
Automatic Generation of Memory Interfaces
David Kammler, Bastian Bauwens, Ernst Martin Witte,

Gerd Ascheid, Rainer Leupers, and Heinrich Meyr
Institute for Integrated Signal Processing Systems, RWTH Aachen University

52056 Aachen, Germany
Email: kammler@iss.rwth-aachen.de

Anupam Chattopadhyay
CoWare India Private Ltd.

Logix Techno Park, Sector 127
Noida - 201 301, India

Email: anupamc@coware.com

Abstract— With the growing market for multi-processor
system-on-chip (MPSoC) solutions, application-specific
instruction-set processors (ASIPs) gain importance as they allow
for a wide tradeoff between flexibility and efficiency in such a
system. Their development is aided by architecture description
languages (ADLs) supporting the automatic generation of
architecture specific tool sets as well as synthesizable register
transfer level (RTL) implementations from a single architecture
model. However, these generated implementations have to be
manually adapted to the interfaces of dedicated memories or
memory controllers, slowing down the design space exploration
regarding the memory architecture. In order to overcome this
drawback, this work extends RTL code generation from ADL
models with the automatic generation of memory interfaces.
This is accomplished by introducing a new abstract and versatile
description format for memory interfaces and their timing
protocols.

Index Terms—Architecture description language (ADL),
application-specific instruction-set processor (ASIP), memory
interface

I. INTRODUCTION

Nowadays, the market for multi-processor system-on-chip
(MPSoC) solutions is expanding dramatically. Often, the de-
velopment of such an MPSoC includes the design of new
processor architectures which are tailored to a particular
application. A common technique to develop these application-
specific instruction-set processors (ASIPs) is the use of an
architecture description language (ADL) [1]–[7]. Present ADL
tool suites enable the automatic generation of a fully syn-
thesizable hardware description language (HDL) model of
the architecture on register transfer level (RTL) [8]–[11].
Optimizations and standard processor features like debug
mechanisms are supported by the automatic generation process
making the generated model suitable for final implementation.
This decreases development time drastically as designers can
concentrate on the actual architectural features on the high
abstraction level of ADLs rather than spending time on de-
tailed modeling on RTL. Accesses to memories and busses
are usually modeled as abstract function calls in order to
e.g. transfer the address or data. Neither the definition of
the interface pins nor a highly accurate description of the
timing protocol are required on this level. However, both are
mandatory for an accurate implementation on RTL. Adding
this low level information to the ADL model by specifying
the pins and their usage directly is no option. This would
cause an overhead and lower the abstraction level of the
ADL model inadequately, making it complex, hard to maintain
and improper for fast design space exploration. Especially,
attaching different memory types to the processor would result
in many changes to the model, thus slowing down dramatically
the exploration of memory architectures which is of special
importance for the development of tailored ASIPs. Moreover,

the speed of the generated processor simulator would decrease
with the increasing detail of the model.

In this paper we present a solution for modeling memory
interfaces in ADLs avoiding the previous drawbacks. The con-
tribution of this paper is the development of a new abstract and
versatile description format for memory interfaces, which is
external to the actual ADL model of the processor core. Such
a memory interface description (MID) covers the definition
of memory ports including their pins as well as the timing
protocol including the usage of address/data busses with fixed
timing or handshake mechanisms. Keeping the MID separate
from the ADL model has several advantages:

Orthogonalization of processor model and memory interface
description: Separating the ADL model of the processor from
the MID allows for fast design space exploration of the ASIP
on ADL level and pin accurate implementation on RTL at the
same time with the same ADL model.

Reuse of MIDs: Once specified, MIDs for a dedicated mem-
ory or memory system can be reused for other architectures or
if several identical memories are attached to a single processor.

Rapid exploration of different memory architectures: Differ-
ent memory architectures, including their physical parameters
(e.g. area, timing, etc.), can be explored easily by selecting
different MIDs for the HDL code generation.

Maintaining simulator performance: Since the model is not
extended with pin level details, the simulator performance is
not affected. Nevertheless, the MID can still be used by other
tools of the ADL tool suite if required.

Independence of memory vendors: Designers can more
easily switch to other vendors with comparable memories by
simply modifying or replacing MIDs. Changes to the ADL
model in order to adapt the interface are not required.

The MID is defined so that the description of a wide range
of real world memory interfaces is possible, from simple syn-
chronous SRAMs to DDR SDRAM controllers. Even memory
systems with cache hierarchy are supported as long as an HDL
description is available.

Our automatic memory interface generation is integrated
into the LISA ADL development framework [7], which has
been developed at the Institute for Integrated Signal Processing
Systems (ISS), RWTH Aachen University and is now commer-
cialized by CoWare Inc. [12].

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III gives an overview of features
of existing memory interfaces and timing models for memory
accesses. The general approach for the automatic generation
of memory interfaces is presented in section IV. The format
for our MID is discussed in in section V. Section VI shows
how the generation process is integrated into our framework
and discusses the structure of the generated hardware (HW).
The paper is concluded in section VII.



II. RELATED WORK

In the following we give a brief overview on those ADLs
and tool suites reported to be used for HW implementation
and focus on their capabilities regarding memory interfaces.
A detailed discussion of prominent ADLs can be found in [1].
ADLs can be classified into three categories regarding their
nature of information: structural, behavioral, and mixed [1].

Structural ADLs describe architectural structures in terms
of components and their connectivity. MIMOLA [2] is an
example for this class of ADLs. Since its abstraction level
is close to RTL, it provides a close link to gate-level synthesis
tools but as a result also requires detailed modeling of the
memory interface and transfers via this interface.

Behavioral ADLs concentrate on the instruction set of an ar-
chitecture and neglect detailed HW structures. ISDL [3] as one
of these languages has been used for HDL-code generation [8],
however no information about the implementation of memory
accesses in the resulting Verilog description is available.

Mixed ADLs contain structural information as well as details
on the instruction set, like e.g. nML [4]. nML models are pro-
cessed by the commercial HDL generator GO [13]. Through
application programming interfaces (APIs), users can plug in
their own HDL implementations of the memory architecture
[14]. However, no detailed information on this process is
publicly available. Sim-nML [5], a derivative of nML, has
also been used for generating sythesizable Verilog models [9].
Here, the processor model is expected to work with a simple
single port external memory. EXPRESSION [6] is another
mixed ADL used for HDL-code generation [10] utilizing
predefined functional blocks provided as VHDL code. For the
implementation of memory accesses, appropriate functions for
several types of memories, such as SRAM or DRAM, are used.
No information about the resulting VHDL code is available, as
the library of predefined functional blocks cannot be obtained
publicly. As described in [15], EXPRESSION can also be used
for the co-exploration of processor architectures and memory
subsystems. The main goal is the optimization of resulting
compilers. However, no HDL code is generated based on this
co-exploration. LISA [7] enables a similar exploration of the
memory system [16] and has been used for generation of
optimized RTL implementations of processors [11]. However,
in [11] the memory system exploration is not combined with
the actual architecture implementation on RTL and the support
for memory interfaces and protocols is limited to simple
predefined interfaces with a fixed protocol.

This work aims at overcoming the described limitations of
available solutions by extending HDL-code generation with
support of arbitrary memory interfaces and protocols on a
cycle- and pin-accurate level without sacrificing the high
abstraction level of the ADL model.

III. MEMORY SYSTEMS

In order to enable the automatic generation of memory
interfaces, present memory systems first have to be categorized
by their individual features and characteristics. Thus, over 25
different types of memories and memory controllers from 14
different vendors have been investigated and abstracted. This
section first describes the most important aspects of available
memory systems regarding their interface. Features that need
to be supported by the HDL code generation are identified.
Moreover, a general timing model for memory accesses is
introduced.

A. Memory Types and Features
Asynchronous/synchronous memories: The timing of asyn-

chronous memories is specified by time intervals and relative
signal changes. A clock is not required. For synchronous
memories, all actions are aligned to a clock signal. The values
of interface signals are latched internally at the (typically
rising) edge of the clock. While this permits easy synchroniza-
tion between a clocked processor architecture and a memory
system, it also means that the reaction to a control signal
cannot happen before the next clock cycle. In order to obtain a
higher data throughput, some memory systems also utilize the
falling edge of a clock signal to align data transfers (double
data rate, DDR) [17]. The automatic generation of memory
interfaces focuses on the support of synchronous memory
systems. A direct support of asynchronous memories or DDR
is currently not available, since these memories are rarely used
for ASIP design. However, these types of memories can be
accessed via an appropriate memory controller.

Static/dynamic memories: Static memories retain their data
contents as long as the memory is supplied with power.
On the contrary, dynamic memories require a periodic
refresh to be issued. There are a lot of memory controllers
available, which handle these dynamic aspects, e.g. [18]–[20].
Therefore, refresh mechanisms are not targeted directly by
the memory interface generation, and dynamic memories can
be connected via appropriate controllers.

Pipelined memories: In case of a pipelined memory, a new
access can be initiated before the previous access is finished.
This behavior is e.g. shown by standard synchronous SRAMs
and supported by the HDL code generation.

Burst access: A common technique to increase data trans-
fer rates of memories are burst accesses. During a burst
access, multiple data words are automatically transferred in
subsequent cycles without additional address transfers. The
burst length of a memory access specifies the number of
data words that are transferred during a burst access. The
automatic memory interface generation differentiates between
two supported types of burst lengths. Memories can support
a fixed set of definite burst lengths to select from. Other
memory systems, especially when using memory controllers,
can support the usage of an arbitrary burst length. Then, an
interface control signal indicates the end of the burst access.
This is referred to as indefinite burst length.

Data masking: When transferring a new data word to a
memory system during a write access, it can be required to
replace only specific bits/bytes at the specified word address.
This feature is called data masking and is fully supported by
the HDL code generation.

Flushing of memory accesses: Some memories allow to
cancel pending memory accesses. In the following we will

clk

cmd

address

read write

addr

data_out

data_in

data_apt

addr

data

read write

phase
req.

addr.
data req. addr. data

data

access

Fig. 1: Example for the memory access timing model



refer to this feature as flushing of memory accesses, which is
supported by the HDL code generation.

B. Terms and Definitions
The memory system communicates with connected HW

components via an interface, which is made up of pins. In
the scope of this paper, the term pin does not necessarily
correspond to a package pin of an external memory. Since
memories in SoCs are often placed on the same die as the
processor core, a pin also corresponds to internal signals
that are used for the communication between processor and
memory system. Note, that in this context a single pin can
refer to signals with more than one bit.

A subset of the pins of the interface, which offers all
required functionality to perform a memory access to the
memory system, is referred to as port. The interface of a
memory system may consist of one or more ports, typically
acting independently of each other. A read port only supports
read accesses to a memory system, whereas a write port allows
for write accesses only. If both types of accesses are supported
on the same port, it is referred to as read-write port.

C. Memory Access Timing Model
Independent of the actual specifications of a memory

interface, each access to a memory system can be split into
three different phases (Fig. 1). During the request phase, the
access is started and communicated to the memory system,
typically by using control signals of the memory interface.
The address to be accessed is forwarded to the memory system
during the address phase. The data transfer is performed
during the data phase. Individual phases may overlap, e.g.,
request and address may be provided at the same time (read
access, Fig. 1), or require additional delays between the phases
(write access, Fig. 1). In order to abstract from the timing
varieties of different memory systems, each phase is divided
into individual atomic elements as described in the following.

Assignments: An assignment represents the action of a sig-
nal or pin being set to a specified value. A typical assignment
is the assertion of a control signal for a single cycle in order to
request an access to a memory system. The transfer of address
and write data are special types of assignments. Reading data
from a memory system is also considered as an assignment,
even if in this case data is read from the memory system, and
thus the direction of the assignment is reversed.

Delay cycles: During a read or write access, memory
systems can require a fixed number of delay cycles between
individual assignments (arrows d1 to d3 in Fig. 1). A particular
delay always consists of the same number of cycles. Otherwise
it would not be possible to determine the end of a delay
without any handshake mechanisms.

Handshakes: Memory accesses may require variable num-
ber of delay cycles. Handshake mechanisms are used to model
such access protocols. A Handshake can be described as a
specific combination of values of interface signals used to
inform about the status of a memory system. In Fig. 1, for
instance, a handshake (data apt) is used to indicate that the
memory accepts write data after a predefined delay d3.

IV. A VERSATILE MEMORY INTERFACE APPROACH

On the ADL level, memory accesses are initiated via a
dedicated API. This memory API covers all the features
and aspects described in the previous section. It is based
on the cycle-accurate API presented in [16] and allows for

TABLE I: Internal interface signal types

Signal Type Dir. Signal Type Dir. Signal Type Dir.
enable read in write data in busy out
enable write in write data enable in address request out
burst length in data mask in write data request out
burst length enable in read data out read data valid out
address in confirm read in address timing out
address enable in flush in data timing out

last data out

invoking the individual phases (request, address, data) of a
memory transfer from different places of the architecture—
and therefore also different pipeline stages if desired.

In order to map high-level accesses via the memory API to
low level HW structures, first a general set of signal types is
identified, that enables to cover all memory API functionalities
including request initialization, address transfer, data transfer
(burst and non-burst), control and status propagation. Then,
during the HDL code generation process, the memory API
function calls are used to derive the signals actually required
in the specific case, which finally build up a unified internal
interface. The 19 predefined signal types required in general
are listed in Table I including their directions (from memory
perspective). The bit widths of signals carrying address, data,
burst length and data mask depend on the characteristics of
the memory system. All other signals are single-bit signals.
The specific signals which are finally selected for the interface
depend on the type of the corresponding memory accesses in
the ADL model. A detailed description of the actual protocol
is omitted here as the mapping from the API to the internal
interface signals is straightforward.

The unified internal interface, flexible and adapted to its
individual usage, is not memory specific and does not allow
to directly connect the target memory resource. Therefore, it
needs to be mapped to a memory-resource specific external
interface, which is defined by the pins and available ports
of the targeted memory resource and independent of the
memory accesses throughout the processor model. As depicted
in Fig. 2, this mapping is performed by a memory-interface
controller, which encapsulates all the knowledge about the
external interface. For each attached memory resource a ded-
icated memory-interface controller is instantiated.

The interface pins, which connect the memory to the mem-
ory interface controller, are defined by their name, bit width
and direction (input or output). Apart from these interface pins,
the external interface may contain clock, reset and unused pins.
The latter are required in order to define the complete interface
of the memory system even if it is only used partially.

For HDL code generation, the exact setup of pins and ports

Processor

Core
Stage1 Stage2 Stage3

Memory−

Interface

Controller

Memory

Resource

Unified Internal

Interface

Memory−Resource Specific

External Interface

Fig. 2: Mapping the ADL-derived internal interface to a
memory-resource specific external interface



composing the external memory interface needs to be covered
by a memory interface description (MID), which is discussed
in the following.

V. MEMORY INTERFACE DESCRIPTION

In order to connect the generated HDL model seamlessly
to an existing memory resource, the interface and protocol
need to be known explicitly during the HDL code generation
process. However, detailed information of pins, ports, timing
protocol, etc. are not available on ADL level. Actually, the in-
terface information is not architecture but memory dependent.
Therefore, we propose to capture MIDs in dedicated external
files not directly belonging to the ADL model and thereby
orthogonalizing processor model and MID.

An MID needs to capture two different kinds of information:
structural and behavioral.
A. Structural MID Elements

Describing structural elements is straightforward since it
requires only the definition of pins and ports of a memory
interface. As detailed in the previous section, for each pin
a name, bit width and direction need to be specified. A port
groups a set of pins that provides all the functionality required
for an access to the memory system. However, additional
semantic information also needs to be covered in the port
description in order to identify the purpose of each pin.
Therefore, previously defined interface pins or bit ranges of a
pin can be declared as data bus, address bus or data mask bus.
From the direction of the interface pin declared as data bus,
the port type (read, write, read/write) can be derived directly.
Apart from these specifications, the type (definite or indefinite)
and the supported length of bursts need to be defined as well. A
structural element used by many interface descriptions on RTL
are VHDL generics or Verilog parameters as they offer a way
to parameterize a component. Thus, the MID offers to set spe-
cific values for generics. Additionally, certain resource param-
eters defined in the ADL model can be propagated via special
generics to set e.g. the bit widths of the address and data buses.
B. Behavioral MID Elements

Behavioral elements of an MID are needed in order to
describe the timing of actions and reactions of the memory
system. This means for the memory interface controller, that
certain actions need to be triggered under certain conditions
in order to map the internal interface protocol to that of the
external interface and vice versa. In order to abstract the
description of this mapping process, events and commands
are used in the MID. Events describe certain conditions of
the internal and external interface, that lead to the execution
of actions encapsulated as a list of commands. It is worth
mentioning that commands are not necessarily executed imme-
diately when a certain event occurs. Depending on the timing
protocol of the memory, delayed execution of commands may
be required. Both, events and commands, can be related to
either the internal or the external interface. Internal events and
commands need to cover all the functionality of the internal
interface (and therefore also of the memory API on ADL level)
in a rather abstract manner in order to allow for a convenient
description without details of the internal interface protocol.
In contrast to that, external events and commands have to act
at a pin accurate level. Fig. 3 shows all event handlers and
commands that have been identified according to these criteria.

Details on the internal events are given in the following. On
initialization events are triggered immediately after releasing

On Handshake On Flush RequestOn Initialization

On Burst EndOn Read Data

On Set Burst Length

On Write Data

On Request WriteOn Request Read

Event Handlers

Assign

Commands

Hold

Assign Address

Hold Busy

Read Data

Wait

Set Busy

Write Data

internal external

Fig. 3: List of events handlers and commands
the reset, providing a way to implement an initialization phase,
if required by the target memory system. On request read/write
are events occurring during the request phase of a memory
access, while on read/write data events correspond to the
data phase. The on flush request event can be used to cancel
pending memory requests. In order to react on a change of
the length of burst transfers the on set burst length event is
provided. With the on burst end event the end of a burst
transfer can be detected. This is of special importance for
memories offering an indefinite burst length. In order to enable
individual and independent treatment of memory ports (if
there are more than one), event handlers can be bound to a
previously defined port.

External events, in contrast to internal events, need to cap-
ture conditions on a lower level, namely reacting on changes
of pin values of the external interface. For this purpose only
a single event handler is specified, the on handshake event.
In order to allow for complex conditions, handshakes contain
several handshake criteria that can be combined by logical
conjunction or disjunction. The condition of a handshake
criterium can be a certain value of a pin or bit range of a
pin. Additionally, handshake criteria can further contain a
list of criteria or even refer to other handshakes enabling the
description of complex nested conditions.

Internal commands describe actions to feed back informa-
tion of the current memory status to the processor core. In
most cases the status information can be generated automati-
cally within the memory-interface controller by knowing the
exact protocol and therefore timing of the external interface.
However, one status information often depends directly on
external information from the memory system and cannot
be generated automatically: the busy status. Especially for
dynamic memories encapsulated by a memory controller or
other complex memory systems, the status of the memory
determines whether new requests can be accepted or not. In
order to deal with this issue, two commands are available:
set busy and hold busy. Both types differ in their temporal
impact on the value of the internal control signal. The set busy
command assigns a value for ”busy” or ”not busy” for a single
cycle, while the hold busy command modifies its default value
which is held until changed by another hold busy command.

External commands refer to value assignments to signals of
the external interface. The value of an external interface pin
can be changed by using the command types assign and hold,
where the assign command assigns a specific value to a pin
for a single cycle and the hold command modifies its default
value. The commands assign address, read data and write data
trigger more direct interactions between the external interface
and the internal interface. While assign address triggers the



<MemoryInterface ComponentName=”SyncMem”>
<ClockPin Name=” c l k ”/>
<ResetPin Name=” r s t ”/>
<Pin Name=”rw addr” Dir =” In ” Width=”12”/>
<Pin Name=” d a t a i n ” Dir =” In ” Width=”32”/>
<Pin Name=” d a t a o u t ” Dir =”Out” Width=”32”/>
<Pin Name=”ew” Dir =” In ” Width=”1” D e f a u l t =”0”/>
<Port Name=” rw por t ”>

<AddressBusPin Pin =”rw addr” />
<DataBusPin Pin =” d a t a i n ” />
<DataBusPin Pin =” d a t a o u t ”/>

</Port>
<OnRequestWrite P o r t =” rw por t ”>

<Assign Pin =”ew” Value=”1”/>
<AssignAddress P o r t =” rw por t ”/>
<WriteData P o r t =” rw por t ”/>

</OnRequestWrite>
<OnRequestRead P o r t =” rw por t ”>

<AssignAddress P o r t =” rw por t ”/>
<Wait Cy c l e s =”1” />
<ReadData P o r t =” rw por t ”/>

</OnRequestRead>
</MemoryInterface>

Fig. 4: MID file example for a single port SSRAM
assignment of the address provided by the processor to the
memory, the read data and write data commands specify the
data transfers during the data phase of memory accesses. Due
to its similarity to assign address and write data, the read
data command is classified as external command although the
actual direction of data is inverted.

Wait commands belong to both classes, internal and external
commands, as they describe delays by means of number of
clock cycles that can affect both sides. Note, that due to the
usage of wait commands an order within a command list of
an event handler is defined.

Due to the hierarchical nature of an MID (especially for the
description of handshakes), an XML-based document is used.
Approximately 30 lines of XML code are required to describe
synchronous pipelined memories, while less than 100 lines
are sufficient for more complex memory interfaces, such as
those of DDR SDRAM controllers. A minimum basic yet fully
functional example of an MID file for a single port SSRAM
with one cycle latency is given in Fig. 4.

VI. AUTOMATIC MEMORY INTERFACE GENERATION

The HDL code generation framework presented in [11]
evolves around an intermediate representation, named unified
description layer (UDL), which operates on an abstraction
level between that of ADLs and RTL. According to common
software design techniques the ADL code is parsed via a
frontend and RTL code can be produced in different HDLs
by dedicated backends. The automatic memory interface gen-
eration is integrated in the HDL code generation process via
the UDL structures. First, all required information needs to
be gathered to build up the structure of the memory-interface
controller. On the one hand, the MID file is parsed to generate
the explicit information about the memory structure. On the
other hand, the UDL contains the memory access information
from the processor. This information implicitly refers to the in-
ternal interface and scope of operation of the memory-interface
controller. The implicit and explicit information are combined
to generate the memory interface intermediate representation
(MIIR). During this process, memory accesses are automat-
ically mapped to available memory ports minimizing the
number of potential access conflicts. The designer can also in-
fluence the mapping by manually forcing certain accesses to be
mapped to the same port. The port mapping process includes
sanity checks ensuring the integrity of individual accesses, i.e.
all phases of an access are present. Finally, the MIIR is mapped

Unified Description Layer

Frontend

ADL Architecture Description MID File

RTL Implementation

Backend (MIIR)

MID Parser

MIIR Mapper

(UDL)
Memory Interface IR

implicit information explicit
information

Fig. 5: HDL code generation flow
to components of the UDL and thereby integrated into the
existing framework. The whole process is shown in Fig. 5.

A. Mapping MIIR structures to UDL structures
The main component to be instantiated in the UDL, is

the memory-interface controller. The targeted structure of this
controller is depicted in Fig. 6. The behavioral elements of an
MID allow to describe the behavior of the memory interface
in a functional way without details about HW structures.
Therefore, a direct mapping of the MIIR is not possible. In
the following we describe, how MIIR structures are mapped
to the interface controller.

The timing controller and the delay registers build up the
actual state machine of the memory-interface controller. The
corresponding parts of the MID are described with event
handlers and command lists. A command list can contain wait
commands to implement delay cycles which can be realized
in two following ways.

i) Shift registers: Shift registers implement a timer by
shifting each cycle by a single bit from MSB to LSB. The
timer is initialized by setting the MSB to 1. When the 1
reaches a certain position of the register, dedicated actions can
be triggered. This implementation allows to pipeline the indi-
vidual commands of an event handler as delayed commands
remain scheduled even if the event is triggered again before
their execution. This is of special importance for pipelined
memories.

ii) Counter Registers: Counters require less register cells
and a single incrementer for implementation making them
especially attractive for long delays. However, they do not
allow pipelined scheduling. For triggering delay-based events,
comparators are needed.

In principle, all commands except wait can be directly
translated to signal assignments on RTL, that are executed
conditionally. The resulting if-blocks make up the actual
timing controller and the address and data forwarding. In order
to observe the actual execution condition of a command, the
command list of an event handler is first divided by its wait
commands into command collections with the same execution
condition. The conditions refer either directly to the event or

Memory Interface Controller

Address & Data Forwarding

Timing Controller

Delay
Registers

Status
Registers Counter

Burst

Processor
Core

address & data address & data

control signalsrequests

status

Memory
Resource

Debug
Data Buffer

Fig. 6: Memory interface controller implementation



to a check of the counter status in case of delayed commands.
Thereby, each command collection is mapped to a single if-
block of the timing controller description.

Some features supported by the HDL code generation
require implementation of additional components, like a burst
counter for keeping control of burst accesses and status reg-
isters to propagate status information to the internal interface.

B. Interference with other Processor Features
A special component is the debug data buffer, which is

instantiated when the processor core is generated with debug
mechanism (see [11] for details). This mechanism can cause
the whole core to pause execution. As memories typically do
not support such a feature directly and continue their operation
in this situation, incoming data may need to be buffered in or-
der not to get lost. This example shows another general advan-
tage of automatic memory interface generation, as the func-
tionality of other automatic features of the HDL-code genera-
tor can be maintained without any manual code modifications.

C. Case Studies
In order to show the flexibility and efficiency of our ap-

proach, we extended a simple RISC core with various memory
interfaces. Please note, that certain features of an interface (e.g.
burst transfer) also need to be reflected by the instruction set
of the architecture. Table II shows the required code sizes
and area consumption of four different test cases. The first
test case utilizes a typical synchronous SRAM with a single
read-write port and one cycle latency. For the second test case
we connected the DDR SDRAM controller from OpenCores
[18] to our architecture. The “full featured” test cases describe
virtual memory interfaces introduced to test all other supported
features of our approach like write mask, initialization phase
and burst access. Two versions of this interface are listed, one
with five different definite burst lengths and one with indefinite
burst length. As can be seen, the size of an MID file is factor
5-10 smaller than the corresponding VHDL implementation
of the interface controller. The area consumption for any of
the test cases is less than one kGate. Synthesis results have
been obtained with Synopsys Design Compiler using a 130 nm
standard cell library with a supply voltage of 1.2 V. The
maximum frequency for all RISC variants is 450 MHz.

Besides these synthetic case studies a good real-life example
for the effectiveness of our approach is the development of an
ASIP for Retinex image processing presented in [21]. The
target applications imposed strict constraints on the data pro-
cessing. Therefore, the ASIP required a careful co-exploration
of data path, control path and memory interface. The ASIP
is designed with 1 program, 2 data memories and a ROM.
It uses complex memory-to-memory instructions asserting up
to 3 memory accesses in order to speed up data processing.
To simplify matters, the development initially started using
ideal memories without delay cycles. Afterwards, the switch
to real SSRAMs with 1 delay cycle was done. This required
TABLE II: Code size and area consumption of exemplary

memory interface controllers

Interface Type MID File HDL code Size of con-
size (lines) size (lines) troller (gates)

single port SSRAM 31 290 232
DDR SDRAM controller 62 319 291
full featured, def. burst 87 700 824

full featured, indef. burst 67 705 722

the address and data phase for read accesses to be separated
and distributed over the pipeline, entailing an extension of the
pipeline from 6 to 7 stages. The proposed framework enabled
to apply and verify these fundamental architectural modifica-
tions in a few hours only whereas a manual implementation
on RTL would have required several days.

VII. CONCLUSION

In this paper we presented a new abstract and versatile
description for memory interfaces covering the definition of
memory ports including their pins as well as the timing proto-
col. It has proven to support a wide range of real world mem-
ory interfaces starting form simple synchronous SRAMs up to
complex interfaces for DDR SDRAM controllers. Our auto-
matic memory interface generation for HDL code generation
is integrated into the LISA ADL development framework [7].

Future work focuses on the identification of additional
events and commands in order to describe not only memory
but also simple bus interfaces.

REFERENCES

[1] P. Mishra and N. Dutt, Processor Description Languages. Morgan
Kaufmann Publishers, 2008.

[2] R. Leupers and P. Marwedel, “Retargetable code generation based
on structural processor description,” Design Automation for Embedded
Systems, vol. 3, no. 1, pp. 75–108, 1998.

[3] G. Hadjiyiannis, S. Hanono, and S. Devadas, “ISDL: An instruction set
description language for retargetability,” in Proc. 34th Design Automa-
tion Conf. (DAC 97), 1997, pp. 299–302.

[4] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set
processors using nML,” in Proc. European Design and Test Conference
(ED&TC 95), 1995, pp. 503–507.

[5] V. Rajesh and R. Moona, “Processor modeling for hardware software
codesign,” in Proc. 12th Int. Conf. VLSI Design (VLSID 99), 1999, pp.
132–137.

[6] A. Halambi et al., “EXPRESSION: a language for architecture ex-
ploration through compiler/simulator retargetability,” in Proc. Design
Automation and Test in Europe (DATE 99), 1999, pp. 485–490.

[7] A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for
Embedded Processors with LISA. Kluwer Academic Publishers, 2002.

[8] G. Hadjiyiannis and S. Devadas, “Techniques for accurate performance
evaluation in architecture exploration,” IEEE Trans. VLSI Syst., vol. 11,
no. 4, pp. 601–615, 2003.

[9] S. Basu and R. Moona, “High level synthesis from Sim-nML processor
models,” in Proc. 16th Int. Conf. VLSI Design (VLSID 03), 2003, pp.
255–260.

[10] P. Mishra, A. Kejariwal, and N. Dutt, “Rapid exploration of pipelined
processors through automatic generation of synthesizable RTL models,”
in Proc. 14th IEEE Int. Workshop Rapid Systems Prototyping (RSP 03),
2003, pp. 226–232.

[11] O. Schliebusch, H. Meyr, and R. Leupers, Optimized ASIP Synthesis
from Architecture Description Language Models. Springer, 2007.

[12] CoWare Inc., accessed April 2009. http://www.coware.com
[13] Target Compiler Technologies, accessed April 2009. http://www.

retarget.com
[14] G. Goossens et al., “Design of ASIPs in multi-processor SoCs using the

Chess/Checkers retargetable tool suite,” in Proc. Int. Symp. System-on-
Chip (SoC 06), 2006, pp. 1–4.

[15] P. Mishra, M. Mamidipaka, and N. Dutt, “Processor-memory coexplo-
ration using an architecture description language,” ACM Trans. Embed-
ded Computing Systems, vol. 3, no. 1, pp. 140–162, 2004.

[16] G. Braun et al., “Processor/memory co-exploration on multiple abstrac-
tion levels,” in Proc. Design Automation and Test in Europe (DATE 03),
2003.

[17] JEDEC standard JESD79-3C: DDR3 SDRAM, JEDEC Solid State
Technology Association, Nov. 2008.

[18] OpenCores DDR SDRAM Controller Core Project, accessed April
2009. http://www.opencores.org/?do=project&who=ddr sdr

[19] DDR SDRAM Controller Core, Product Specification, Northwest Logic,
accessed April 2009. http://www.nwlogic.com/docs/DDR SDRAM
Controller Core.pdf

[20] DDR SDRAM Controller IP Core, Product Specification, HiTech
Global Design & Distribution, LLC, accessed April 2009. http:
//www.hitechglobal.com/ipcores/ddrsdram.htm

[21] S. Saponara et al., “Algorithmic and architectural design for real-
time and power-efficient Retinex image/video processing,” J. Real-Time
Image Processing, vol. 1, no. 4, pp. 267–283, 2007.


