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ABSTRACT 
 
The ever increasing complexity and heterogeneity of modern System On Chip designs demands 
early consideration and exploration of architectural alternatives, which is hardly practicable on 
the low abstraction level of implementation models. In this paper, a system level design 
methodology based on the SystemC 2.0 library is proposed, which enables the designer to reason 
about the architecture on a much higher level of abstraction. Goal of this methodology is to 
define system architectures, which provide sufficient performance, flexibility and power 
efficiency as required by demanding application domains like wireless communications, 
broadband networking and multimedia applications. The methodology also provides capabilities 
for simulating multiple levels of abstraction simultaneously. This enables reuse of the simulation 
environment for functional verification of synthesizable implementation models against the 
abstract architecture model.  
 
During a cooperation with Synopsys Professional Services, this methodology is integrated into 
CoCentric System Studio (CCSS) and applied to the development of a 2.5 GB IP forwarding 
chip with Quality-of-Service (QoS) support. In this paper we share our experiences with the 
latest SystemC 2.0 based features of CCSS, which is used as a common design platform for 
abstract architecture modeling, profiling and hardware implementation. During the architecture 
exploration phase we heavily employ the CCSS profiling capabilities to validate the performance 
of several architectural alternatives.  Synopsys IP Telecom Workbench serves as a functional 
verification tool throughout the complete design process. 
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1  Introduction 
One of the most challenging tasks in modern System-on-Chip design projects is to map a 
complex application onto a heterogeneous platform architecture in adherence to the specified 
flexibility, performance and cost requirements. Under stringent cost constraints, the required 
flexibility and performance is best delivered by a heterogeneous platform employing standard as 
well as application specific programmable architectures and dedicated hardware blocks, which 
are connected by a sophisticated communication topology. As a result, the designer faces a huge 
design space and has to compose a system architecture from various kinds of building blocks and 
communication resources in order to meet the constraints of the specific application.   
 
The traditional approach comprising only two decoupled phases of textural specification  and 
architecture implementation is no longer feasible for the design of large heterogeneous systems 
on a single chip, because quantitative architectural considerations are difficult to estimate on 
paper, prior to the implementation phase. Systems are either over-engineered, thus impacting the 
cost, or fail to deliver the expected performance. 
 
Due to the high level of detail of implementation models, so far they can only be optimized 
locally and system architecture tradeoffs and optimizations are not exploited. 
For that reason we advocate an intermediate System Level Design phase in the design flow, 
where the functionality of the system is mapped to the platform architecture in an abstract 
manner to enable architecture optimizations across heterogeneous computational components. 
 
 
2  System Level Design Requirements 
In the course of numerous design projects, we have identified the following methodical 
requirements in System Level Design, which are addressed by our approach. 
 
• high simulation speed and modeling efficiency is mandatory to handle the high complexity 

of SoC designs. 
• separation of timing and behavior allows efficient profiling of functional blocks mapped to 

alternative architectures. 
• separation of interfaces and behavior according to the interface based design paradigm 

motivated by Rowson [3] enables successive communication and structural refinement as 
well as IP reuse.  

• incorporate hardware semantics like reactivity, concurrency and determinism to express 
impact of the platform architecture. 

• seamless transition from system to gates to avoid long iteration cycles caused by gaps in 
the design flow 

• intuitive visualization comprising capabilities for system level debugging and performance 
analysis to enable efficient validation of the system model.  

 
The foundation for our methodology is provided by the SystemC library [1], which is widely 
considered as the emerging EDA industry standard language for bringing together today's 
disjunctive worlds of system conceptualization and implementation. Hardware semantics as well 
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as interface based design are already incorporated into the 2.0 release of SystemC and also 
synthesis tools become commercially available. We have supplemented SystemC with a 
methodology specific library to enable System Level Design according to all requirements listed 
above. 
 
3  Design Flow 
Usually the first step in the design flow is to write a functional specification document, which 
specifies the intended functionality, features and interfaces as well as performance and cost 
requirements.  

 

system 
level 

domain 

micro 
architecture 

domain 

specification 
domain 

• system requirements 
• paper study specification document

• capture and partition of functionality functional model 

implementation model 
• HW implementation 
• meet power, area and speed constraints 
• verification strategy 

architecture model • mapping application to architecture 
• micro-architecture specificationbackannotation,

co-verification 

virtual architecture
mapping

figure 1: System Level Design Flow 
 
Our methodology [9] covers the system level design domain in figure 1, i.e. after the functional 
specification is finished and when the optimal architecture executing the functionality is to be 
defined. Generally, the SoC architecture can be seen as a set of parallel communicating blocks. 
To capture the complete functionality and to enable abstract architecture mapping, the 
functionality is first to be partitioned into SystemC modules. Metrics like minimization of 
information exchange between modules and algorithmic locality are used to guide partitioning 
decisions. 
 
In the next design step, the functional model is mapped to the intended target architecture in 
order to create a performance model of the resulting system architecture. As explained in more 
detail in section 3.2, architecture mapping is performed virtually by annotating the timing 
characteristics of the target architecture to the functional model, thus the methodology enables a 
very fast exploration of different design alternatives. 
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3.1  Functional Modeling with SystemC 
High simulation speed and modeling efficiency are achieved by modeling the hardware aspects 
of the system on the highest possible level of abstraction. Before modeling the hardware blocks 
on the highly detailed register transfer level (RTL) we create an abstract functional model.  
 
In the abstract model, functionality is partitioned into coarse grain SoC building blocks instead 
of scattering the functionality over numerous processes as often required for a synthesizable 
RTL description. Abstract Data Types (ADT) replace the bit-true data representation of the RTL 
model, such that a whole set of functionally associated data is represented as a single token.  
 
The key concept of raising the abstraction level is the introduction of a coarse grain time scale. 
For system performance profiling a time base is needed, but the high resolution of hardware 
clock cycles ruins simulation speed. Since the system state only changes on the arrival of a new 
token, the time base of our system model is given by a logical macro cycle. The macro cycle 
period depends on the application and corresponds to the minimal duration between the arrivals 
of two consecutive tokens. 
 
An example of a SystemC process network is given in figure 2 to illustrate our way of abstract 
system modeling. The code example of the SystemC process shows the interface of a 
module, where one incoming and one outgoing connection carry tokens of type IPPacket. The 
implementation of the class IPPacket is also depicted and shows some of the ADT elements. 
 

SystemC
process #2

SystemC
process #1

SystemC
process #3

class InterfaceParser
 : public sc _module
{
 adt _in <IPPacket> i_ppl3;
 adt _out <IPPacket>  o_ip_memory;

  adt_out<Descriptor> o_route_lookup;
}

class InterfaceParser
 : public sc _module
{
 adt _in <IPPacket> i_ppl3;
 adt _out <IPPacket>  o_ip_memory;

  adt_out<Descriptor> o_route_lookup;
}

class IPPacket {
 int  tos;
 int  ttl;
 long src_addr;
 long dest_addr;
 // … more member
}

class IPPacket {
 int  tos;
 int  ttl;
 long src_addr;
 long dest_addr;
 // … more member
}

abstract
data type

class FunctionParser
 : public InterfaceParser {
  void activate() {
   IPPacket ip_pkt =  i_ppl3->read ();

    o_ip_memory->write(ip_pkt);
    // … further processing
  }
}

class FunctionParser
 : public InterfaceParser {
  void activate() {
   IPPacket ip_pkt =  i_ppl3->read ();

    o_ip_memory->write(ip_pkt);
    // … further processing
  }
}

 

figure 2:Abstract SystemC Model 

 
The interface class is specialized via C++ inheritance to a functional process class, which 
implements the functionality of the module. The functional process is activated on the arrival of 
every new token, reads the new token from the input port, processes the included data and writes 
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the generated tokens to the output ports. In that way, a strict separation between interfaces and 
behavior is achieved. Refinement of either the functionality or the internal structure of the 
module is done by inheriting from the same interface class Interface. Modification of the data 
elements exchanged between processes is done by adding or removing ADT elements. Both 
leaves the original interface definition untouched and thus preserves the compatibility between 
different refinement stages of one module throughout the system level design process. At the end 
of this stage, a network of communicating processes, which exchange ADT tokens, captures the 
complete system behavior. The simulation speed as well as the modeling efficiency (measured in 
lines of code) is at least two orders of magnitude better compared to the corresponding RTL 
model, which models the same functionality on a much higher level of architectural detail. The 
system model is now prepared for the annotation of timing information, which is described in the 
next section. 
 
3.2  Virtual Architecture Mapping 
In the next design step, the functional model is mapped to the intended target architecture in 
order to create a performance model of the resulting system architecture. The mapping is 
performed virtually by annotating the timing characteristics of the target architecture to the 
functional model, thus the methodology enables a very fast exploration of different design 
alternatives. The process of timing annotation is completely orthogonal to the functionality, 
hence the previously validated functional system behavior is preserved. 
 
The methodology is based on the following observation: for performance profiling purposes, the 
basic timing characteristics of the target architecture can be expressed by the temporal 
relationship of consuming, processing and producing ADT tokens. 
 
• Pipelined architectures are able to consume and produce a token every cycle and introduce a 

static latency, which is determined by the number of pipeline stages. 
• Data dependent modules show varying delays until the processing of the actual token is 

finished. In the case of a cache module for example, the processing delay of a cache read 
depends on whether the requested data set is in the cache or has to be fetched from the main 
memory. 

• Resource shared modules are afflicted with an iteration interval, i.e. they are blocked for a 
varying amount of cycles during a token is processed. 

 
Our goal is to model the architecture specific timing independently from the behavior, thus a 
functionally correct system model can be easily mapped to different architectures. Therefore we 
have developed a set of hierarchical SystemC 2.0 channel models for the interconnection of the 
modules. The channels are based on a loss-less FIFO buffer according to the discrete event 
communication paradigm and provide methods to annotate processing delay and iteration 
interval according to the above listed observations. The channels are implemented hierarchically 
(see chapter 11 of [2]), since they incorporate internal processes to implement the mechanism for 
timing annotation. 
 
figure 3 illustrates the creation of an abstract architecture model from the combination of the 
original functional model together with the channels to capture the performance impact of the 
intended architecture. The right part of figure 3 shows the annotation of a processing delay tD, 
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which is passed as a second parameter of the write() method of outgoing connections.  
Transparently the channel takes care, that this token does not arrive at the consumer process 
before the specified delay tD. In the same way the, left part of figure 3 shows the annotation of an 
iteration interval tI by calling the next() method of incoming connections. This causes the 
channel to suppress the arrival of tokens for the specified amount of cycles, which captures the 
effect of a resource-shared module. 
 

abstract architecture model

channel

now

... ...write(T,tD) T

timefunctional
model

now+tD

channel

now

... ...T

time

next(tI)
now+tI

read() read()
write(T)

 

figure 3: Delay Annotation 

 
 
A statistical evaluation system is associated with the channel models, which produces histograms 
sampling the actual queue length of tokens on the channel. In case a FIFO queue between two 
processes grows very long, the consuming process has not sufficient processing power to cope 
with the arriving tokens, i.e. the processing power of the producing process. In this way 
architecture bottlenecks can be detected and eliminated very early in the design flow before the 
time consuming implementation starts. 
 
3.3 Refinement and Co-Verification 
After the system architecture is defined and the implementation phase is entered, the abstract 
model is successively converted into a synthesizable model, which realizes the same 
functionality on much higher level of detail. By using the CoCentric SystemC Compiler 
synthesis tool, the implementation phase can be performed in the same SystemC based design 
environment. This enables a smooth and stepwise transition from the abstract model to the 
synthesizable model.  
 
Furthermore, the abstract system model can be reused as a functional verification environment 
for the synthesizable block implementation models. The co-verification of implementation 
models against their abstract reference significantly shortens the overall design time, since 
functional verification is the most time consuming task in the design of complex telecom 
applications [4]. As depicted for process 3 in figure 4, the basic idea is to plug the RTL 
implementation block per block into the abstract SystemC prototype, so realistic stimuli are 
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derived from the system context and comparison of the block implementation output against the 
abstract reference is performed conveniently on the higher abstraction level. 
 

SystemC
process #2

SystemC
process #1

SystemC
process #3

abstract
data type

process #3 RTL
implementation

abstraction interface

 
figure 4: functional co-verification environment 

The key component to enable co-simulation of both abstract and synthesizable SystemC models 
is the abstraction interface, which is an extension of the SystemC 2.0 adapter concept (see 
chapter 12 of [2]).  During simulation run-time, this interface bridges the different abstraction 
levels of data, time and protocol between the executable specification and the block 
implementation: 

• The abstract data types are mapped to the binary format by assigning the ADT members to the 
respective field in their corresponding bit-true representation. 

• The temporal resolution is refined from coarse-grain macro-cycles to hardware clock ticks by 
specifying the process activation ratio between the different time scales. 

• The bus protocol behavior is added in terms of handshaking signals to feed the data stream 
slice by slice into the block implementation.  
 
Concurrent execution of RTL implementation and abstract executable specification within the 
system context enables easy detection of implementation faults by comparing the abstract token 
output of both models. Together with the HDL co-simulation interface of System Studio (see 
section 4.4) the abstraction interface supports any VHDL, Verilog and SystemC implementation 
models. 
 
4 The SystemC Design Environment 
CoCentric System Studio serves as integrated SystemC design environment for all phases of the 
IP router development project. Although the outlined system level design methodology is based 
on the freely available SystemC library and therefore tool independent, we experienced 
significant advantages in using an integrated tool environment. In the following we will briefly 
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introduce the most important features of System Studio. Additionally we show, in what way 
System Studio can be easily customized to methodology specific needs. 
 
4.1 CoCentric System Studio  
 
System Studio is the environment used to model the complete system. SystemC models are 
captured in the System Studio environment and are organized into hierarchical libraries that can 
be shared among design projects. Using the design management capabilities of System Studio, 
the models can be organized into libraries for ease of reuse and maintainability across multiple 
project phases and distributed engineering teams.  
Each model is stored in a database along with three different views of the model: 
 
• A symbol view, which is a block and port representation of the model that can be 

instantiated into a block-diagram schematic. 
• An interface view that defines and documents all port-related and parameter-related 

specifications for this model. 
• An implementation view that contains the implementation of the module.    
 
The tool generates source code from the interface and parameter descriptions of the interface so 
the developer can focus on the behavior of the model’s implementation. The schematic entry as 
depicted in figure 5 allows graphical modeling of the overall structure, so the user is able to 
quickly specify and change the structure of the system in a very intuitive way.   
In addition, other properties useful for design management are included in the model database, 
for example generation of html documentation, error checking and cross-highlighting of errors in 
the error message window, implementation and interface views, as well as integrated access to 
revision control systems such as RCS, SCCS, or ClearCase. However System Studio is also very 
cooperative with other tools, e.g. we use the open-source CVS revision control system [5], which 
supports Internet based access to the project repository. 
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figure 5: System Studio Schematic Editor 

As an extension to the original SystemC library, the SystemC simulation generated from System 
Studio can be controlled either interactively through the graphical Simulation Control Panel or in 
batch mode through a simulation script written in Tcl. Using the batch controlled mode, 
simulations can be run under control of a Tcl script that accomplishes a large number of 
simulations sweeping parameter ranges. Tcl scripts can also be used for parameter optimization. 
In this case, simulations are run in an iterative manner using results of one simulation run to 
compute new parameter values for the next iteration. Using Tcl scripts, a huge design space can 
be evaluated to achieve the most cost-efficient design. 
 
4.2 System Debugging 
Debugging of the initial executable system model is a very critical task, since it cannot be 
verified against another model but must be validated to capture the complete and correct 
functionality. There are two levels of debugging in System Studio: macro debugging and micro 
debugging. 
 
Macro debugging occurs at the SystemC process level. During system simulation, processes are 
activated one by one. During macro debugging, the user can set breakpoints before (stop at) or 
after (stop after) one or several processes is activated. The simulation is stopped and the values 
for some parameters and signals can be observed at this stage. The values of the interconnections 
and the internal parameters are viewed according to levels. Specific values can be assembled in 
the Data Watch sheet and thus can be viewed jointly. When the simulation is stopped, the values 
of parameters and signals that are displayed with a white background are changeable; values that 
have a gray background are read-only.  
 



SNUG Europe 2002  SystemC based Design of an IP Forwarding Chip 
  with CoCentric System Studio 

10

Micro debugging means source-level debugging of the SystemC processes. A standard debugger 
such as gdb can be attached to a System Studio simulation. An intermediate layer is available 
between the standard debugger and System Studio to provide customized commands such as 
“sprint” to display values instead of a class for SystemC related classes. Macro- and micro-
debugging capabilities offered in the Simulation Control Panel are closely integrated. For micro 
debugging, a “step-into” feature allows a source-code debugger to take over control of the 
simulation. 
 
Furthermore, we have supplemented the native System Studio debugging features with a 
methodology specific debugger, which visualizes the SystemC simulation according to the 
Message Sequence Chart (MSC) principle. MSC tracing is a well known tracing mechanism 
usually employed in Specification and Description Language (SDL) based design environments 
like the TAU SDL suite [6]. The MSC representation provides a very intuitive visualization of a 
network of coarse-grain SystemC processes exchanging abstract data types (ADTs). SystemC 
modules are displayed by vertical lines, which are labeled with the module name at the top. 
Communication events are displayed as horizontal arrows between the lines of the emitting and 
receiving processes. The arrows are labeled with signal name, the bracketed time instance and 
the ADT type name. The debugger provides advanced filter mechanisms to systematically reduce 
the displayed data exchange to the currently interesting communication events. 
 

 

figure 6: Message Sequence Chart Debugger  

Thus, debugging is achieved at all levels of granularity. First, the system level transactions are 
displayed in the MSC debugger. Next, cycle and process debugging is achieved through the 
macro debugging capabilities. Macro debugging capabilities include stop, step, continue (time), 
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pause, and breakpoints. Some signals can be monitored or traced. Finally, the source code of any 
model can be debugged in the framework of the overall simulation.  
 
4.3 Performance Visualization 
Performance is the key criterion during the investigation and the specification of the system 
architecture. For the proper analysis and understanding of the profiling results, the presentation 
of the simulation data is most important to reach design decisions. Data can be displayed using 
DAVIS, the Data Analysis and VISualization tool integrated in System Studio. Besides 
displaying values over time, data can be displayed in different formats such as scatter and eye 
diagrams and at logical levels. In addition, a monitor library provides additional interactive 
analysis and visualization capabilities, such as displaying utilization statistics of a bus as a pie 
chart, as vertical or horizontal bars, or as the histogram of a queue load. Objects in a design can 
be instrumented such that they can be watched during simulation. Any objects such as signals, 
ports, parameters, and in some cases local variables can be instrumented. These objects can then 
be dynamically visualized in the monitor 
 
 
4.4 VHDL/Verilog Co-Simulation Interface 
A co-simulation interface is introduced in System Studio to enable co-simulation with existing 
legacy code in Verilog or VHDL, and to verify the system behavior at block implementation 
level. Either the Verilog or VHDL code is embedded into the System Studio simulation, or the 
System Studio executable is slaved to any C-friendly environment. While importing Verilog or 
VHDL code into System Studio, clock and reset signals as well as the Verilog/VHDL and the 
System Studio wrapper are generated. By default, a one-to-one correspondence from input 
values to output values is assumed. The simulation can be called with or without the hardware 
debugger front-end to provide the usual Verilog or VHDL hardware environment to the user.  
 
 
5 IP forwarding chip case study  
In this section we will present the results of an IP forwarding chip design project, where the 
proposed system level design methodology has been applied in cooperation with Synopsys 
Professional Services. We will introduce and characterize the design and illustrate the virtual 
mapping methodology.  
 
5.1 Project overview and characterization 
The major objective of this project is the evaluation of the outlined system level design 
methodology with respect to the following requirements: 
• Ensure performance as early as possible in the design flow to avoid late iterations  
• Serving as a functional reference model of the system down to implementation 
• Evaluate complex interactions between protocol layers 
• Minimize cost for a given performance 
• Evaluate architecture options: buffer access modes, speed, bus width, shared resources, data 

structures 
• Evaluate complex algorithms, e.g. scheduling, WRED (weighted random early detection) 
 



SNUG Europe 2002  SystemC based Design of an IP Forwarding Chip 
  with CoCentric System Studio 

12

 
5.2 IP Router functional specification 
In this section, the essential components of an ingress IP edge router and traffic manager design 
are elaborated. The functionality is focussed on IP layer, and protocol layer 2 functions are 
deliberately left out. Although the models considered are moderately complex, the overall 
purpose of the project is a feasibility study for the methodology and not a product quality chip 
design. 
 
à

Parser RLU Classifier Meter WRED Queuer

Scheduler

CSIX

 

figure 7: functional view of IP forwarding chip 

figure 7 displays the functional blocks of the IP router together with the basic inter-block 
communication: 
• The Parser unit performs check of incoming packets and provides following units with 

packet descriptors, which hold all the relevant header information of the respective IP packet. 
• The Route Lookup unit performs forwarding of IP Packets based on the longest match table 

search algorithm. The forwarding decision is based upon destination IP address and the 
contents of memory storing the routing table.  

• The Classifier classifies incoming packets into Classes of Service (CoS), so the packets are 
processed according to their negotiated Quality of Service parameters by the following 
blocks. 

• The Meter unit measures the IP packet rate and drops packets exceeding the negotiated 
traffic characteristics to protect the succeeding queuer unit from unfriendly traffic streams.  

• The WRED unit also drops packets according to the weighted RED algorithm [7] to avoid 
throughput degradation due to congestion. 

• The Queuer unit stores IP packets according to their class of service until they are forwarded 
to the CSIX unit 

• The Scheduler unit decides on the basis of the priority and the actual fill status of the packet 
queues in the queuer unit. 

• The CSIX unit segments IP packets into fixed size packets according to the standardized 
CSIX bus protocol [8] to interface the switch fabric. 

According the methodology described in section 3, first a functional SystemC model is created 
from the functional specification document. As depicted in the System Studio snapshot in figure 
5, the structure of the functional SystemC model matches the block diagram in specification 
document. Also the data flow through the model as displayed in the MSC debugger in figure 6 is 
straight forward except for the communication between the Queuer and the Scheduler units. This 
functional model is well suited to validate completeness and functional correctness, but does not 
yet impose any assumptions on the architectural realization.  
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5.3 Architecture Refinement and Exploration 
 
The successive steps of mapping the functional SystemC model to a virtual architecture are 
explained with special emphasis on how the CCSS performance visualization features are used to 
drive architectural decisions and to define the final system architecture. In general, the 
architecture exploration can be separated into sub-phases, where the modeling granularity and 
accuracy is successively refined. 
 
System Architecture 
Given the constraints on latency, the architect can decide to have a more parallel than pipelined 
architecture. For instance, the classification can be performed in parallel with the route lookup. 
To model this effect, the top-level structure of the router does not need to be modified. Only the 
timing annotation changes in the route lookup and the classifier. 
 
Block-Level Timing Budgets 
An initial timing budget is defined for each module that is based on experience. Timing budget 
includes both pipeline delay and iteration interval. Based on simulations, the architect may relax 
some constraints, choose to tighten some others, or find out that a budget is required that is not 
realistic for a module. In the latter case, the architecture will be modified, e.g. resources are 
added or the algorithm is changed. Final budgets provide a requirement specification for later 
RTL implementation. The statistic evaluation of the channel library is used to detect bottlenecks 
in the system. The histograms depicted in figure 8 show the number of tokens stored on the 
channels during a simulation run. The striped histogram shows a high incidence of long FIFO 
queues, which indicates a throughput bottleneck in the consumer block of the “pd_parser” 
channel: the consumer processing power does not catch up with throughput of the respective 
producer block. 

figure 8: channel statistic 
A well-balanced system architecture provides sufficient processing power for all components, 
such that the FIFO fill level of all channels remains within moderate limits. 
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Algorithmic Exploration 
Several scheduling schemes can be evaluated with high simulation performance, since the 
simulation is essentially running on a packet clock. By that the algorithmic performance can be 
evaluated in a realistic system context with respect to throughput, processing requirements and 
Quality of Service properties. 
 
Block-Level Macro Architecture 
Shared resources like a bus or a memory can be modeled at this stage. For instance as depicted in 
figure 9, most modules in the data path could make use of a shared packet descriptor memory 
instead of dedicated point-to-point communication. This would certainly reduce register cost, but 
would probably be not sustainable using a single bus/memory architecture. A trade-off between 
memory and register usage can be found by quickly evaluating a few options.  
 
Block-Level Micro Architecture 
Several options for the route lookup algorithm can be evaluated. They are tightly linked with the 
associated RAM usage (CAM, SRAM…). These memory components need not be modeled 
explicitly, but only the respective timing behavior (access time, latency…) is taken into account 
in the way the timing annotation is performed in the route lookup module. Should the route 
lookup module be reused in another system, the different implementation could be reused and 
only the interface would need to be updated. 
 

 

Parser 

RLU Classifier Meter WRED Queuer 

Scheduler 

Descriptor 
memory 

Descriptor Bus 

release 

MMU 
request addr 

IP Packet 
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write 

read 
release CSIX 

 

figure 9: abstract architecture view of IP forwarding chip 
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6 Conclusion 
In this paper, a system level design methodology based on the SystemC library is presented. The 
outlined approach is well supported by the CoCentric System Studio development environment 
and capable to capture the complete system functionality as well as all performance relevant 
architecture features on the highest possible level of abstraction. The resulting modeling 
efficiency measured in lines of code and the simulation speed is about two orders of magnitude 
better compared to an RTL architecture model.  
 
During a research cooperation with Synopsys Professional Services, the outlined methodology 
has been applied to the architecture conceptualization of an IP forwarding chip. By employing 
the proposed system level design methodology, a team of 3 engineers was able to demonstrate 
the feasibility and define a scalable and cost effective architecture within 2 months without 
sacrificing the algorithmic performance. The resulting system architecture model also serves as 
an executable specification and as a fast co-verification environment for the HW 
implementation.  
 
In the second project phase, the HW/SW co-design aspects of the methodology will be applied to 
the IP Router case study. Here we will investigate the mapping of several computational tasks to 
Application Specific Instruction-set Processor (ASIP) cores to improve the system flexibility. 
The ASIP design will be performed using the LISA Processor Design Platform [10]. 
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