated communication topology. As a result,
the designer faces a huge design space and has to compose a
system architecture from various kinds of building blocks and
communication resources in order to meet the constraints of
the specific application.

The traditional design flow comprises only two decoupled
phases of textural specification and architecture implemen-
tation and is no longer feasible for the design of large
heterogeneous systems on a single chip, because quantitative
architectural considerations are difficult to estimate on paper,
prior to the implementation phase. Systems are either over-
engineered, thus impacting the cost, or fail to deliver the
expected performance.

Due to the high level of detail inherent to implementation
models, so far they can only be optimized locally and system
architecture tradeoffs and optimizations are not exploited.
For that reason we advocate an intermediate System Level
Design phase in the design flow, where the functionality
of the system is mapped to the platform architecture in an
abstract manner to enable architecture optimizations across
heterogeneous computational components.

The following methodical aspects have been identified to
cope with requirements of System Level Design:

� orthogonalization of concerns [1] with respect to tim-
ing and behavior allows efficient profiling of functional
blocks mapped to alternative architectures.� separation of interfaces and behavior according to the
interface based design paradigm motivated by Rowson
[2] enables successive communication and structural re-
finement as well as IP reuse.� high simulation speed and modeling efficiency is manda-
tory to handle the high complexity of SoC designs.� incorporation of hardware semantics like reactivity, con-
currency and determinism to express impact of the plat-
form architecture.� seamless transition from system to gates to avoid long
iteration cycles caused by gaps in the design flow� intuitive visualization comprising system level debugging
and performance analysis to enable efficient validation of
the system model.

The foundation for our methodology is provided by the Sys-
temC library [3], which is widely considered as the emerging
EDA industry standard language for bringing together today’s
disjunctive worlds of system conceptualization and implemen-
tation. Hardware semantics as well as interface based design
are already incorporated into the 2.0 release of SystemC and
also synthesis tools become commercially available. We have
supplemented SystemC with a methodology specific library to
enable System Level Design to address all requirements listed
above.

The following section discusses related work in the area of
system level architecture exploration. After that the projected
design flow followed by the technical details of methodology
specific library are presented. Section V contains our experi-



ences from an industry cooperation, where the framework has
been deployed in the design of a NPU platform. Finally we
conclude our approach and give an outlook on future research
topics.

II. RELATED WORK

The issues of System Level Design have attracted a growing
attention from both university and industry research teams.
It is commonly accepted to cope with the growing system
complexity by raising the abstraction level of the initial
specification to explore architecture tradeoffs decisions.

Starting from a formalized system description, comprehen-
sive co-design frameworks like Polis [4] from UC Berkeley
address architecture exploration and synthesis of implementa-
tion models. In contrast to such co-design frameworks we do
not address automatic synthesis, but jointly model the system
functionality and the performance impact of the architecture
on the highest possible level of abstraction.

Several design environments, both commercial (e.g. VCC
[5]) and academic (e.g. Artemis [6]) also address abstract
mapping of functional models to architecture, but since these
are based on proprietary languages, the resulting performance
evaluation models cannot be reused in later implementation
steps. Instead, our methodology provides a seamless path to
implementation by using the SystemC language and enables
the reuse of the abstract architecture model as a reference for
functional verification of later refinement steps [7].

In general, C/C++ based system modeling languages like
SpecC [8] and OCAPI-xl [9] and object oriented system
conceptualization methodologies with support in tooling like
YAML [10] are considered as the most promising vehicles to
cope with the ever increasing complexity of SoC designs.

In this context the major contribution of this paper is
a system level design methodology, which is based on the
SystemC library to accomplish interoperability with other
SystemC based environments [11] and to provide a seamless
path to implementation [12]. Whereas most of the tools and
methodologies listed above intent to automate the design of
small and medium range embedded systems, we are focused
on the conceptualization and verification of large scale SoC
designs with high performance requirements as demanded by
wireless and networking communication devices at the edge
of silicon feasibility.

III. SYSTEM LEVEL DESIGN METHODOLOGY

System Level Design is all about filling the gap between
specification and implementation. In this section we first
classify the abstraction levels enabled by System 2.0 and then
elaborate on the proposed architecture exploration methodol-
ogy.

A. Transaction-Level Modeling

SystemC 2.0 has been conceived to realize a Transaction-
Level Modeling (TLM) style [13], where communication is
abstracted from the low-level implementation details of the
Register Transfer Level (RTL). The resulting improvement in
terms of simulation speed and modeling efficiency enables the
system architect to create an executable specification of the
complete SoC architecture.

Comm. Timing Data Addressed
Accuracy Accuracy Accuracy Design Problems

untimed- Abstract functional
packet level functional Data Type specification

TLM timed- Abstract architecture
functional Data Type exploration

cycle level cycle bit SW development,
TLM true true ISS co-simulation

cycle bit HW
RTL true true implementation

TABLE I

ABSTRACTION LEVELS

As depicted in table I, the TLM paradigm can be further
subdivided by applying abstraction w.r.t data and timing
accuracy. By that the manifold design problems during the
definition of the system architecture can be resolved in the
appropriate design step. Note that the entry level depends on
the design complexity: small scale and homogenous designs
start immediately at RTL whereas cycle level TLM is usually
sufficient for the design of medium scale embedded systems.

This paper addresses the conceptualization of large scale
heterogenous systems, which need heterogenous computa-
tional modules and a customized communication infrastructure
to meet performance and cost requirements. Thus we have
conceived a packet level TLM modeling style for architectural
exploration, i.e. the considered data granularity are sets of
functionally associated data, which are combined to Abstract
Data Types (ADTs).

Fig. 1. SoC design flow

All phases in our refinement methodology depicted in figure
1 are based on SystemC and are thus interoperable. However,
in this paper we particularly address the design of dedicated
Hardware, so we intentionally leave out the discussion of
the cycle-level TLM phase, which is mainly dedicated to
the integration of Instruction Set Simulators. In the following
we describe the sub-phases of our approach, i.e. functional
and abstract architectural modeling as well as mixed-level co-
verification.

B. Functional model

Compared to the detailed register transfer level (RTL), sim-
ulation speed and modeling efficiency can only be improved
significantly by modeling the system behavior on a much



higher level of abstraction. In the functional model, the com-
plete system behavior is partitioned only into a small number
SoC building blocks instead of scattering the functionality
over numerous processes as often required for a synthesizable
RTL description. Abstract Data Types (ADT) replace the bit-
true data representation of RTL models, such that a whole
set of functionally associated data is represented as a single
token, as for example an IP packet. Since the system state only
changes on the arrival of a new token, we can employ pure
reactive communication channels to model the data exchange
between the functional blocks. This minimizes the number of
the activations in the event-driven SystemC simulation kernel,
which effectuates maximum simulation speed.

At the end of the functional modeling stage, the complete
system behavior is captured and validated. The simulation
speed as well as the modeling efficiency (measured in lines
of code) is about two orders of magnitude better compared
to the corresponding RTL model, which models the same
functionality on a much higher level of architectural detail.
The SystemC model is now prepared for the annotation of
timing information, which is described in the next section.

C. Virtual architecture mapping

In the next design step, the functional model is mapped to
the intended target architecture in order to create a perfor-
mance model of the resulting system architecture. The map-
ping is performed virtually by annotating the timing character-
istics of the target architecture to the functional model, thus the
methodology enables a very fast exploration of different design
alternatives. The process of timing annotation is completely
orthogonal to the functionality, hence the previously validated
functional system behavior is preserved.

The methodology is based on the following observation:
for performance profiling purposes, the basic timing charac-
teristics of the target architecture can be expressed by the
temporal relationship of consuming, processing and producing
ADT tokens.

� Pipelined architectures are able to consume and produce
a token every cycle but introduce a static latency, which
is determined by the number of pipeline stages.� Data dependent modules show varying delays until the
processing of the actual token is finished. In the case of
a cache module for example, the processing delay of a
cache read depends on whether the requested data set is
in the cache or has to be fetched from the main memory.� Resource shared modules are afflicted with an initiation
interval, i.e. they are blocked for a varying amount of
time during a token is processed.

As soon as the estimated timing parameters are annotated to
the channels, the simulation results reflect the performance of
the final system. A statistical evaluation system is associated
with the channels to detect and eliminate architecture bottle-
necks very early in the design flow before the time consuming
implementation starts. The access statistics gathered by the
bus model during a simulation run guide the selection and
configuration of a specific on-chip bus.

The key mechanism of virtual architecture mapping is
separating behavior inside the functional modules from timing

aspects, which are captured by the communication channels.
Thus we achieve a threefold orthogonalization of system level
design concerns in terms of behavior, interface and timing.

D. Mixed-level Co-verification

After the architecture is finalized, the abstract architecture
model is converted into a synthesizable model. Here the same
functionality has to be realized at a much lower level of
detail according to the refinement steps in the SystemC RTL
synthesis guidelines [14]. By using the SystemC synthesis
[12], the implementation phase can be performed within the
SystemC design environment itself. This enables a smooth
transition from the refined model to the implementation model.

Since this implementation phase is highly error prone, func-
tional verification is the most important and time consuming
task in the overall design flow [15]. In our approach the effort
for functional verification is drastically reduced by reusing
the abstract system model as a reference for the synthesizable
implementation models. For that we have generalized the well
known adapter concept for communication refinement [13] to
bridge the abstraction gap between packet-level and cycle-level
models.

The next section describes the channel library, which has
been developed to enable the exploration and co-verification
methodology.

IV. METHODOLOGY SPECIFIC CHANNEL LIBRARY

SystemC 2.0 provides a well defined interface for its under-
lying event-driven simulation kernel to enable implementation
of methodology specific communication channels, like e.g.
data-flow fifos or HW signals. We have developed such a
SystemC 2.0 compliant channel library, which provides intu-
itive visualization, a comprehensive set of communication and
timing annotation primitives as well as support for mixed-level
co-simulation.

A. MSC Visualization

Our way of modeling complex systems is illustrated by
a snapshot of our graphical debugger depicted in figure 2.
The simulation is visualized according to the Message Se-
quence Chart (MSC) principle, which is a well known tracing
mechanism usually employed in SDL design environments like
the TAU SDL suite [16]. For our methodology, MSC tracing
provides a very intuitive visualization of a network of coarse-
grain SystemC processes exchanging ADTs.

SystemC modules are represented by vertical lines, which
are labeled with the module name at the top. The progress of
time is vertically notated from top to bottom. Communication
events are displayed by horizontal arrows between the lines of
the sending and receiving processes. These arrows are labeled
with signal name, the point in time and the ADT type name.

A general drawback of the MSC representation is the
amount of communication events for realistic systems with
tens and hundreds of SystemC modules, because the user can
observe only roughly up to 15 modules and up to 40 events
simultaneously. Therefore our debugger provides advanced
filter mechanisms to systematically reduce the displayed data
to the currently interesting communication events.



Fig. 2. Message Sequence Chart Visualization of the SystemC Simulation

To enable dynamic filtering, the MSC debugger maintains
a data-base of all communication events. This data base can
be searched in multiple dimensions, e.g. time, packet type,
connection name or SystemC process hierarchy. Furthermore
the event filter can introspect and search for the member-fields
inside the ADTs, so the MSC debugger can filter e.g. all IP-
packets with a certain destination address.

MSC visualization is a built-in feature of all channels in our
library, so it is enabled by just instantiating the channels with-
out any additional code in the user modules. Further channel
features like timing annotation for architectural exploration are
described in the next sections.

B. Timing Annotation

Our goal is to model the architecture specific timing in-
dependently from the behavior, thus a functionally correct
system model can be easily mapped to different architectures.
According to the observations listed in III-C, the channels
provide methods to annotate processing delay and initiation
interval. The channels are implemented hierarchically (see
chapter 11 of [17]), since they incorporate internal processes
to implement the mechanism for timing annotation.

Fig. 3. Abstract Architecture Model

Figure 3 illustrates the creation of an abstract architecture
model from the combination of the original functional model
together with the channels to capture the impact on perfor-
mance of the intended architecture. The right part of figure
3 shows the annotation of a processing delay ��� , which is
passed as a second parameter of the write() method of

outgoing connections. Transparently the channel takes care,
that this token does not arrive at the consumer process before
the specified delay ��� . In the same way, the left part of figure
3 shows the annotation of an initiation interval ��� by calling
the next() method of incoming connections. This causes
the channel to suppress the arrival of tokens for the specified
amount of cycles, which captures the effect of a blocking
module.

Besides dedicated point to point communication, modern
SoC architectures very often employ on-chip busses to im-
prove utilization of interconnect resources. However shared
busses cause a non-deterministic communication delay, which
can have negative impact on the overall system performance in
case of insufficient bus bandwidth. To capture this effect on the
high abstraction level, we provide a generic bus model, which
connects an arbitrary number of master and slave modules with
a parameterizable bandwidth. A priority based bus arbitration
scheme is used to resolve conflicts in case more than one
master wants to perform a bus transaction at the same time.
Alternatively, a Time Division Multiple Access (TDMA) based
arbitration scheme allows interleaved service of simultaneous
bus requests.

C. Mixed-Level Adapter Channel

The mixed-level adapter channel bridges the gap between
packet-level and RT-level modules to enable block-wise func-
tional verification, i.e. the RTL implementation is plugged into
the abstract architecture model. Thus stimuli are derived from
the system context and comparison of the synthesizable bit
and cycle true implementation is done against the abstract
architecture model. By that the significant effort for writing
and verifying RT-level testbenches is avoided.

Fig. 4. Data- and Timing- refinement

The structure of the mixed-level adapter channels is depicted
in figure 4: in the bitmapping engine, the adapter channel maps
the ADT to the respective fields in the corresponding bit-
accurate data representation. The resulting bitstream is then
transfered to the protocol layer, where it is cut into slices
according to the respective data width and forwarded to the
RTL implementation. The protocol engine adds all the required
control signals to reform the specified interface protocol.

A similar adapter channel implements the reverse direction
to feed the output of the RTL implementation back into the
packet-level environment. Here the ADT is reconstructed from
the output bitstream provided by the protocol engine. Note that
this concept is also capable to bridge packet-level and cycle-
level TLM. Here the protocol engine calls the TLM interface
methods instead of wiggling the RTL pins.



V. IP FORWARDING CHIP

In this section we present the results of an IP forwarding
chip design project, where the proposed system level design
methodology has been applied in cooperation with Synopsys
Professional Services. We will introduce and characterize the
design and illustrate the architecture mapping methodology by
means of experimental results.

A. IP Forwarding with QoS Support

IP forwarding is a central part of the IP network infrastruc-
ture. This challenging application domain combines sophisti-
cated functionality for QoS support with highest performance
requirements: at OC-48 wire speed (corresponds to 2.5Gbit/s)
the timing budget in the NPU for the processing of a minimum
size 48Byte packet is as short as 147ns.

IP Forwarding with QoS Support according to the DiffServ
proposal [18] requires a set of complex functional blocks.
These are displayed in the shaded part of figure 5 together with
the basic inter-block communication. The Parser performs
checks on incoming packets and provides the following units
with packet descriptors, which hold all the relevant header
information of the respective IP packet. The Route Lookup
Unit (RLU) performs forwarding of IP Packets based on the
longest match table search algorithm. The forwarding decision
is based upon destination IP address and the routing table.
The Classifier classifies incoming packets into Classes of
Service (CoS), so the packets are processed according to their
negotiated Quality of Service parameters by the following
blocks. The Meter measures the IP packet rate and drops pack-
ets exceeding the negotiated traffic characteristics to protect
the succeeding queuer unit from unfriendly traffic streams.
The WRED unit drops additional packets according to the
weighted RED algorithm [19] to avoid throughput degradation
especially for TCP traffic due to congestion. The Queuer stores
IP packets according to their class of service until they can
be forwarded to the CSIX unit. The Scheduler decides on the
basis of the priority and the actual fill status of the packet
queues in the queuer unit. Finally the CSIX unit segments IP
packets into fixed size packets according to the standardized
CSIX bus protocol [20] to interface the switch fabric.

Fig. 5. IP Forwarding Chip

According to the methodology described in section III, first
a functional SystemC model is created from the functional
specification document. This functional model is well suited to
validate completeness and functional correctness, but does not
yet impose any assumptions on the architectural realization.

B. Architecture Refinement and Exploration

Referring to the complete system view of figure 5, we first
have to add an IP Packet Memory and a Memory Management
Unit (MMU) to the functional model, which are necessary to
store IP packets during the processing is performed by the
functional units.

Given the specified constraints on latency and cost, the
architect now has to define the general organization of the
architecture. In our case, we decided to replace the expensive
and inflexible point to point exchange of packet descriptors
with a shared memory architecture, which is accessed through
an on-chip bus.

The resulting SystemC architecture model of the IP router
is running at 140k cycles per second on a 2 GHz Linux PC,
thus in our case the simulation of 1 second IP traffic takes less
than 12 minutes. In the following steps, the top-level structure
of the router does not need to be modified. Instead, different
configurations of the general system architecture depicted in
figure 5 are evaluated in a very effective way by adjusting the
generic model parameters and running the simulation.

An initial timing budget in terms of pipeline delay and
initiation interval is annotated to each module as explained
in section III-C. The initial annotations represent an educated
guess depending mostly on the experience of the designer. In
our case, the timing annotations for the functional blocks are
taken from a implementation on the Intel IXP2400 Network
Processing Platform [21].

Based on simulations, the architect may relax some con-
straints, choose to tighten some others, or find out that a
budget is required that is not realistic for a module. In the
latter case, the architecture will be modified, e.g. resources
are added or the algorithm is changed. Final budgets provide
a requirement specification for later RTL implementation. The
statistic evaluation of the functional blocks and the channels
is used to detect bottlenecks in the system. A well-balanced
system architecture provides sufficient processing power for
all components.

An excerpt of the exploration results dealing with the
dimensioning of the packet descriptor communication is
printed in table II. Besides the interconnect-description and
-configuration we list the resource utilization and the mean
delay per transaction of on the considered bus. The right
column contains the overall packet latency introduced by the
complete IP processing chain. Since the timing annotations of
the functional units are constant during the depicted experi-
ment, the measured packet latency clearly unveils the impact
of the selected communication architecture on the system level
performance.

The point-to-point (p2p) communication of the functional
model generates an initial traffic profile. The unconstrained
p2p setup performs all communication with zero overhead, so
the IP latency in line 1 reflects only the timing annotations
of the functional units. The 32 bit wide p2p engine in line 2



line interconnect interconnect utili- trn. delay IP latency
description configuration zation in cycles in cycles

1 p2p unconstr. 0% 0 910
2 p2p 32bit 8% 22 1117

3 IP p2p 32bit 52% 75 1117
4 IP bus 64bit prio 78% 149 1191
5 IP bus 64bit tdma 78% 93 1125

6 pd p2p 32bit 4% 20 1117
7 pd bus 32bit 82% 51 1582
8 pd bus 64bit 51% 36 1355
9 pd bus 128bit 46% 23 1142

TABLE II

EXPLORATION RESULTS

serves as a ’lower-bound’ reference configuration and not as a
realistic design option. Among other unrealistic assumptions,
this would implicate a packet descriptor memory with 6 read
and 6 write ports , i.e. one for every connected module.

Besides an insignificant amount of local communication
between the buffer and its neighboring units, the statistics
generated by the p2p engine admits the classification of the on-
chip traffic into two domains: (a) Parser, RLU and CSIX unit
regularly access the IP memory (DRAM) to store and forward
the arriving IP Packets and (b) all master blocks heavily access
the packet descriptor memory.

Lines 3–5 refer to the exploration of traffic domain (a),
where we examined a dedicated configuration corresponding
to a multi-port IP memory and two different bus arbitration
schemes connected to a single port memory. The priority based
bus arbiter is obviously outperformed, because the uninter-
rupted transfer of long IP Packets has a negative influence on
short packets. The preemptive TDMA scheduler minimizes the
average delay by interleaving short and long packet transfers.
The decision between configuration 3 and 5 is mainly driven
by the technology dependent implementation cost of memories
and wiring.

The third section in table II is dedicated to the exploration
of a customized communication architecture for the access
to the packet descriptor memory. The complete p2p mesh
in line 6 is way too expensive and inefficient. Lines 7 to 9
shows the significant impact on performance of the shared
bus bandwidth. Here the designer has to trade implementation
cost against system performance.

VI. CONCLUSION

In this paper, a system level design methodology based on
the SystemC 2.0 library is presented. The outlined approach
is capable to capture the complete system functionality as
well as all performance relevant architecture features on the
highest possible level of abstraction. The resulting modeling
efficiency measured in lines of code and the simulation speed
is about two orders of magnitude better compared to an RTL
architecture model.

During a research cooperation with Synopsys Professional
Services, the outlined methodology has been applied to the
architecture conceptualization of an IP forwarding chip. By
employing the proposed system level design methodology, a
team of 3 engineers was able to demonstrate the feasibility

and define a scalable and cost effective architecture within 2
months. The resulting system architecture model also serves
as an executable specification and as a fast co-verification
environment for the HW implementation.

In the second project phase, the HW/SW co-design aspects
of the methodology are currently applied to the IP Router
case study. Here we consider the cycle-level TLM phase and
investigate the mapping of several computational tasks to
Application Specific Instruction-set Processor (ASIP) cores to
improve the system flexibility. The ASIP design is performed
using the LISA based Processor Design methodology [22],
[23].
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