
A Modular Simulation Framework for Architectural Exploration
of On-Chip Interconnection Networks

Tim Kogel, Malte Doerper, Andreas Wieferink,
Rainer Leupers, Gerd Ascheid, Heinrich Meyr

Integrated Signal Processing Systems
Aachen University of Technology, Germany

http://www.iss.rwth-aachen.de

Tim.Kogel@iss.rwth-aachen.de

Serge Goossens
CoWare, Inc.

Interleuvenlaan 15A
B-3001 Leuven, Belgium
http://www.CoWare.com

Serge.Goossens@CoWare.com

ABSTRACT
Ever increasing complexity and heterogeneity of SoC platforms re-
quire diversified on-chip communication schemes beyond the cur-
rently omnipresent shared bus architectures. To prevent time con-
suming design changes late in the design flow, we propose the early
exploration of the on-chip communication architecture to meet per-
formance and cost requirements. Based on SystemC 2.0.1 we have
defined a modular exploration framework, which is able to capture
the effect on performance for different on-chip networks like dedi-
cated point-to-point, shared bus, and crossbar topologies. Monitor-
ing of performance parameters like utilization, latency and through-
put drives the mapping of the inter-module traffic to an efficient
communication architecture. The effectiveness of our approach is
demonstrated by the exemplary design of a high performance Net-
work Processing Unit (NPU), which is compared against a com-
mercial NPU device.

Categories and Subject Descriptors
B.8.2 [Performance And Reliability]: Performance Analysis and
Design Aids; C.2.1 [Computer-Communication Networks]: Net-
work Architecture and Design—Network topology; I.6.7 [Simu-
lation And Modelling]: Simulation Support Systems—Environ-
ments

General Terms
Performance, Design, Measurement

Keywords
Network-on-Chip, Architecture Exploration, SystemC, Simulation

1. INTRODUCTION
IP reuse has been long identified as a key technology to cope

with ever increasing System-on-Chip (SoC) complexity along with
ever shrinking time-to-market constraints. However, the problem
of dealing with the interconnection of tens or even hundreds of IP
blocks has only recently entered into the focus of researchers.

Current design practice for on-chip communication is predomi-
nantly based on shared bus architectures, which are available from
core vendors [1, 2] or industry partnerships [3]. Due to the easy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’03, October 1–3, 2003,Newport Beach, California, USA.
Copyright 2003 ACM 1-58113-742-7/03/0010 ...$5.00.

programming model, high flexibility and IP availability, this con-
cept is clearly advantageous for today’s small and medium scale
embedded systems, where a small number of blocks exchange mod-
erate amount of data. However, shared busses are not eligible for
high throughput requirements and chip-wide interconnect, because
of the limited scalability with respect to performance, number of
connected blocks and range of coverage as well as limited support
for QoS requirements.

Consequently, researchers in academia and industry have con-
ceived alternative topologies to cope with the limitations of shared
bus architectures. These efforts have recently been subsumed un-
der the Networks on Chip (NoC) design paradigm. NoC advocates
to replace current ad-hoc wiring of IP blocks with a disciplined
approach, where full-fledged on-chip networks provide communi-
cation services according to the ISO/OSI reference model [4, 5].
By that the manifold problems in on-chip communication like sig-
nal integrity issues, link reliability, or Quality of Service (QoS) are
separately resolved on the respective OSI layer. Depending on the
intended application domain, recent proposals for NoC architec-
tures differ significantly in terms of cost, performance, QoS and
ISO/OSI compliance [6], [7], [8].

This kind of on-chip networks will probably not replace but com-
plement bus based and point-to-point communication schemes, such
that predominantly self-contained IP islands using local communi-
cation are connected via the global NoC. Hence, one of the most
challenging tasks in future System-on-Chip design projects is to
conceive an on-chip communication infrastructure for heteroge-
neous platform architectures in adherence to the specified flexibil-
ity, performance and cost requirements.

In this context we propose a modular NoC exploration frame-
work, which addresses the system level design of the SoC com-
munication architecture. Data exchange is modeled on the high
abstraction level of packet transfers, which hides low-level imple-
mentation details but captures the effect on performance introduced
by the network type. Thus the designer can partition the system
communication into global network(s) and local interconnect and
parameterize the selected communication architecture.

The unique contribution and major benefit of our approach is the
ability to capture the impact of on-chip communication on the sys-
tem performance in a unified way. By providing a library of dif-
ferent network modules with configurable topologies and arbitra-
tion protocols, our approach enables the rapid exploration and co-
herent comparison of architectural alternatives. Additionally, the
high abstraction level of packet based communication yields high-
est achievable simulation speed together with excellent modeling
efficiency.

The accuracy of the simulation results is of course affected by
the coarse granularity of packet based communication. The pro-
posed exploration framework is therefore not adequate to measure
with full cycle accuracy the communication in small-scale embed-
ded systems employing just a single bus. Especially particularities

of certain bus architectures, like e.g. explicit insertion of busy or
idle cycles of the AMBA high performance bus, cannot be captured
in our generalized communication models. Instead, we address
the early exploration and profiling driven partitioning of large-scale
systems with complex and heterogeneous communication schemes.

The following section discusses related work in the area of explo-
ration of system level communication architectures. After that the
projected design flow followed by the technical details of our NoC
exploration framework are presented. Section 5 contains our ex-
periences from an industry cooperation, where the framework has
been deployed in the design of a NPU platform. Finally we con-
clude our approach and give an outlook on future research topics.

2. RELATED WORK
System Level Design is considered the appropriate way to deal

with the ever increasing complexity and heterogeneity of SoC ar-
chitectures [9]. Various frameworks are proposed addressing design
space exploration and the partitioning/mapping of an abstract func-
tional model to the target architecture [10, 11, 12]. Complementary
to this general approach, our focus is on the conceptualization and
performance analysis of the on-chip communication architecture.

Recent work on system level exploration of the communication
architecture can be subdivided into static analysis [13, 14] and sim-
ulation based techniques [15, 16]. Lahiri et al. [17] have proposed
a hybrid procedure combining simulation with analytical post-pro-
cessing to achieve higher accuracy of the performance estimation.

However, current approaches do not cope with the requirements
introduced by the system level design of full-fledged on-chip net-
works. In order to apply analytical estimation, enhanced algorithms
are necessary to analyze the performance of complex network topo-
logies with sophisticated arbitration mechanisms. Equally, current
simulation environments fall short to provide efficient support for
exploration of on-chip networks.

On the other hand, traditional networking design environments
like OPNET [18] are not suited for SoC design, since only the ab-
stract communication structure can be captured without any support
for chip-level architecture modeling.

The SystemC Open Core Protocol (SOCP) communication chan-
nel in the StepNP simulation platform [19] addresses the explo-
ration of the communication infrastructure based on the OCP se-
mantics. In a more general approach, we further abstract from ar-
chitecture specific communication primitives to establish a unified
framework for the investigation of heterogeneous on-chip networks.

3. SYSTEM LEVEL DESIGN FLOW
The NoC exploration framework is implemented on top of the

SystemC library [20], which provides the underlying event-driven
simulation engine and is considered as the emerging EDA standard
for System Level Design. In this section we briefly introduce the
basic concepts SystemC 2.0.1 based System Level Design and high-
light the relation to our work. Please refer to Groetker et al. [21]
for a thorough representation of this topic area.

As illustrated in figure 1, SystemC 2.0.1 follows the Interface
Method Call (IMC) principle to achieve high modularity in com-
munication modeling. Processes are wrapped into modules and ac-
cess communication services through ports. The available methods
are declared in the interface specification and implemented by the
channel. Graphically a port is represented as a square containing
two diametrical arrows and an interface is represented as a circle
containing a u-turn arrow. A channel implementing an interface
shows a rhombic shape.

The IMC scheme has been conceived to realize a Transaction-
Level Modeling (TLM) style, where communication is abstracted
from the low-level implementation details of the Register Transfer
Level. The resulting improvement in terms of simulation speed and
modeling efficiency enables the system architect to create an exe-
cutable specification of the complete platform architecture.

As depicted in table 1, the TLM paradigm can be further sub-

Figure 1: Interface Method Call Principle

divided by applying abstraction w.r.t. data and timing accuracy.
By that the manifold design problems during the definition of the
system level architecture can be resolved in the appropriate design
step. Note that not all steps are necessarily performed for all plat-
form designs: e.g. cycle- and bit-accurate TLM is usually sufficient
for the design of small and medium scale embedded systems.

Timing Data Addressed Design
Accuracy Accuracy Problems
untimed- Abstract functional
functional Data Type specification

timed- Abstract architecture
functional Data Type exploration

cycle bit finalize architecture,
true true SW development

Table 1: TLM Abstraction Levels

This paper addresses the conceptualization of large scale het-
erogenous systems, which need a customized communication in-
frastructure to meet performance and cost requirements. Hence, the
proposed NoC exploration environment is situated on the untimed-
and timed functional level. In analogy with traditional network
design environments, we advocate to design the on-chip network
on the packet level, i.e. the considered data granularity are sets of
functionally associated data, which are combined to Abstract Data
Types (ADTs).

Quantitative numbers on the simulation speed are highly depen-
dent on the complexity of the considered application and are thus
not well comparable. However, experiments show, that a medium
scale embedded system modeled on the cycle- and bit-accurate trans-
action level runs at about 200k cycles per second on a 2.4 GHz
Linux PC, which is about two orders of magnitude faster than the
corresponding RTL model without loss of accuracy [22]. In our
framework an additional order of magnitude is achieved by ab-
stracting the data representation to the ADT level. Migrating from
the untimed to the timed functional level is realized by adding exe-
cution delays in terms of timing annotations, which has no signifi-
cant impact on the simulation speed.

4. NOC EXPLORATION FRAMEWORK
This section introduces the proposed simulation framework for

system level exploration of the communication architecture. We
first present our unified approach to the modeling of on-chip com-
munication and the associated NoC architecture exploration method-
ology. Afterwards we elaborate on the internal structure of the
framework and the algorithms, which capture the performance char-
acteristics of the distinctive on-chip networks.

4.1 Unified Modeling
of On-Chip Communication

In general two different kinds of modules can participate in a
communication event or transaction: While master modules ac-
tively initiate transactions, the slave modules can only react pas-
sively. Typical masters are processors, DMA controllers or au-
tonomous ASIC blocks, whereas typical slaves are memories or
co-processors. Of course peer-to-peer communication between two
masters is also possible.

This general master-slave communication scheme is reflected in

the overall organization of the NoC evaluation framework depicted
in figure 2.

1 N

1

M

1

S

.
.
.

.
.
.

Master
Modules

Slave
Modules

Network
Engines

NoC Channel

...

Figure 2: NoC Channel Overview
On-chip communication services are offered through a general-

ized master interface. In concordance with the Interface Based De-
sign principle [23] [24], master modules initially not compliant to
this interface can be attached by means of adapters.

The processing of communication is handled by the NoC Chan-
nel, which constitutes the central module of the simulation frame-
work. The attached network engines are responsible for modeling
the traffic characteristics and the impact on performance related to
the the on-chip network.

4.2 NoC Exploration Methodology
Our framework enables the systematic design space exploration

of most complex on-chip communication networks. During the
simulation, the evaluation modules connected to the network en-
gines collect statistical information like resource utilization, latency,
and throughput. Based on these data, the system architect designs
the communication infrastructure according to the following suc-
cessive refinement steps:

• During the initial throughput measurement, the overall on-
chip traffic is functionally captured by means of an uncon-
strained point-to-point network engine. The resulting com-
munication profile identifies interacting partners and rough
throughput requirements.

• The coarse network partitioning is dedicated to the identi-
fication of the optimum mix of network types. The system
architect maps the point-to-point communication to an appro-
priate set of network types by configuring the NoC Channel
with the corresponding set of network-specific engines.

• By iterative parameter calibration, the selected communica-
tion architecture is fine-tuned to the traffic requirements. Pa-
rameters refer to e.g. the bandwidth of a bus system or the
queue-length of a crossbar architecture.

Of course the network partitioning has superior impact on the fi-
nal quality of results. Here our unified approach enables a rapid
exploration of totally different network architectures by simply ex-
changing the network engines. By that the system architect can op-
timize the communication in an iterative exploration cycle. In case
of very complex applications, the simulation driven approach can
be complemented with statistical post-processing techniques like
regression analysis to reduce the overall design space.

4.3 The NoC Channel
The network independent master interface provides a symmetric

request-response communication scheme, that follows the generic
TLM channel proposal [25]. The interface implementation inside
the NoC Channel translates master requests into an internal Trans-
action Data Structure (TDS), which contains all relevant informa-
tion related to the transaction, like e.g. source- and destination ad-
dress, the actual data packet, and an engine identifier. As illustrated

in figure 3, the TDS is then forwarded to the selected network en-
gine.

slave
dispatch

slave transactions

insert

T3 T2 T1

slave
dispatch

...

R3 R2 R1

master transactions

T3 T2 T1

... R3 R2 R1

master
dispatch

master
request

insert

Figure 3: Internal NoC Channel Structure
After the transactions are processed by the network engine, the

respective TDS is passed back to the NoC Channel with an attached
tag. This tag denotes the calculated arrival time of the transaction.
According to this arrival tags Ti, three types of processes inside the
NoC Channel deliver the transactions Ri to the destination module.
The processes work on two separated list data structures for master
and slave transactions, where transactions are sorted according to
the arrival tag.

The insert process is sensitive to the routed transactions from the
network engines and inserts them into the appropriate list structure
according to the forward tag and the type of the destination module.

The two types of dispatch processes are sensitive to the arrival
tags of the head-of-line transaction stored in the list. When simula-
tion time reaches this arrival tag, transactions are dequeued and pro-
cessed according to their destination module and transaction type.
For illustration purposes this processes are presented in a condensed
C/C++-like pseudo-syntax.

master_dispatch() {
tds = dequeue_transaction();
notify_master(tds.id);

}

slave_dispatch() {
tds = dequeue_transaction();
if (tds.type == WRITE) {
slaves[tds.dest]->write(tds.addr, tds.data);

}
else {
slaves[tds.dest]->read(tds.addr, data);
tds.data = data;
notify_master(tds.id);

}
}

In case the destination module is one of the attached master mod-
ules, this master is notified and subsequently can read the data via
the response channel of the master interface. If otherwise the des-
tination is a slave module, the respective slave method is called:
write transactions are simply mapped to the write() method of
the addressed slave, instead for read transactions the slave read()
method returns the data via a call-by-reference parameter. Thus the
TDS is updated and the master is notified on the completion of the
read transaction to read the data method via the master response
channel.

Since the slave methods are blocking, one dispatch process per
attached slave is instantiated. Thus we are able to account for the
(potentially significant) execution delays introduced by the attached
slaves on this high level of abstraction.

4.4 Network Engine Algorithms
In the following we will elaborate on the algorithms for selected

network engines, i.e. basically the calculation of the arrival tag.
The selection is by far not complete, but the modular structure en-
ables easy integration of further network topologies and routing al-
gorithms.

The mechanism to notify the NoC Channel of a finished trans-
action is common for all network engines listed below and imple-
mented by the notify() method. Upon calling the latter, the

insert() process in the NoC Channel is activated to get the TDS
together with the corresponding tag from the network engine.

The point-to-point engine models transactions between source
and destination module over exclusive link connections. This en-
gine is configured by a bandwidth-matrix B = (M × (M + S)),
where M and S refer to the number of attached masters and slaves
respectively and bij denotes the available bandwidth of the con-
nection between producer i and consumer j. A second tag-matrix
T = (M × (M + S)) maintains per connection the last arrival tag.

add_request(tds) {
if (b[tds.id][tds.dest] > 0) {
last_tag = maximum(now(), t[tds.id][tds.dest]);
arrival_tag = last_tag + tds.size / b[tds.id][tds.dest];
t[tds.id,tds.dest] = arrival_tag ;
notify(tds,arrival_tag);

}
else { error("no connection"); }

}

The point-to-point engine processes incoming requests immediately,
whereas the following engines model shared communication re-
sources. For this purpose the requests are stored temporarily until
they are handed back to the NoC Channel by an additional arbi-
trate() process.

The bus engine models data exchange over a shared bus medium.
Internally this engine maintains a list, where pending requests are
queued until the bus is granted by the arbitration process. This
engine can be specialized towards priority or TDMA like bus ar-
bitration schemes by different implementations of the select()
algorithm, which determines the grant from the list of pending re-
quests. The priority based bus arbiter simply selects the request
with highest priority, whereas the TDMA arbiter is based on a static
allocation table. The bus engine is configured by the bandwidth
parameter to determine the duration of the transaction.

add_request(tds) {
if (list.is_empty()) { wake_up_arbiter() }
list.enqueue(tds);

}

arbitrate() {
do {

tds = select(list);
arrival_tag = tds.size / bus_bandwidth;
notify(tds, arrival_tag);
wait(arrival_tag);
if(list.is_empty()) { wait(); }

} while(true);
}

A refined version of the bus engine provides additional config-
urability with respect to the calculation of the arrival tag. Account-
ing for detailed timing characteristics of the bus architecture like
number of pipeline stages, the re-arbitration latency or considera-
tion of split-transactions significantly improves the simulation ac-
curacy. During our refinement flow we have compared the accuracy
for different versions of the bus engine against a fully cycle accu-
rate reference bus model. Whereas the coarse calculation based on
the bandwidth is up to 50% inaccurate, configuration with the cor-
rect bus specific parameter settings improves the accuracy of the
bus engine towards a negligible 3% deviation.

The crossbar engine models on-chip network architectures, that
perform more than one transaction at the same time. Since crossbar
networks differ significantly, it is not possible to capture all possi-
ble incarnations with a single engine. The engine elaborated below
models Virtual Output Queued (VOQ) [26] architectures for equal-
size data packets with a non-blocking, buffer-less ((M + S) × P)
crossbar matrix, where P denotes the number of supported priori-
ties. According to the VOQ principle, incoming packets are stored
separately per output before they pass through the crossbar ma-
trix. This technique prevents from head-of-line blocking in case of
asymmetric traffic or partially blocked outputs and hence improves
overall throughput and fairness.

In analogy to the bus engine, the crossbar engine can be special-
ized to static, weighted and un-weighted arbitration algorithms by

different implementations of the select() method. The engine
maintains an internal VOQ data structure, which queues requests
per destination module and per priority. For every arbitration inter-
val, the select() algorithm generates a grant matrix G from the
head-of-line snapshot S of the VOQ queues.

add_request(tds) {
if (queue[tds.dest][tds.prio].is_empty()) {
s[tds.dest][tds.prio] = tds.prio;

}
queue[tds.dest][tds.prio].append(tds);

}

arbitrate() {
do {
g = select(s);
for (i=0; i<M+S; i++) for (j=0; j<P; j++)
if (g[i][j] == true) {
tds = queue[i][j].dequeue();
notify(tds,arbitration_interval);
if (queue[i][j].is_empty()) s[i][j] = -1;
else s[i][j] = queue[i][j].first().prio;

}
wait(arbitration_interval);

} while(true);
}

The implementation of network engines is of course not restricted
to the algorithmic modeling style outline above, instead the de-
signer has the full expressiveness of C++ and SystemC to extend
the engine library. In particular complex network topologies can be
composed from elementary engines by recursively instantiating the
NoC Channel inside hierarchical engines. For example

• an engine modeling a homogenous multi-hob topology con-
tains an NoC Channel along with master modules represent-
ing the network nodes, which are connected using the point-
to-point engine.

• an engine modeling a complex multi-layered bus network
contains an NoC Channel along with master modules rep-
resenting the bridges, which are connected using several bus
engines.

5. NPU CASE STUDY
In this section we present the results of a design project, where

the proposed NoC exploration methodology has been applied to the
design of Network Processing Unit (NPU) for IP forwarding. After
a brief introduction of the application, we illustrate the benefits of
a) a custom optimized communication architecture and b) the pro-
posed exploration framework by comparing our application specific
NPU against the commercial IXP2400 NPU from Intel [27].

5.1 IP Forwarding with QoS Support
IP forwarding is a central part of the IP network infrastructure.

This challenging application domain combines sophisticated func-
tionality for QoS support with highest performance requirements:
at OC-48 wire speed (corresponds to 2.5Gbit/s) the timing budget
in the NPU for the processing of a minimum size 48Byte packet is
as short as 147ns.

IP Forwarding with QoS Support according to the DiffServ pro-
posal [28] requires the following functional blocks: The Parser
performs sanity checks on the incoming packet and provides the
following units with a unique packet descriptor (PD), which holds
all the relevant header information of the respective IP packet. The
Route Lookup Unit (RLU) performs forwarding of IP Packets based
on the longest match table search algorithm. The forwarding deci-
sion is based upon destination IP address and the routing table. The
Classifier classifies incoming packets into Classes of Service (CoS),
so the packets are processed according to their negotiated Quality
of Service parameters by the following blocks. The Meter measures
the IP packet rate and drops packets exceeding the negotiated traf-
fic characteristics to protect the succeeding queuer unit from greedy
traffic streams. The WRED unit drops additional packets employing

Figure 4: a) Intel IXP2400 Mapping

the weighted RED algorithm [29] to avoid throughput degradation
in a TCP friendly manner due to congestion. The Queuer stores IP
packets according to their CoS until they can be forwarded to the
CSIX unit. The Scheduler decides on the basis of the priority and
the actual fill status of the packet queues in the queuer unit. Finally
the CSIX unit segments IP packets into fixed size packets in com-
pliance with the standardized CSIX bus protocol [30] to interface
the switch fabric. The Memory Management Unit (MMU) performs
the memory allocation and deallocation of the IP- and PD-memory.

5.2 Exploration of the Communication Archi-
tecture

Figure 4 displays the mapping of the IP forwarding application
onto two different platforms: 4 a) shows the realization on the
IXP2400 reference NPU and 4 b) depicts the final version of the
custom optimized communication architecture. To achieve a fair
comparison between both NPU platforms, the processing and com-
munication requirements of all functional units as well as the IXP-
2400 mapping are taken from the original Intel documentation [31].

According to the general design flow described in section 3, first
an untimed functional SystemC model is created from the func-
tional specification document [28, 31]. This functional model is
already based on the NoC Channel, but employs only the point-to-
point network engine. This model is well suited to validate com-
pleteness and functional correctness, but does not yet impose any
assumptions on the architectural realization.

This initial setup of the NoC exploration framework was created
and validated within 2 months by a team of two experienced en-
gineers. The functional model comprises 6,800 Lines of SystemC
code and simulates about 20,000 IP packets per second on a 1.0GHz
Pentium III having 256KB L2 cache running Linux 2.4.18.

line engine engine utili- trn. delay IP latency
descriptor config. zation in cycles in cycles

1 p2p unconstr. 0% 0 910
2 p2p 32bit 8% 22 1526
3 ixp2400 32bit bus 83% 143 4910
4 custom mix 68% 73 3470

5 sram p2p 32bit 4% 17 408
6 sram dual bus 32bit 78% 125 3000
7 sram dual bus 64bit 39% 107 2568
8 sram tripel bus 32bit 67% 65 1488
9 sram crossbar 32bit 39% 65 1560

Table 3: NoC Exploration Results

After annotating the estimated execution delay to each of the
functional blocks in conformity with [31], the SystemC model is
prepared for the exploration of the communication architecture. An
excerpt of the NoC exploration results is printed in table 3. Besides
the engine-descriptor and -configuration we list the resource utiliza-
tion and the mean delay per transaction of the respective NoC setup.
The right column contains the overall packet latency introduced by

Figure 4: b) NPU Final Architecture View

the IP processing chain. Since the timing annotations of the func-
tional units are constant during all our experiments, the measured
packet latency clearly unveils the impact of the selected NoC con-
figuration on the system level performance.

According to the exploration methodology described in section
4.2, the point-to-point (p2p) engine is employed to generate an ini-
tial traffic profile. The unconstrained p2p engine performs all com-
munication with zero overhead, so the IP latency in line 1 reflects
only the timing annotations of the functional units. The 32 bit wide
p2p engine in line 2 serves as a ’lower-bound’ reference configu-
ration and not as a realistic design option, because - among other
unrealistic assumptions - this would implicate a packet descriptor
memory with 6 read and 6 write ports.

Besides an insignificant amount of local communication between
the buffer and its neighboring units, the statistics generated by the
p2p engine admits the classification of the on-chip traffic into two
domains: (a) Parser, RLU and CSIX unit regularly access the IP
memory (DRAM) to store and forward the arriving IP Packets and
(b) all master blocks heavily access the SRAM and scratch memory,
where the packet descriptor, routing information, traffic parameters
and per flow statistics are stored.

Line 3 in table 3 shows the performance of the engine configura-
tion, which corresponds to figure 4 a) and emulates the mapping to
the IXP2400 NPU as proposed in [31]. The huge communication
overhead of 4000 cycles is caused by the expensive access of exter-
nal memories via shared busses. To keep up OC-48 wire-speed pro-
cessing, the IXP2400 hides the memory latency by exploiting the
potential for packet-level parallelism: the application is executed on
a functional pipeline formed by 8 micro-engines, each supporting
up to 8 parallel processing threads.

The second section in table 3 is dedicated to the exploration
of a customized communication architecture for the access to the
SRAM and scratch memories, which together account for 3000 cy-
cles in the IXP2400 architecture.

The complete p2p mesh in line 5 is way too expensive and ineffi-
cient, while line 6 corresponds to the suboptimal dual bus configu-
ration of the IXP2400 NPU. Duplicating the bandwidth effectively
halves the bus utilization, however the sequential access to the 32
bit memories still mark the actual bottleneck. A closer analysis of
the simulation results shows, that the scratch memory is best exclu-
sively allocated for the packet descriptor and that the the context
information used by the Classifier and Queuer units can be effi-
ciently stored in an additional on-chip context memory. As shown
in line 8, the transaction delay is significantly improved as soon as
the context memory is accessed through an additional third bus.

Replacing the three separate busses with a dedicated crossbar
network introduces a minor performance penalty due to increased
arbitration complexity. However this option was selected as the fi-
nal communication network, because a switched NoC yields several
architectural advantages like e.g. improved scalability, simplified
block interface and potential for physical optimization.

Based on the proposed NoC exploration framework, the specifi-

cation of the communication architecture has been performed and
quantitatively verified within 2 weeks by a team of two experienced
designers. In comparison with the reference IXP2400 Intel NPU,
the resulting custom NPU configuration in line 4 gains an overall
30% performance improvement along with major architectural op-
timizations.

After the architecture exploration is finished, the NoC channel
is replaced with cycle-accurate communication models, while the
functional units are reused by means of adapters bridging the dif-
ferent levels of abstraction. The comparison of packet-based and
cycle accurate communication revealed, that the simulation accu-
racy depends on the type of the network engine: The point-to-point
engine as well as the crossbar engine produce 100% correct results,
since the ”packet nature” of the communication events is preserved
at the cycle accurate level. The accuracy of the bus engine is already
discussed in section 4.4.

6. CONCLUSION
In the near future, SoC platforms will integrate tens or even hun-

dreds of IP blocks. The resulting demand of on-chip data exchange
can only be accomplished by a sophisticated communication infras-
tructure, which employs local shared bus systems as well as chip-
wide network architectures.

This paper presents a unified approach to the conceptualization
of heterogeneous on-chip networks. The proposed Network-on-
Chip Exploration Framework combines concepts from the tradi-
tional networking design environments with recent System Level
Design methodologies to enable a rapid exploration of architectural
alternatives.

The presented approach has been successfully applied to the sys-
tem architecture design of an application specific Network Process-
ing Unit, which performs IP forwarding with Quality of Service
support. The high simulation speed, modeling efficiency and sup-
port in performance monitoring enabled the specification and quan-
titative evaluation of a sophisticated communication architecture
within two weeks by a team of two experienced designers. Compar-
ison aginst the commercial state-of-the-art IXP2400 NPU from In-
tel clearly demonstrates the value of a) customized communication
architectures and b) the proposed exploration framework to rapidly
explore and benchmark competing design options. For the consid-
ered case-study, the loss of accuracy caused by the packet-based
communication paradigm proved to be negligible.

Our future work will focus on the modeling of further network
engines and the additional deployment of analytical analysis- and
optimization-techniques.

7. REFERENCES
[1] D. Flynn. Amba: enabling reusable on-chip designs. IEEE

Micro, 17(4):20–27, July-Aug 1997.
[2] IBM CoreConnect.

http://www.chips.ibm.com/products/powerpc/cores.
[3] Open Core Protocol International Partnership (OCP-IP).

OCP datasheet, http://www.ocpip.org.
[4] L. Benini, G. De Micheli. Networks on Chips: A New SoC

Paradigm. IEEE Computer, pages 70–78, January 2002.
[5] Marco Sgroi, M. Sheets, A. Mihal, Kurt Keutzer, Sharad

Malik, Jan M. Rabaey, and Alberto L.
Sangiovanni-Vincentelli. Addressing the system-on-a-chip
interconnect woes through communication-based design. In
Design Automation Conference, pages 667–672, 2001.

[6] F. Karim, A. Nguyen, S. Dey, R. Rao. On-Chip
Communication Architecture for OC-768 Network
Processors. In Proceedings of the Design Automation
Conference (DAC), 2001.

[7] P. Guerrier, A. Greiner. A Generic Architecture for On-Chip
Packet-Switched Interconnections. In ”Proc. Int. Conf. on
Design, Automation and Test in Europe(DATE)”, 2000.

[8] E. Rijpkema, K.G.W. Goossens, A. Radulescu, J. Dielissen,
J. van Meerbergen, P. Wielage, and E. Waterlander. Trade
Offs in the Design of a Router with Both Guaranteed and
Best-Effort Services for Networks on Chip. In ”Proc. Int.

Conf. on Design, Automation and Test in Europe(DATE)”,
2003.

[9] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A.
Sangiovanni-Vincentelli. System-level design:
Orthogonalization of concerns and platform-based design.
IEEE Transactions on Computer-Aided Desig of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[10] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
A. Sangiovanni-Vincentelli. Metropolis: An integrated
electronic system design environment. IEEE Computer,
36(4):45–52, April 2003.

[11] D. Gajski, J. Zhu, R. Dömer, A.Gerstlauer, S. Zhao. SpecC:
Specification Language and Methodology. Kluwer Academic
Publishers, 2000.

[12] Vladimir D. Zivkovic, Ed Deprettere, Erwin de Kock, Pieter
van der Wolf. Fast and Accurate Multiprocessor Architecture
Exploration with Symbolic Programs. In ”Proc. Int. Conf. on
Design, Automation and Test in Europe(DATE)”, 2003.

[13] M. Gasteiner and M. Glessner. Bus-based communication
synthesis on system level. AM Trans. Design Automation
Electronic Systems, pages 1–11, January 1999.

[14] Peter Voigt Knudsen and Jan Madsen. Integrating
communication protocol selection with partitioning in
hardware/software codesign. In Proc. Int. Symp. on System
Synthesis, 1998.

[15] K. Hines, G. Borriello. Dynamic communication models in
embedded system co-simulation. In Proceedings of the
Design Automation Conference (DAC), 1997.

[16] A. Baghdadi, D. Lyonnard, N.-E. Zergainoh, A. Jerraya. An
Efficient Architecture Model for Systematic Design of
Application-Specific Multiprocessor SoC. In ”Proc. Int.
Conf. on Design, Automation and Test in Europe(DATE)”,
2001.

[17] K. Lahiri, A. Raghunathan S. Dey. Performance analysis of
systems with multi-channel communication architectures. In
”Proc. Int. Conf. VLSI Design”, pages 530–537, 2000.

[18] OPNET. http://www.opnet.com.
[19] Pierre G. Paulin, Chuck Pilkington, and Essaid Bensoudane.

StepNP: A System-Level Exploration Platform for Network
Processors. IEEE Design & Test of Computers, 19(6):17–26,
Dev-Dec 2002.

[20] SystemC initiative. http://www.systemc.org.
[21] T. Grötker, S. Liao, G. Martin, S. Swan. System Design with

SystemC. Kluwer Academic Publishers, 2002.
[22] O. Ogawa, K. Shinohara, Y. Watanabe, H. Niizuma, T.

Sasaki, Y. Takai, S. Bayon de Noyer and P. Chauvet. A
Practical Approach for Bus Architecture Optimization at
Transaction Level. In ”Proc. Designers’ Forum, Int. Conf. on
Design, Automation and Test in Europe(DATE)”, 2003.

[23] J.A. Rowson and A. Sangiovanni-Vincentelli.
Interface-Based Design. In Proceedings of the Design
Automation Conference (DAC), 1997.

[24] W. Cesario, A. Baghdadi, L. Gauthier, D. Lyonnard, G.
Nicolescu, Y. Paviot, S. Yoo, A. Jerraya, M. Diaz-Nava.
Component-Based Design Approach for Multicore SoCs. In
Proceedings of the Design Automation Conference (DAC),
2002.

[25] Norman Weyrich, Anssi Haverinen. A SystemC Generic
Transaction Level Communication Channel,
http://www.systemc.org, 2003.

[26] Y. Tamir, G. Frazier. High performance multi-queue buffers
for VLSI communication Switches. In Proc. Of 15th Ann.
Symp. On Comp. Arch., 1988.

[27] Intel Network Processors.
http://developer.intel.com/design/network/products/npfamily/.

[28] An Architecture for Differentiated Services.
http://www.ietf.org/rfc/rfc2475.txt.

[29] S. Floyd, and V. Jacobson. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on
Networking, 1(4):379–413, August 1993.

[30] The Network Processor Forum. founded by CSIX/CPIX
members in 2001 http://www.npforum.org.

[31] S. Lakshmanamurthy, K.-Y. Liu, Y. Pun, L. Huston, U. Naik.
Network Processor Performance Analysis Methodology.
Intel Technology Journal, August 2002.

