

SystemC Based Design of an IP Forwarding Chip with
CoCentric System Studio

Tim Kogel

Institute for Integrated Signal
Processing Systems

tim.kogel@iss.rwth-aachen.de

Denis Bussaglia

Synopsys Professional Services

denisb@synopsys.com

ABSTRACT

The ever increasing complexity and heterogeneity of modern System On Chip designs demands
early consideration and exploration of architectural alternatives, which is hardly practicable on
the low abstraction level of implementation models. In this paper, a system level design
methodology based on the SystemC 2.0 library is proposed, which enables the designer to reason
about the architecture on a much higher level of abstraction. Goal of this methodology is to
define system architectures, which provide sufficient performance, flexibility and power
efficiency as required by demanding application domains like wireless communications,
broadband networking and multimedia applications. The methodology also provides capabilities
for simulating multiple levels of abstraction simultaneously. This enables reuse of the simulation
environment for functional verification of synthesizable implementation models against the
abstract architecture model.

During a cooperation with Synopsys Professional Services, this methodology is integrated into
CoCentric System Studio (CCSS) and applied to the development of a 2.5 GB IP forwarding
chip with Quality-of-Service (QoS) support. In this paper we share our experiences with the
latest SystemC 2.0 based features of CCSS, which is used as a common design platform for
abstract architecture modeling, profiling and hardware implementation. During the architecture
exploration phase we heavily employ the CCSS profiling capabilities to validate the performance
of several architectural alternatives. Synopsys IP Telecom Workbench serves as a functional
verification tool throughout the complete design process.

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

2

1 Introduction
One of the most challenging tasks in modern System-on-Chip design projects is to map a
complex application onto a heterogeneous platform architecture in adherence to the specified
flexibility, performance and cost requirements. Under stringent cost constraints, the required
flexibility and performance is best delivered by a heterogeneous platform employing standard as
well as application specific programmable architectures and dedicated hardware blocks, which
are connected by a sophisticated communication topology. As a result, the designer faces a huge
design space and has to compose a system architecture from various kinds of building blocks and
communication resources in order to meet the constraints of the specific application.

The traditional approach comprising only two decoupled phases of textural specification and
architecture implementation is no longer feasible for the design of large heterogeneous systems
on a single chip, because quantitative architectural considerations are difficult to estimate on
paper, prior to the implementation phase. Systems are either over-engineered, thus impacting the
cost, or fail to deliver the expected performance.

Due to the high level of detail of implementation models, so far they can only be optimized
locally and system architecture tradeoffs and optimizations are not exploited.
For that reason we advocate an intermediate System Level Design phase in the design flow,
where the functionality of the system is mapped to the platform architecture in an abstract
manner to enable architecture optimizations across heterogeneous computational components.

2 System Level Design Requirements
In the course of numerous design projects, we have identified the following methodical
requirements in System Level Design, which are addressed by our approach.

• high simulation speed and modeling efficiency is mandatory to handle the high complexity

of SoC designs.
• separation of timing and behavior allows efficient profiling of functional blocks mapped to

alternative architectures.
• separation of interfaces and behavior according to the interface based design paradigm

motivated by Rowson [3] enables successive communication and structural refinement as
well as IP reuse.

• incorporate hardware semantics like reactivity, concurrency and determinism to express
impact of the platform architecture.

• seamless transition from system to gates to avoid long iteration cycles caused by gaps in
the design flow

• intuitive visualization comprising capabilities for system level debugging and performance
analysis to enable efficient validation of the system model.

The foundation for our methodology is provided by the SystemC library [1], which is widely
considered as the emerging EDA industry standard language for bringing together today's
disjunctive worlds of system conceptualization and implementation. Hardware semantics as well

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

3

as interface based design are already incorporated into the 2.0 release of SystemC and also
synthesis tools become commercially available. We have supplemented SystemC with a
methodology specific library to enable System Level Design according to all requirements listed
above.

3 Design Flow
Usually the first step in the design flow is to write a functional specification document, which
specifies the intended functionality, features and interfaces as well as performance and cost
requirements.

system
level

domain

micro
architecture

domain

specification
domain

• system requirements
• paper study specification document

• capture and partition of functionality functional model

implementation model
• HW implementation
• meet power, area and speed constraints
• verification strategy

architecture model • mapping application to architecture
• micro-architecture specificationbackannotation,

co-verification

virtual architecture
mapping

figure 1: System Level Design Flow

Our methodology [9] covers the system level design domain in figure 1, i.e. after the functional
specification is finished and when the optimal architecture executing the functionality is to be
defined. Generally, the SoC architecture can be seen as a set of parallel communicating blocks.
To capture the complete functionality and to enable abstract architecture mapping, the
functionality is first to be partitioned into SystemC modules. Metrics like minimization of
information exchange between modules and algorithmic locality are used to guide partitioning
decisions.

In the next design step, the functional model is mapped to the intended target architecture in
order to create a performance model of the resulting system architecture. As explained in more
detail in section 3.2, architecture mapping is performed virtually by annotating the timing
characteristics of the target architecture to the functional model, thus the methodology enables a
very fast exploration of different design alternatives.

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

4

3.1 Functional Modeling with SystemC
High simulation speed and modeling efficiency are achieved by modeling the hardware aspects
of the system on the highest possible level of abstraction. Before modeling the hardware blocks
on the highly detailed register transfer level (RTL) we create an abstract functional model.

In the abstract model, functionality is partitioned into coarse grain SoC building blocks instead
of scattering the functionality over numerous processes as often required for a synthesizable
RTL description. Abstract Data Types (ADT) replace the bit-true data representation of the RTL
model, such that a whole set of functionally associated data is represented as a single token.

The key concept of raising the abstraction level is the introduction of a coarse grain time scale.
For system performance profiling a time base is needed, but the high resolution of hardware
clock cycles ruins simulation speed. Since the system state only changes on the arrival of a new
token, the time base of our system model is given by a logical macro cycle. The macro cycle
period depends on the application and corresponds to the minimal duration between the arrivals
of two consecutive tokens.

An example of a SystemC process network is given in figure 2 to illustrate our way of abstract
system modeling. The code example of the SystemC process shows the interface of a
module, where one incoming and one outgoing connection carry tokens of type IPPacket. The
implementation of the class IPPacket is also depicted and shows some of the ADT elements.

SystemC
process #2

SystemC
process #1

SystemC
process #3

class InterfaceParser
 : public sc _module
{
 adt _in <IPPacket> i_ppl3;
 adt _out <IPPacket> o_ip_memory;

 adt_out<Descriptor> o_route_lookup;
}

class InterfaceParser
 : public sc _module
{
 adt _in <IPPacket> i_ppl3;
 adt _out <IPPacket> o_ip_memory;

 adt_out<Descriptor> o_route_lookup;
}

class IPPacket {
 int tos;
 int ttl;
 long src_addr;
 long dest_addr;
 // … more member
}

class IPPacket {
 int tos;
 int ttl;
 long src_addr;
 long dest_addr;
 // … more member
}

abstract
data type

class FunctionParser
 : public InterfaceParser {
 void activate() {
 IPPacket ip_pkt = i_ppl3->read ();

 o_ip_memory->write(ip_pkt);
 // … further processing
 }
}

class FunctionParser
 : public InterfaceParser {
 void activate() {
 IPPacket ip_pkt = i_ppl3->read ();

 o_ip_memory->write(ip_pkt);
 // … further processing
 }
}

figure 2:Abstract SystemC Model

The interface class is specialized via C++ inheritance to a functional process class, which
implements the functionality of the module. The functional process is activated on the arrival of
every new token, reads the new token from the input port, processes the included data and writes

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

5

the generated tokens to the output ports. In that way, a strict separation between interfaces and
behavior is achieved. Refinement of either the functionality or the internal structure of the
module is done by inheriting from the same interface class Interface. Modification of the data
elements exchanged between processes is done by adding or removing ADT elements. Both
leaves the original interface definition untouched and thus preserves the compatibility between
different refinement stages of one module throughout the system level design process. At the end
of this stage, a network of communicating processes, which exchange ADT tokens, captures the
complete system behavior. The simulation speed as well as the modeling efficiency (measured in
lines of code) is at least two orders of magnitude better compared to the corresponding RTL
model, which models the same functionality on a much higher level of architectural detail. The
system model is now prepared for the annotation of timing information, which is described in the
next section.

3.2 Virtual Architecture Mapping
In the next design step, the functional model is mapped to the intended target architecture in
order to create a performance model of the resulting system architecture. The mapping is
performed virtually by annotating the timing characteristics of the target architecture to the
functional model, thus the methodology enables a very fast exploration of different design
alternatives. The process of timing annotation is completely orthogonal to the functionality,
hence the previously validated functional system behavior is preserved.

The methodology is based on the following observation: for performance profiling purposes, the
basic timing characteristics of the target architecture can be expressed by the temporal
relationship of consuming, processing and producing ADT tokens.

• Pipelined architectures are able to consume and produce a token every cycle and introduce a

static latency, which is determined by the number of pipeline stages.
• Data dependent modules show varying delays until the processing of the actual token is

finished. In the case of a cache module for example, the processing delay of a cache read
depends on whether the requested data set is in the cache or has to be fetched from the main
memory.

• Resource shared modules are afflicted with an iteration interval, i.e. they are blocked for a
varying amount of cycles during a token is processed.

Our goal is to model the architecture specific timing independently from the behavior, thus a
functionally correct system model can be easily mapped to different architectures. Therefore we
have developed a set of hierarchical SystemC 2.0 channel models for the interconnection of the
modules. The channels are based on a loss-less FIFO buffer according to the discrete event
communication paradigm and provide methods to annotate processing delay and iteration
interval according to the above listed observations. The channels are implemented hierarchically
(see chapter 11 of [2]), since they incorporate internal processes to implement the mechanism for
timing annotation.

figure 3 illustrates the creation of an abstract architecture model from the combination of the
original functional model together with the channels to capture the performance impact of the
intended architecture. The right part of figure 3 shows the annotation of a processing delay tD,

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

6

which is passed as a second parameter of the write() method of outgoing connections.
Transparently the channel takes care, that this token does not arrive at the consumer process
before the specified delay tD. In the same way the, left part of figure 3 shows the annotation of an
iteration interval tI by calling the next() method of incoming connections. This causes the
channel to suppress the arrival of tokens for the specified amount of cycles, which captures the
effect of a resource-shared module.

abstract architecture model

channel

now

... ...write(T,tD) T

timefunctional
model

now+tD

channel

now

... ...T

time

next(tI)
now+tI

read() read()
write(T)

figure 3: Delay Annotation

A statistical evaluation system is associated with the channel models, which produces histograms
sampling the actual queue length of tokens on the channel. In case a FIFO queue between two
processes grows very long, the consuming process has not sufficient processing power to cope
with the arriving tokens, i.e. the processing power of the producing process. In this way
architecture bottlenecks can be detected and eliminated very early in the design flow before the
time consuming implementation starts.

3.3 Refinement and Co-Verification
After the system architecture is defined and the implementation phase is entered, the abstract
model is successively converted into a synthesizable model, which realizes the same
functionality on much higher level of detail. By using the CoCentric SystemC Compiler
synthesis tool, the implementation phase can be performed in the same SystemC based design
environment. This enables a smooth and stepwise transition from the abstract model to the
synthesizable model.

Furthermore, the abstract system model can be reused as a functional verification environment
for the synthesizable block implementation models. The co-verification of implementation
models against their abstract reference significantly shortens the overall design time, since
functional verification is the most time consuming task in the design of complex telecom
applications [4]. As depicted for process 3 in figure 4, the basic idea is to plug the RTL
implementation block per block into the abstract SystemC prototype, so realistic stimuli are

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

7

derived from the system context and comparison of the block implementation output against the
abstract reference is performed conveniently on the higher abstraction level.

SystemC
process #2

SystemC
process #1

SystemC
process #3

abstract
data type

process #3 RTL
implementation

abstraction interface

figure 4: functional co-verification environment

The key component to enable co-simulation of both abstract and synthesizable SystemC models
is the abstraction interface, which is an extension of the SystemC 2.0 adapter concept (see
chapter 12 of [2]). During simulation run-time, this interface bridges the different abstraction
levels of data, time and protocol between the executable specification and the block
implementation:

• The abstract data types are mapped to the binary format by assigning the ADT members to the
respective field in their corresponding bit-true representation.

• The temporal resolution is refined from coarse-grain macro-cycles to hardware clock ticks by
specifying the process activation ratio between the different time scales.

• The bus protocol behavior is added in terms of handshaking signals to feed the data stream
slice by slice into the block implementation.

Concurrent execution of RTL implementation and abstract executable specification within the
system context enables easy detection of implementation faults by comparing the abstract token
output of both models. Together with the HDL co-simulation interface of System Studio (see
section 4.4) the abstraction interface supports any VHDL, Verilog and SystemC implementation
models.

4 The SystemC Design Environment
CoCentric System Studio serves as integrated SystemC design environment for all phases of the
IP router development project. Although the outlined system level design methodology is based
on the freely available SystemC library and therefore tool independent, we experienced
significant advantages in using an integrated tool environment. In the following we will briefly

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

8

introduce the most important features of System Studio. Additionally we show, in what way
System Studio can be easily customized to methodology specific needs.

4.1 CoCentric System Studio

System Studio is the environment used to model the complete system. SystemC models are
captured in the System Studio environment and are organized into hierarchical libraries that can
be shared among design projects. Using the design management capabilities of System Studio,
the models can be organized into libraries for ease of reuse and maintainability across multiple
project phases and distributed engineering teams.
Each model is stored in a database along with three different views of the model:

• A symbol view, which is a block and port representation of the model that can be

instantiated into a block-diagram schematic.
• An interface view that defines and documents all port-related and parameter-related

specifications for this model.
• An implementation view that contains the implementation of the module.

The tool generates source code from the interface and parameter descriptions of the interface so
the developer can focus on the behavior of the model’s implementation. The schematic entry as
depicted in figure 5 allows graphical modeling of the overall structure, so the user is able to
quickly specify and change the structure of the system in a very intuitive way.
In addition, other properties useful for design management are included in the model database,
for example generation of html documentation, error checking and cross-highlighting of errors in
the error message window, implementation and interface views, as well as integrated access to
revision control systems such as RCS, SCCS, or ClearCase. However System Studio is also very
cooperative with other tools, e.g. we use the open-source CVS revision control system [5], which
supports Internet based access to the project repository.

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

9

figure 5: System Studio Schematic Editor

As an extension to the original SystemC library, the SystemC simulation generated from System
Studio can be controlled either interactively through the graphical Simulation Control Panel or in
batch mode through a simulation script written in Tcl. Using the batch controlled mode,
simulations can be run under control of a Tcl script that accomplishes a large number of
simulations sweeping parameter ranges. Tcl scripts can also be used for parameter optimization.
In this case, simulations are run in an iterative manner using results of one simulation run to
compute new parameter values for the next iteration. Using Tcl scripts, a huge design space can
be evaluated to achieve the most cost-efficient design.

4.2 System Debugging
Debugging of the initial executable system model is a very critical task, since it cannot be
verified against another model but must be validated to capture the complete and correct
functionality. There are two levels of debugging in System Studio: macro debugging and micro
debugging.

Macro debugging occurs at the SystemC process level. During system simulation, processes are
activated one by one. During macro debugging, the user can set breakpoints before (stop at) or
after (stop after) one or several processes is activated. The simulation is stopped and the values
for some parameters and signals can be observed at this stage. The values of the interconnections
and the internal parameters are viewed according to levels. Specific values can be assembled in
the Data Watch sheet and thus can be viewed jointly. When the simulation is stopped, the values
of parameters and signals that are displayed with a white background are changeable; values that
have a gray background are read-only.

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

10

Micro debugging means source-level debugging of the SystemC processes. A standard debugger
such as gdb can be attached to a System Studio simulation. An intermediate layer is available
between the standard debugger and System Studio to provide customized commands such as
“sprint” to display values instead of a class for SystemC related classes. Macro- and micro-
debugging capabilities offered in the Simulation Control Panel are closely integrated. For micro
debugging, a “step-into” feature allows a source-code debugger to take over control of the
simulation.

Furthermore, we have supplemented the native System Studio debugging features with a
methodology specific debugger, which visualizes the SystemC simulation according to the
Message Sequence Chart (MSC) principle. MSC tracing is a well known tracing mechanism
usually employed in Specification and Description Language (SDL) based design environments
like the TAU SDL suite [6]. The MSC representation provides a very intuitive visualization of a
network of coarse-grain SystemC processes exchanging abstract data types (ADTs). SystemC
modules are displayed by vertical lines, which are labeled with the module name at the top.
Communication events are displayed as horizontal arrows between the lines of the emitting and
receiving processes. The arrows are labeled with signal name, the bracketed time instance and
the ADT type name. The debugger provides advanced filter mechanisms to systematically reduce
the displayed data exchange to the currently interesting communication events.

figure 6: Message Sequence Chart Debugger

Thus, debugging is achieved at all levels of granularity. First, the system level transactions are
displayed in the MSC debugger. Next, cycle and process debugging is achieved through the
macro debugging capabilities. Macro debugging capabilities include stop, step, continue (time),

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

11

pause, and breakpoints. Some signals can be monitored or traced. Finally, the source code of any
model can be debugged in the framework of the overall simulation.

4.3 Performance Visualization
Performance is the key criterion during the investigation and the specification of the system
architecture. For the proper analysis and understanding of the profiling results, the presentation
of the simulation data is most important to reach design decisions. Data can be displayed using
DAVIS, the Data Analysis and VISualization tool integrated in System Studio. Besides
displaying values over time, data can be displayed in different formats such as scatter and eye
diagrams and at logical levels. In addition, a monitor library provides additional interactive
analysis and visualization capabilities, such as displaying utilization statistics of a bus as a pie
chart, as vertical or horizontal bars, or as the histogram of a queue load. Objects in a design can
be instrumented such that they can be watched during simulation. Any objects such as signals,
ports, parameters, and in some cases local variables can be instrumented. These objects can then
be dynamically visualized in the monitor

4.4 VHDL/Verilog Co-Simulation Interface
A co-simulation interface is introduced in System Studio to enable co-simulation with existing
legacy code in Verilog or VHDL, and to verify the system behavior at block implementation
level. Either the Verilog or VHDL code is embedded into the System Studio simulation, or the
System Studio executable is slaved to any C-friendly environment. While importing Verilog or
VHDL code into System Studio, clock and reset signals as well as the Verilog/VHDL and the
System Studio wrapper are generated. By default, a one-to-one correspondence from input
values to output values is assumed. The simulation can be called with or without the hardware
debugger front-end to provide the usual Verilog or VHDL hardware environment to the user.

5 IP forwarding chip case study
In this section we will present the results of an IP forwarding chip design project, where the
proposed system level design methodology has been applied in cooperation with Synopsys
Professional Services. We will introduce and characterize the design and illustrate the virtual
mapping methodology.

5.1 Project overview and characterization
The major objective of this project is the evaluation of the outlined system level design
methodology with respect to the following requirements:
• Ensure performance as early as possible in the design flow to avoid late iterations
• Serving as a functional reference model of the system down to implementation
• Evaluate complex interactions between protocol layers
• Minimize cost for a given performance
• Evaluate architecture options: buffer access modes, speed, bus width, shared resources, data

structures
• Evaluate complex algorithms, e.g. scheduling, WRED (weighted random early detection)

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

12

5.2 IP Router functional specification
In this section, the essential components of an ingress IP edge router and traffic manager design
are elaborated. The functionality is focussed on IP layer, and protocol layer 2 functions are
deliberately left out. Although the models considered are moderately complex, the overall
purpose of the project is a feasibility study for the methodology and not a product quality chip
design.

à

Parser RLU Classifier Meter WRED Queuer

Scheduler

CSIX

figure 7: functional view of IP forwarding chip

figure 7 displays the functional blocks of the IP router together with the basic inter-block
communication:
• The Parser unit performs check of incoming packets and provides following units with

packet descriptors, which hold all the relevant header information of the respective IP packet.
• The Route Lookup unit performs forwarding of IP Packets based on the longest match table

search algorithm. The forwarding decision is based upon destination IP address and the
contents of memory storing the routing table.

• The Classifier classifies incoming packets into Classes of Service (CoS), so the packets are
processed according to their negotiated Quality of Service parameters by the following
blocks.

• The Meter unit measures the IP packet rate and drops packets exceeding the negotiated
traffic characteristics to protect the succeeding queuer unit from unfriendly traffic streams.

• The WRED unit also drops packets according to the weighted RED algorithm [7] to avoid
throughput degradation due to congestion.

• The Queuer unit stores IP packets according to their class of service until they are forwarded
to the CSIX unit

• The Scheduler unit decides on the basis of the priority and the actual fill status of the packet
queues in the queuer unit.

• The CSIX unit segments IP packets into fixed size packets according to the standardized
CSIX bus protocol [8] to interface the switch fabric.

According the methodology described in section 3, first a functional SystemC model is created
from the functional specification document. As depicted in the System Studio snapshot in figure
5, the structure of the functional SystemC model matches the block diagram in specification
document. Also the data flow through the model as displayed in the MSC debugger in figure 6 is
straight forward except for the communication between the Queuer and the Scheduler units. This
functional model is well suited to validate completeness and functional correctness, but does not
yet impose any assumptions on the architectural realization.

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

13

5.3 Architecture Refinement and Exploration

The successive steps of mapping the functional SystemC model to a virtual architecture are
explained with special emphasis on how the CCSS performance visualization features are used to
drive architectural decisions and to define the final system architecture. In general, the
architecture exploration can be separated into sub-phases, where the modeling granularity and
accuracy is successively refined.

System Architecture
Given the constraints on latency, the architect can decide to have a more parallel than pipelined
architecture. For instance, the classification can be performed in parallel with the route lookup.
To model this effect, the top-level structure of the router does not need to be modified. Only the
timing annotation changes in the route lookup and the classifier.

Block-Level Timing Budgets
An initial timing budget is defined for each module that is based on experience. Timing budget
includes both pipeline delay and iteration interval. Based on simulations, the architect may relax
some constraints, choose to tighten some others, or find out that a budget is required that is not
realistic for a module. In the latter case, the architecture will be modified, e.g. resources are
added or the algorithm is changed. Final budgets provide a requirement specification for later
RTL implementation. The statistic evaluation of the channel library is used to detect bottlenecks
in the system. The histograms depicted in figure 8 show the number of tokens stored on the
channels during a simulation run. The striped histogram shows a high incidence of long FIFO
queues, which indicates a throughput bottleneck in the consumer block of the “pd_parser”
channel: the consumer processing power does not catch up with throughput of the respective
producer block.

figure 8: channel statistic
A well-balanced system architecture provides sufficient processing power for all components,
such that the FIFO fill level of all channels remains within moderate limits.

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

14

Algorithmic Exploration
Several scheduling schemes can be evaluated with high simulation performance, since the
simulation is essentially running on a packet clock. By that the algorithmic performance can be
evaluated in a realistic system context with respect to throughput, processing requirements and
Quality of Service properties.

Block-Level Macro Architecture
Shared resources like a bus or a memory can be modeled at this stage. For instance as depicted in
figure 9, most modules in the data path could make use of a shared packet descriptor memory
instead of dedicated point-to-point communication. This would certainly reduce register cost, but
would probably be not sustainable using a single bus/memory architecture. A trade-off between
memory and register usage can be found by quickly evaluating a few options.

Block-Level Micro Architecture
Several options for the route lookup algorithm can be evaluated. They are tightly linked with the
associated RAM usage (CAM, SRAM…). These memory components need not be modeled
explicitly, but only the respective timing behavior (access time, latency…) is taken into account
in the way the timing annotation is performed in the route lookup module. Should the route
lookup module be reused in another system, the different implementation could be reused and
only the interface would need to be updated.

Parser

RLU Classifier Meter WRED Queuer

Scheduler

Descriptor
memory

Descriptor Bus

release

MMU
request addr

IP Packet
Memory

write

read
release CSIX

figure 9: abstract architecture view of IP forwarding chip

SNUG Europe 2002 SystemC based Design of an IP Forwarding Chip
 with CoCentric System Studio

15

6 Conclusion
In this paper, a system level design methodology based on the SystemC library is presented. The
outlined approach is well supported by the CoCentric System Studio development environment
and capable to capture the complete system functionality as well as all performance relevant
architecture features on the highest possible level of abstraction. The resulting modeling
efficiency measured in lines of code and the simulation speed is about two orders of magnitude
better compared to an RTL architecture model.

During a research cooperation with Synopsys Professional Services, the outlined methodology
has been applied to the architecture conceptualization of an IP forwarding chip. By employing
the proposed system level design methodology, a team of 3 engineers was able to demonstrate
the feasibility and define a scalable and cost effective architecture within 2 months without
sacrificing the algorithmic performance. The resulting system architecture model also serves as
an executable specification and as a fast co-verification environment for the HW
implementation.

In the second project phase, the HW/SW co-design aspects of the methodology will be applied to
the IP Router case study. Here we will investigate the mapping of several computational tasks to
Application Specific Instruction-set Processor (ASIP) cores to improve the system flexibility.
The ASIP design will be performed using the LISA Processor Design Platform [10].

7 References
[1] SystemC initiative, http://www.systemc.org

[2] “Functional Specification for SystemC 2.0”

[3] J.A. Rowson, A. Sangiovanni-Vincentelli, “Interface-Based Design", DAC 1997

[4] A. Silburt et.al. “Accelerating Concurrent Hardware Design with Behavioural Modeling

and System Simulation.” DAC 1995.

[5] Concurrent Versions System, www.cvshome.org

[6] Telelogic TAU, www.telelogic.com

[7] Random Early Detection Gateways for Congestion Avoidance, Floyd/Jacobson, 1993

[8] CSIX “Common Switch Interface Specification”, www.csix.org

[9] The GRACE++ Project, www.iss.rwth-aachen.de/Projecte/grace/index.html

[10] LISA Processor Design Platform, www.iss.rwth-aachen.de/lisa

