
A Modular Simulation Framework for Spatial and Temporal Task Mapping onto
Multi-Processor SoC Platforms

Torsten Kempf, Malte Doerper,
R. Leupers, G. Ascheid, H. Meyr

Institute for Integrated Signal Processing Systems
Aachen University of Technology, Germany

Torsten.Kempf@iss.rwth-aachen.de

Tim Kogel, Bart Vanthournout
CoWare, Inc.

Leuven, Belgium
http://www.CoWare.com
Tim.Kogel@CoWare.com

Abstract
Heterogeneous Multi-Processor SoC platforms bear the po-

tential to optimize conflicting performance, flexibility and en-
ergy efficiency constraints as imposed by demanding signal
processing and networking applications. However, in order to
take advantage of the available processing and communica-
tion resources, an optimal mapping of the application tasks
onto the platform resources is of crucial importance.

In this paper, we propose a SystemC-based simula-
tion framework, which enables the quantitative evaluation
of application-to-platform mappings by means of an exe-
cutable performance model. Key element of our approach is
a configurable event-driven Virtual Processing Unit to cap-
ture the timing behavior of multi-processor/multi-threaded
MP-SoC platforms. The framework features an XML-based
declarative construction mechanism of the performance
model to significantly accelerate the navigation in large de-
sign spaces.

The capabilities of the proposed framework in terms of de-
sign space exploration is presented by a case study of a com-
mercially available MP-SoC platform for networking applica-
tions. Focussing on the application to architecture mapping,
our introduced framework highlights the potential for opti-
mization of an efficient design space exploration environment.

1. Introduction
One of the most challenging tasks in modern System-on-

Chip design projects is to map a complex application onto a
heterogeneous architecture in adherence to the specified per-
formance and cost requirements. The effective performance of
processing elements is often confined by the communication
architecture, since memory access latency does not keep pace
with the increasing computational power. General purpose
processors resolve the memory access bottleneck by using so-
phisticated cache and memory hierarchies. Unfortunately this
approach is often not applicable for embedded applications
due to the poor memory locality of stream driven and packet
based data processing.

Instead, embedded processor architectures are increasingly
equipped with Hardware Multi-Threading (HW-MT) [1] to
perform task switches with virtually no performance overhead.
By that, the application inherent Task Level Parallelism (TLP)
is exploited with the purpose of hiding the memory access la-
tency. This effectively leads to a significant increase in proces-
sor utilization. The HW-MT technique is already widely em-
ployed in the network processor domain [2] but recently finds
its way into advanced multimedia [3] and wireless signal pro-
cessing platforms [4].

Beside the immediate benefit of increased utilization, HW-
MT can be considered as a lean operating system imple-

mented in hardware to efficiently share the processing re-
sources among multiple concurrent tasks. In analogy with to-
day’s software operating systems (SW-OS), the HW-MT con-
cept bears the potential to bring a disciplined management
of processing resources to the data processing domain. From
the perspective of the functional tasks, this ’processing man-
agement’ introduces a virtualization of the computational re-
sources. This virtualization of the architectural elements repre-
sents an efficient concept to cope with the complexity of MP-
SoC platforms: now the system architect canallocateprocess-
ing and communication resources in a deterministic way [5].

However, the spatial and temporal mapping of the func-
tional tasks to processing elements as well as the mapping of
the inter-task data exchange to a communication architecture
while meeting performance and cost requirements is an unre-
solved challenge. In this paper we propose a SystemC based
simulation framework, which enables the system architect to
evaluate arbitrary task mappings by creating an abstract and
yet sufficiently accurateperformance modelof the considered
application together with the anticipated architecture.

The application is first represented as a set of untimed reac-
tive SystemC tasks communicating through an unified Trans-
action Level Modeling (TLM) [6] interface. Next the process-
ing requirements of each individual task are characterized by
annotating the delay budgets to the communication events. Fi-
nally we introduce the concept of a Virtual Processing Unit
(VPU) to capture the impact of shared processing elements to
the SoCs performance. As an intermediate layer between the
timed task network and the underlying event driven simula-
tion kernel, the major purpose of the VPU is to compute tim-
ing of the multi-threaded task execution under the considera-
tion of task swapping and preemption.

The major benefit of the outlined approach is thedeclar-
ative constructionof the performance model: the individual
timing annotations as well as the mapping of the tasks onto
the respective processing elements is specified by means of an
eXtended Markup Language (XML) description. This generic
mapping mechanism significantly shortens the iterative explo-
ration cycle as well as improves model reuseability.

After the subsequent discussion of related work, we present
the envisioned MP-SoC design flow and give an intuitive in-
troduction of the task model. The following section 4 intro-
duces the VPU concept and defines in detail the operational
semantic. The value of our approach is highlighted by a large
scale case-study in the context of the networking application
domain.

2. Related Work
System Level Design is considered the appropriate way

to deal with the ever increasing complexity and heterogene-

1530-1591/05 $20.00 © 2005 IEEE

ity of SoC architectures [7]. Various actor-oriented frame-
works are proposed to capture arbitrary Models of Computa-
tion (MoC) for the purpose of system level modeling and tool
supported paths to exploration, implementation and/or verifi-
cation [6, 8, 9]. The modeling strategy presented in this paper
can be implemented on top of any of these MoC generic frame-
works. We selected SystemC mainly because of the broad user
acceptance and commercial tool support.

Complementary to our top-down refinement flow, the Com-
ponent Based Design paradigm [10] advocates the bottom-up
platform composition from a parameterizable IP library, con-
taining off-the-shelf processing elements, communication fab-
rics and hardware dependent Software layers. This approach is
clearly advantageous for the rapid exploration and implemen-
tation of the general purpose portion of the application [11],
whereas our approach is focused on application specific archi-
tectures executing the data-processing part.

The highest possible abstraction level for design space ex-
ploration and application mapping is static performance anal-
ysis [12, 13]. Other approaches are closer related to simula-
tion frameworks for top-down exploration and refinement like
ARTEMIS [14], MESH [15], STepNP [16] and work on ab-
stract RTOS modeling [17, 18].

The ARTEMIS project [14] is focused on an automated
refinement of coarse-grain Kahn Process Network algorithm
models to fine-grain architecture models for the purpose of de-
sign space exploration and synthesis.

Similar to our approach, the Modeling Environment for
Software and Hardware (MESH) [15] project is concerned
with modeling of heterogeneous MP-SoC platforms above the
cycle-level accuracy. Here, schedulers are considered as the
central modeling element to capture the dynamic and data-
dependent nature of MP-SoC platform mapping.

The SystemC based STepNP [16] simulation framework
also advocates the joint consideration of communication archi-
tecture and application specific processing elements. STepNP
is focused on the early integration of Instruction-Set Simula-
tors (ISS) into cycle-level TLM platform models [19], whereas
in our approach processing elements and interconnect are sit-
uated on a higher packet-level TLM abstraction layer.

Madsen et al. propose the combined modeling of NoC and
RTOS scheduling at a yet higher abstraction level, where the
application tasks are only represented as set of timing budgets
for processing and communication without any functional in-
formation [17].

Work on RTOS modeling [18] and generation [20] em-
ploys similar modeling techniques as our approach, but par-
ticularly addresses the selection and configuration of the Soft-
ware RTOS for general purpose processing.

Our modeling framework addresses quantitative perfor-
mance analysis during the early conceptualization of highly
complex Network-on-Chip (NoC) enabled MP-SoC platforms.
The unique transparent mapping mechanism presented in this
paper combines the flexibility of non-functional performance
analysis with an accuracy within few percent of fully cycle ac-
curate TLM simulation [21].

3. System Level Design Flow
We first give an overview of the complete flow, before we

introduce the design space exploration framework. Then we
motivate the concept of task modeling, where we introduce
the Virtual Architecture Mapping methodology to capture the
effect of task execution on dedicated hardware as well as on
single-threaded processor cores.

3.1. Design Flow Overview
The overall flow follows the multi-level SoC design strat-

egy proposed by Magarshack and Paulin [22], which separates
MP-SoC development into four distinctive phases.

• The functional phasedeals with development of Hard-
ware independent Software and application specific algo-
rithms. We assume, that this phase also comprises the par-
titioning of the application into a set of loosely coupled
functional blocks and the extraction of Task Level Paral-
lelism (TLP). For the performance relevant data process-
ing portion of typical signal processing and networking
applications, this architecture independent partitioning is
mostly straight forward and can be immediately derived
from the algorithmic block diagram.

• The MP-SoC platform phasecovers the system-
architecture specification by integration of high level
IP blocks, along with the spatial and temporal mapping
of the application to the MP-SoC platform. We particu-
larly address this phase, which is concerned with the full
functional and architectural complexity of MP-SoC plat-
forms.

Additionally, high-level IP creationandbasic IP creationare
concerned with the development of the individual SoC compo-
nents like e.g. embedded processors or interconnect technolo-
gies. These two phases are not in the scope of this paper.

3.2. MP-SoC Mapping Phase
As depicted in figure 1, our MP-SoC framework follows the

well-known y-chart principle [23], where a set of functional
application models is merged with a set of architecture mod-
els in a dedicated mapping step. As an extension of the general
y-chart paradigm, in our case the timing is separately spec-
ified during the mapping phase to keep it independent from
both the functional model as well as the architecture model.
This mechanism is the key to enhance the reusability of archi-
tecture and application models as well as the flexibility dur-
ing design space exploration. In reference to the flexible and
highly abstracted mapping mechanism, the developed embod-
iment of the y-chart principle is calledVirtual Architecture
Mapping (VAM).

Figure 1. Virtual Architecture Mapping

In our previous work we have conceived a well defined
packet-level TLM paradigm [24] for efficient modeling of em-
bedded applications and the anticipated communication archi-
tecture. The available set of generic, parameterizable on-chip
communication models cover shared buses as well as full scale
on-chip networks [25]. The simulation environment also con-
tains a comprehensive set of analysis tools for functional and
performance validation.

One key aspect for efficient design space exploration is a
declarative specification mechanism, i.e. the following aspects
of the MP-SoC architecture are defined by an XML based con-
figuration file, which contains:

• the configuration of the timing model (basically the number of
required cycles per task execution),

• the number of available processors and number of supported
concurrent threads per processor,

• the mapping of the application tasks to processors and threads,
• the instantiation, parameterization and interconnection of the

communication nodes,
• the instantiation and address mapping of the memory architec-

ture.
During the elaboration phase of the simulation, the archi-

tecture specification is extracted from the configuration files
and bound to the application model by means of Virtual Archi-
tecture Mapping. During the simulation run, evaluation mod-
ules connected to the architecture models collect and aggre-
gate statistical information like resource utilization, latency,
and throughput. On completion of the simulation, this statisti-
cal information is visualized by means of histogram and com-
munication graph views. Based on the collected data, the sys-
tem architect may modify the MP-SoC architecture and/or the
application mapping until the requirements are met.
3.3. Task Modeling

This paragraph introduces the task modeling. Tasks are rep-
resented by their pure functionality and an individual timing
model. The functionality is pure C/C++ code, whereas the tim-
ing model influences only the notification time of externally
visible events. These annotated times characterize the archi-
tecture implementation of the task and are derived from the re-
quired processing time of the anticipated processing element
to execute the task’s functionality.

Following to the notation scheme of the Tagged Signal
Model (TSM) [26] we will now introduce a formal represen-
tation of the timing annotation. After some fundamental defi-
nitions, the modeling of a functional process is derived.

Elementary Definitions: An event e consists of a time
tag t ∈ T and a valuev ∈ VADT . In our packet-level
TLM paradigm, a value is represented as an Abstract Data
Type (ADT), which is basically a C++ class object. Predefined
members of this ADT are a priority, a delay and a state. The
tag and the value fields of the event are accessible by the point
operator, i.e.ei.value.priority denotes thepriority field of
eventei. A signal sis a set of events, which can be viewed as
a subset ofT × V.

In the following considerations functional SystemC pro-
cesses are represented astimed Communicating Extended
Finite State Machines (tCEFSM)to reason about the timing
annotation and mapping mechanism. A tCEFSM is a 7-tuple
(I,O,Z, f,U ,Dbusy,Ddelay) with
• a set of input eventsI⊆T ×VADT and output eventsO⊆T ×VADT
• a finite, non-empty set of explicit statesZ.
• a set of variablesU = (u1, . . .), which represent the implicit state.
• a state transition functionf : Z∗ × I 7→ Z∗ ×O , whereZ∗ denotes

the set of all implicit and explicit states
• a set of busy periodsDbusy = {∆tbusy,i}
• a set of processing delaysDdelay = {∆ti,d}
The tCEFSM is activated on the arrival of a new input event

and instantaneously responds with a state transition and pos-
sibly the generation of one or more output events. To model
the busy time of the task during the processing of the state
transition, the next activation is not possible before the time
∆tbusy has elapsed as illustrated in the upper part of figure
2. Additionally the generated events are projected into the fu-
ture to account for the period∆ti,d between task activation
and event generation. Note that this scheme is sufficiently ex-
pressive to capture the notion of pipelined processing elements
with ∆tbusy < ∆ti,d, i.e. the processing of a new input event
starts before the generation of the result.

Figure 2. VPU Performance Model

By guarding the activation of the tCEFSM during the busy
periods and delaying the generated events, the externally vis-
ible behavior of the tCEFSM corresponds to the task execu-
tion on the anticipated processing element. Compared to non-
functional task representation by means of processing budgets,
our coarse-grain annotation of the functional SystemC pro-
cesses yields a very accurate model of the timing character-
istic. Additionally the simulation speed is significantly faster
than on a target instruction set simulator.

This modeling methodology enables mapping of functional
tasks to single-threaded processors as well as to dedicated
hardware blocks. In the following section we introduce the
concept of a Virtual Processing Unit (VPU) to enhance the in-
troduced methodology to model shared processing resources.

4. VPU
We will now present the Virtual Processing Unit concept.

First we introduce an intuitive introduction of the functionality
and in the following paragraph the operational semantic of this
generic SystemC model is derived.

4.1. VPU Introduction
The VPU enables the system architect to investigate the

mapping of the application tasks with respect to space and
time. Spatial mapping denotes the assignment of a task to one
of the physical processing elements in the MP-SoC platform.
Temporal mapping refers to the allocation of a time budget
(derived from the number of processing cycles) on this partic-
ular processing element. Note that the task itself remains un-
touched and no recompilation is required to explore the design
space, as the total simulation environment is configured by an
XML description during the simulations initialization phase.

An example depicted in figure 2 illustrates the timing anno-
tation and VPU mapping mechanism. The upper part of figure
2 shows two tasks and their individual timing characteristic,
which are spatially mapped to a single VPU instance. The bot-
tom of figure 2 shows the resulting timing in response to an
assumed scenario. In the following we discuss the event se-
quence to illustrate the impact of the VPU:

First task 1 is activated by the externalinit T1 event, ex-
ecutes the first portion of its functionality, and generates the
externalrequest T1 event after 10 time units . In the mean-
time, the activation eventinit T2 has already occurred, but
task 2 cannot start execution before the first task is finished

and swapped out. The VPU takes this additional delay into ac-
count and notifies the external event to activate the execution
of task 2 at the correct time. In the given scenario, the com-
munication request from task 1 returns before task 2 has fin-
ished the first portion of its functionality. Since task 1 is con-
figured to have a higher priority, task 2 is preempted and not
resumed before task 1 has completed its functionality. The re-
quest generated by the functionality of task 2 is delayed by the
additional preemption time, thus the externally visible event
of this request is notified at the corresponding time of concur-
rent task execution.

Of course, the new task mapping capabilities are compliant
with our existing communication models. As outlined in the
previous chapter, the complete MP-SoC platform phase is now
supported by a versatile exploration framework.

4.2. Operational Semantic
According to the Tagged Signal Model (TSM) we intro-

duce a formal representation of the timing annotation and the
VPU mapping mechanism.

The concept of a VPU generalizes the modeling of a SW-
OS as well as HW-MT processing elements. Following the Vir-
tual Architecture Mapping (VAM) mechanism, the VPU map-
ping is achieved by manipulation of the externally visible event
tags. Before the incorporation of any specific Real Time Op-
erating System (RTOS), our transparent mapping scheme and
parameterizable VPU enables the efficient design space explo-
ration without modifying of the functional tasks.

By mapping different functional tasks represented as timed
CEFSMs to one VPU, the VPU guards the activation of all
tasks against incoming events as illustrated in figure 3. In or-
der to calculate the tags of all incoming and generated events,
the VPU maintains two data structures:

The Priority Queue UPQ is a list of eventsei ∈ T × V,
which stores incoming events. By that the individual busy
times∆tbusy,i of the associated tasks are taken into account.
The associated methodschedule processes(UPQ) schedules
the next active task from the list of pending events in the Pri-
ority QueueUPQ without removing the event from the queue.
An additional methodremove finished processes(UPQ)
removes the activating event of a finished task from the Prior-
ity QueueUPQ.

A Delay QueueUDQ is a list of eventsei ∈ T × V, which
projects generated events into the future according to their
tags. The event tags are calculated with respect to the indi-
vidual delay annotations∆tdelay,i.

Additionally the VPU calculates the delay penalty of task
swapping and task preemption. Along these lines we define a
VPU to be a 7-tuple
PV PU = (SI ,SO, EInternal,UPQ,UDQ,UV PU , fV PU)
• a set of input signalsSI = SV PU,CI ∪ SV PU,FI , whereSV PU,CI

denotes a set of input signals connected to the on-chip communication
network andSV PU,FI denotes a set of input signals connected to the
associated functional tasks.

• a set of output signalsSO =SV PU,CO∪SV PU,FO , whereSV PU,CO

denotes a set of output signals connected to the on-chip communication
network andSV PU,FO denotes a set of output signals connected to the
associated functional tasks.

• a set of internal eventsEInternal = { ePQ,update, eDQ,update}
• a Priority QueueUPQ ⊆ T ∈ V and a Delay Queue
UDQ ⊆ T ∈ V

• a set of internal variablesUV PU = { ubusy, upriority, ∆tswap},
where

– a state variableubusy , which is initialized as false
– a variableupriority retains the priority of the active process
– a swapping time∆tswap depending on the VPU‘s status

• a set of functionsfV PU :

Figure 3. Virtual Processing Unit (VPU)
– fPQ activate being sensitive to external events on the signals
SV PU,CI connected to the communication network

– fPQ update being sensitive to the internal eventePQ,update

– fDQ activate being sensitive to events on the signalsSV PU,FI

connected to the associated functional tasks
– fDQ update being sensitive to the internal eventeDQ,update

In the following we elaborate the operational semantics of
the VPU functions and illustrate the work-flow of the VPU
model by means of the example depicted in figure 3.

Events arriving on the incoming signalsSV PU,CO activate
the functionfPQ activate. This function inserts the arriving
event into the Priority QueueUPQ and in case of preemption
or idle state the VPU directly activates the further processing
of the arrived event.

functionfPQ activate{
UPQ.insert(eV PU,AI);
if((upriority < eV PU,AI .value.priority) ‖ (!ubusy)))

ePQ,update.notify();
}

The function fV PU,PQ update handles the tag manipu-
lation of both pending events for activation of the mapped
tasks as well as outgoing events generated by the tasks.
0 functionfPQ update{
1 remove finished processes(UPQ);
2 if(UPQ.notEmpty()) {
3 if(etmp = schedule process(UPQ)) {
4 if(etmp.value.state == init) {
5 eV PU,FO = etmp;
6 nbr cycles = eV PU,FO.notify(∆tswap);
7 ∆tbusy = nbr cycles ∗ clock period
8 etmp.value.state = busy;
9 etmp.value.due date = now + ∆tbusy + ∆tswap;
10 uinit = true;
11 }
12 if(!ubusy) {
13 ubusy = true; upriority = etmp.value.priority;
14 } else {
15 if((upriority < etmp.value.priority) ‖ (uinit)) {
16 // preemption
17 for((all events in PQ)&&(state == busy))
18 event.value.due date+= ∆tbusy + ∆tswap;
19 for(all events inDQ)
20 event.value.due date+= ∆tbusy + ∆tswap;
21 upriority = etmp.value.priority;
22 uinit = false;
23 } else { // resume task
24 for((all events in PQ)&& (state == busy))
25 event.value.due date+= ∆tswap;
26 for(all events inDQ)
27 event.value.due date+= ∆tswap;
28 ∆tbusy = etmp.value.due date− now;
29 upriority = etmp.value.priority;
30 }
31 }
32 ePQ,update.notify(∆tbusy + ∆tswap);
33 }

34 } else {
35 ubusy = false; upriority = −1;
36 }
37 }

On every execution offV PU,PQ update with a non-empty
priority queue, the VPU checks whether a new task needs to
be scheduled from the set of pending events in the Priority
QueueUPQ (line 3). In case an event has been scheduled for
the first time (line 4), the delayed activation of the functional
task takes the penalty for task swapping into account (line 6
and 7).

Recall that the activation of a functional task always re-
turns immediately and the VPU performs the required timing
manipulation of the events. The product of the return value
nbr cycles and the VPUsclock period denotes the individ-
ual timing annotation of the activated task (line 7). At the
same time the new events generated during the task activa-
tion are inserted into the Delay QueueUDQ. These events re-
main inside this queue until their tag is due. As depicted in fig-
ure 3, sending of the projected events is handled by the func-
tionsfDQ,update andfDQ,activate.

Task preemption occurs when the current task has a lower
priority than the selected task. In this case all generated events
in the Delay QueueUDQ and the tags of already activated pro-
cesses in the Priority QueueUPQ have to be delayed (lines
17 – 20). The preemption time is calculated from the busy time
∆tbusy of the displacing processes and the required swapping
time∆tswap.

Figure 2 illustrates a typical execution sequence in case of
preemption. At time 30 the response of task 1 displaces the ex-
ecution of task 2. Originally eventrequest T2 would occur at
time 15 + ∆t2,d0 = 15 + 25 = 40. Instead, the event is de-
layed by∆t1,d1 + ∆tswap = 15 time units. Resuming task
2 at time 45 causes another∆tswap tag increment of event
request T2, which finally occurs at time 60.

Coming back to the discussion offV PU,PQ update, the tag
incrementation of already generated events in case of task re-
suming is performed in lines 24 – 27. Finally the next acti-
vation offV PU,PQ update occurs after the current task is fin-
ished, i.e. after the busy time of the active process∆tbusy plus
the swapping penalty∆tswap (line 32). If no events are pend-
ing in the priority queue, the VPU switches to idle state and
waits for the arrival of new events (line 35).

As already mentioned the functionsfDQ,update and
fDQ,activate maintain the Delay QueueUDQ, where:
• The functionfDQ,activate inserts the incoming events at the

functional signal into the Delay QueueUDQ.
• The functionfDQ,update manages the sending of due events to

the architectural signals of the VPU.

In summary, the VPU enables the transparent map-
ping of multiple functional tasks onto a shared processing re-
source. The configurable∆tswap parameter models of the im-
pact on performance during task swapping of a slow SW-OS
compared to hardware supported HW-MT. The modular im-
plementation of the framework allows the customizing
the task scheduling algorithm by overloading the func-
tion schedule process(UPQ). This enables the incorpora-
tion and early investigation of the RTOS scheduling pol-
icy.

5. NPU Case Study
To demonstrate the fidelity of the outlined approach, this

section presents the results of a design project accomplished
with the introduced design methodology. We have selected an
IPv4 forwarding application with Quality of Service (QoS)

Figure 4. Software Pipelines

functionality and demonstrate the framework’s exploration ca-
pabilities during a case study of a state-of-the-art Network Pro-
cessing Unit (NPU) platform.

5.1. Reference Architecture
The capability of the introduced methodology has been

evaluated in the context of the Intel IXP2400 NPU [27]. The
task characterizations in terms of memory accesses as well as
computation cycles are taken from the original Intel documen-
tation [2] and are illustrated in table 1.

The reference architecture of Intel consists of 8 RISC-like
processing elements each implementing 8 concurrent hard-
ware threads. These processors have been modeled as VPUs,
where each VPU instantiates 8 functional tasks to model the
8 threads of each processor. Since HW-MT processors swap
tasks within a single clock cycle the VPU swap time∆tswap is
one cycle. The communication network of the IXP2400 archi-
tecture comprises 7 exclusive next-neighbor connections and
3 global shared buses. To achieve the required OC-48 perfor-
mance (corresponding to 2.5 Gbit/s) the timing budget to pro-
cess a minimum size 48 Byte packet is only 147ns.

In this section, we illustrate the exploration capabilities of
our framework, focussing on the task mapping of the IPv4 ap-
plication to the Intel architecture.

5.2. Design Space Exploration
The mapping of the application tasks onto various VPU

configurations reveals the impact of processing element fea-
tures like execution speed and HW-MT support. To achieve
a fair comparison between the considered task mappings, the
processing and communication requirements of all functional
tasks are tied to the values in table 1. All VPUs are modeled
with a frequency of 600 MHz.

Three alternative spatial task mappings depicted in figure
4 are evaluated: according to the functional software pipeline
(figure 4a) each VPU concurrently executes the whole appli-
cation. Second, figure 4b shows a context software pipeline,
where each VPU concurrently executes 8 instances of the same
task. The third option depicted in figure 4c represents a mixed
functional/context pipeline.

line func. busy cycles SRAM DRAM no. alloc.
task (∆tbusy) accesses accesses tasks

0 Parser 70 3 2 8
1 RLU 160 10 1 24
2 Meter 80 2 0 4
3 Dropper 80 2 0 4
4 Buffer ≈0 4 0 8
5 Scheduler 100 0 0 4
6 CSIX 80 3 1 8

Table 1. Reference Mapping

Our traffic scenario is a typical IP traffic profile with an ef-
fective data rate of 2.06 Gbit/s. Investigation of the three in-
troduced software pipelines shows, that the functional
pipeline falls short to achieve the throughput requirements,
as a throughput of appr. 1.89 Gbit/s is reached. There-
fore in the following discussion the functional pipeline will be
omitted, whereas the context and mixed pipeline will be fur-
ther investigated.

The impact of temporal task mapping is examined by
means of the context- and the mixed-pipeline systems and two
different VPU configurations. First a non priority based sim-
ulation and second a priority based simulation is evalu-
ated. Depending on the QoS class of each received IPv4
packet the priority is determined, e.g. video and voice pack-
ets are of high priority, whereas flooding packets are of low
priority. This scheduling mechanism influences the tempo-
ral execution of the different tasks mapped to each VPU. Pre-
ferring higher priority packets, task preemption as well as
task stalling occurs to speed up the processing of high prior-
ity packets.

Figure 5. Latency Measurements

The simulation results depicted in figure 5 show, that pri-
ority based task scheduling in the VPUs achieves a significant
reduction of approximately 40% in the latency of high prior-
ity voice packets. As a tradeoff the average latency of all pro-
cessed packets rises by a factor of2.6. These tradeoff illus-
trates the crucial impact of this kind of system architecture de-
cisions on the system performace.

In summary the results of the case-study demonstrate the
capabilities of the simulation framework in terms of flexibility
for design space exploration as well as high simulation speed.
As soon as the SystemC model of the application is available
a single engineer can carry out the task mapping experiments
within a few hours or days, as only configuration files have
to be modified. The simulation speed of this highly complex
MP-SoC architecture model for IP forwarding is in the range
of 100,000 cycles per second on a 2.0 GHz Linux host, which
is roughly 2 orders of magnitude faster than the ISS based sim-
ulator in the Intel Software Development Kit [27].

6. Conclusion
We propose a system level simulation framework for early

investigation of MP-SoC platform architectures in the context
of the application. The major contribution of this paper is a
highly flexible timing annotation and task mapping mecha-
nism to capture the performance impact of single- and multi-
threaded processing elements. Here the concept of a Virtual
Processing Unit enables the rapid exploration of spatial and
temporal application mappings to arbitrarily complex multi-
processor platforms with no design overhead.

The major advantage of our modeling approach is the com-
bination of high simulation speed, modeling efficiency and ac-
curacy to rapidly evaluate architectural alternatives. Together
with the Network-on-Chip simulation environment [25] the re-
sulting MP-SoC framework covers the exploration of the com-

plete design space spread by multiple heterogeneous process-
ing elements and complex communication architectures.

Our exploration framework has been successfully applied
to the customization of an MP-SoC platform, which performs
IP forwarding with Quality of Service support. This complex
case study illustrates the potential of the exploration capabili-
ties of the developed framework.

Our future work will focus on the incorporation of RTOS
specific services and the additional deployment of analytical
analysis- and optimization-techniques.
References
[1] T. Ungerer, B. Robic, J. Silc. A Survey of Processors with Explicit Multithreading.

ACM Computing Surveys, 35(1):29–63, March 2003.
[2] S. Lakshmanamurthy, K.-Y. Liu, Y. Pun, L. Huston, U. Naik. Network Processor

Performance Analysis Methodology.Intel Technology Journal, 6(3), August 2002.
[3] M.J. Rutten, J.T.J. van Eijndhoven, E.G.T. Jaspers, P. van der Wolf, O.P. Gangwal,

A. Timmer, E.-J.D. Pol. A Heterogeneous Multiprocessor Architecture for Flexible
Media Processing.IEEE Design & Test of Computers, 19(5):39–50, July-August
2002.

[4] C. J. Glossner, T. Raja, E. Hokenek, M. Moudgill. A Multithreaded Processor
Architecture for SDR.Proc. of the Korean Institute of Communication Sciences,
19(11):70–85, November 2002.

[5] T. Agerwala. Systems Trends and their Impact on Future Microprocessor Design.
Keynote of 35th Annual International Symposium on Microarchitecture, Novem-
ber 2002.

[6] T. Grötker, S. Liao, G. Martin, S. Swan.System Design with SystemC. Kluwer
Academic Publishers, 2002.

[7] K. Keutzer, S. Malik, A.R. Newton, J.M. Rabaey, A. Sangiovanni-Vincentelli.
System-level design: Orthogonalization of concerns and platform-based design.
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems,
19(12):1523–1543, December 2000.

[8] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, A. Sangiovanni-
Vincentelli. Metropolis: An integrated electronic system design environment.IEEE
Computer, 36(4):45–52, April 2003.

[9] D. Gajski, J. Zhu, R. D̈omer et al.SpecC: Specification Language and Methodol-
ogy. Kluwer Academic Publishers, 2000.

[10] M.-A. Dziri, W. Cesrio, F.R. Wagner, A.A. Jerraya. Unified Component Integra-
tion Flow for Multi-Processor SoC Design and Validation. In”Proc. Int. Conf. on
Design, Automation and Test in Europe(DATE)”, 2004.

[11] W. Cesario, A. Baghdadi, L. Gauthier et al. Component-Based Design Approach
for Multicore SoCs. InProc. of the Design Automation Conference (DAC), 2002.

[12] M. Jersak, R. Henia, R. Ernst. Context-Aware Performance Analysis for Efficient
Embedded System Design. In”Proc. Int. Conf. on Design, Automation and Test in
Europe(DATE)”, 2004.

[13] T. Pop, P. Eles, Z. Peng. Holistic scheduling and analysis of mixed time/event-
triggered distributed embedded systems. In”Proc. Int. Symp. on Hard-
ware/Software Codesign (CODES)”, 2002.

[14] A.D. Pimentel, L.O. Hertzberger, P. Lieverse, P. van der Wolf, E.F. Depret-
tere. Exploring Embedded-Systems Architectures with Artemis.IEEE Computer,
34(11):57–63, November 2001.

[15] J.M. Paul, A. Bobrek, J.E. Nelson, J.J. Pieper, D.E. Thomas. Schedulers as Model-
Based Design Elements in Programmable Heterogeneous Multiprocessors. InProc.
of the Design Automation Conference (DAC), 2003.

[16] E. Bensoudane P.G. Paulin, C. Pilkington. Stepnp: A system-level exploration plat-
form for network processors.IEEE Design & Test of Computers, 19(6):17–26,
Nov-Dec 2002.

[17] Jan Madsen, Shankar Mahadevan, Kashif Virk, and Mercury Gonzalez. Network-
on-chip modeling for system-level multiprocessor simulation. InProceedings of
the 24th IEEE International Real-Time Systems Symposium RTSS03, pages 82–92,
December 2003.

[18] A. Gerstlauer, H. Yu, D.D. Gajski. RTOS Modeling for System Level Design. In
”Proc. Int. Conf. on Design, Automation and Test in Europe(DATE)”, 2003.

[19] D. Quinn, B. Lavigueur1,G. Bois, M. Aboulhamid. A System Level Exploration
Platform and Methodology for Network Applications Based on Configurable Pro-
cessors. In”Proc. Int. Conf. on Design, Automation and Test in Europe(DATE)”,
2004.

[20] V. J. Mooney, D. M. Blough. A Hardware-Software Real-Time Operating System
Framework for SoC’s.IEEE Design & Test of Computers, 19(6):44–51, Nov/Dec
2002.

[21] M, Ariyamparambath, D. Bussaglia, B. Reinkemeier, T. Kogel, T. Kempf. A Highly
Efficient Modeling Style for Heterogeneous Bus Architectures. In”Proc. IEEE Int.
Symp. on System-on-Chip (SoC)”, November 2003.

[22] P. Magarshack, P. Paulin. System-on-chip Beyond the Nanometer Wall. InProc. of
the Design Automation Conference (DAC), 2003.

[23] P. Lieverse, P van der Wolf, E. Deprettere,K Vissers. A Methodology for Architec-
ture Exploration of Heterogeneous Signal Processing Systems. In”Proc. IEEE Int.
Workshop on SIgnal Processing Systems (SIPS)”, 1997.

[24] T. Kogel, A. Wieferink, R. Leupers, Gerd Ascheid, H. Meyr, D. Bussaglia, M.
Ariyamparambath. Virtual Architecture Mapping: A SystemC based Methodol-
ogy for Architectural Exploration of System-on-Chip Designs. In”Proc. Int. Work-
shop on Systems, Architecturs, Modeling and Simulation(SAMOS)”, July 2003.

[25] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, and S.
Goossens. A Modular Simulation Framework for Architectural Exploration of On-
Chip Interconnection Networks. InCODES+ISSS, October 2003.

[26] E.A. Lee, A. Sangiovanni-Vincentelli. A framework for comparing models of com-
putation. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Sys-
tems, 17(12):1217–1229, Dec 1998.

[27] Intel Network Processors.
http://developer.intel.com/design/network/products/npfamily/.

	Main Page
	DATE'05
	Front Matter
	Table of Contents
	Author Index

