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Abstract

This paper presents a complete framework for
Verilog-based fault injection and evaluation. In con-
trast to existing approaches, the proposed solution
is the first one based on the Verilog programming
interface (VPI). Due to standardization of the VPI,
the framework is—in contrast to simulator command
based techniques—independent from the used simu-
lator. Additionally, it does not require recompilation
for different fault injection experiments like techniques
modifying the Verilog code for fault injection. The
feasibility of the VPI-based approach is shown in a
case study.
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1. Introduction

With ever shrinking technology sizes in the semi-
conductor industry, unwanted parasitic effects resulting
from process variations, capacitive coupling, heat flux,
reduced supply voltage, energetic radiation and electro-
magnetic interference etc. are increasing [1]. These can
lead to unreliable systems when no protection mech-
anisms are in place. However, careful fault tolerant
design still promises to achieve reliable systems from
unreliable technologies.
The development of fault tolerant design calls for
evaluation and validation of fault tolerant mechanisms
at an early design stage. Therefore, simulation based
fault injection (FI) appears to be a good candidate
to guide the designer. Widely used are FI techniques
aiming on simulations based on hardware description
languages (HDLs) [2]–[8] as they offer simulations
on register transfer level (RTL) as well as gate level,
enabling a certain tradeoff between simulation speed
and accuracy.

This work has been supported by the UMIC Research Centre, RWTH
Aachen University.

Our literature review shows that existing approaches
either need to modify the HDL code or utilize sim-
ulator commands for FI. The former require a re-
compilation, which can result in long durations for
statistical analysis running hundreds or thousands of
individual simulations. As we will show, the latter are
not well suited for Verilog simulations, since faults
cannot be injected in all places of the model. Therefore,
in this work we introduce a novel Verilog FI tech-
nique overcoming these drawbacks. It is based on the
standardized Verilog programming interface (VPI). A
complete framework for Verilog-based fault injection
and evaluation is presented. Due to its modularity it
is easily extendable to other HDLs and FI techniques.
Moreover, support for new types of faults can simply
be added to the framework by providing a C function
implementing the fault behavior.
The rest of this paper is structured as follows.

Section 2 gives a brief overview of related work in
this area. Implemented fault models are outlined in
Section 3. Section 4 presents the novel VPI-based
FI technique. In Section 5 we introduce the failure
classification and evaluation used in our platform,
which is detailed in Section 6. The usability of our
framework is shown with results of a case study in
Section 7. The paper is concluded and future work is
outlined in Section 8.

2. Related Work

Fault injection techniques can be classified in three
main categories, i.e. physical fault injection, software
fault injection and simulated fault injection [6], [9].
Initially, most studies related to FI on a prototype of

a system were reliant on physical FI, which introduces
faults directly in the hardware of the target system by
disturbing the working environment of hardware (elec-
tromagnetic interferences, heavy ion radiation, etc.) or
modifying the value of its pins. Several problems, such
as controllability and repeatability, are associated with
this technique [10]. Besides, the injection devices are
expensive and it requires long and costly design cycles
because measurements can only be performed on real
silicon. MESSALINE [11] and FIST [12] are examples



for tools using physical injection technique.
Software FI is usually achieved by changing the
contents of memory and registers to emulate the conse-
quences of hardware faults. It enables control of the in-
jection place. Furthermore, the injection and evaluation
can be carried out repeatedly and reproducible. How-
ever, there are also several shortcomings, such as lim-
ited injection locations and poor time-resolution [13].
Tools making use of software FI are for example
FERRARI [14], FTAPE [15] and DOCTOR [16].
In simulated FI the whole system behavior is mod-
eled and imitated using simulation. It is particularly
attractive as it can provide not only early checks in the
design process of fault tolerance mechanisms, but also
controllability and accessibility to all the component
models. HDLs are widely used in this field as they
enable simulations on RTL as well as on gate level.
VHDL and Verilog are two prevalent HDLs. Tools
using simulated FI targeting VHDL are for instance
MEFISTO [2], MEFISTO-L [3], DEPEND [4], VER-
IFY [5] and VFIT [6]. INJECT [7] is based on Verilog
and SINJECT [8] supports both HDLs.

Table 1: Existing simulated fault injection techniques

HDL Simulator commands HDL code modification

VHDL Signals Variables Saboteur Mutant Others

Verilog - Mutant

Generally, simulated FI techniques can be classified
into two main categories, i.e. the code-modification
(CM) technique and the simulator-command (SC) tech-
nique, as shown in Table 1.
Saboteurs and Mutants are the two most common
CM FI techniques (e.g. [2], [6], [8]). The first one
is based on adding components, called saboteurs, to
the HDL model, while the second replaces the orig-
inal component with a modified one, called mutant.
Further HDL CM techniques can be found in [5],
[17]. All these methods have a significant limitation
which obligates the modification of the source code
and therefore requires recompilation. Depending on
the number, variety and size of experiments, the time
consumed by recompilation can be significant.
The SC FI technique is based on the modification
of the signal values through simulator commands. In
VHDL different commands need to be used when
faults are injected on signals or variables [6]. Our
literature review does not reveal any SC FI technique
for Verilog. We will show in the next section that
faults cannot be injected in all places of the Verilog
model using SCs. One major benefit of simulator
commands is that it is not necessary to modify the
source code. Therefore, no extra time is consumed by
recompilation. However, there are several drawbacks,
such as portability between different simulators and
controllability over the injection places.
In this paper, we introduce a Verilog-based FI tech-
nique overcoming the drawbacks of these SC and CM
techniques by utilizing the VPI. Our literature review

shows that there is no other report on a VPI-based
FI technique. In order to ease discussions, we use the
following terminologies in the subsequent sections and
comply with [18]. A fault is a deviation in a hardware
or software component from its intended function.
Faults can be categorized into permanent and transient
faults by their duration. An error is the manifestation
of a fault on the observed interfaces. A failure is
defined as the deviation of the delivered service from
the specified service.

3. Fault Models

In order to make fault injection and evaluation
feasible, the fault models used in this work refer to
single bit faults. A variety of fault models are defined
in order to represent real physical faults that occur in
integrated circuits (ICs) [2], [6]. Table 2 lists the fault
types initially implemented in this work. N(t) is the
original value, while F (t) is the value of injected fault.
ts is the time of injection instant, and te is the time
when a fault ends. Permanent faults can be modeled
by setting te to the end time of the simulation. In this
work, the bit-flip representing the inverted value at the
instant ts is differentiated from the toggling-bit-flip that
toggles with original value. While the table only shows
a typical set of basic faults, it was a dedicated objective
to develop a flexible platform, that can be extended
with additional fault types easily.

Table 2: Initially targeted fault types

Fault Type Fault Value Expression (ts ≤ t ≤ te)

Stuck-at 0 F (t) = 0
Stuck-at 1 F (t) = 1

Indetermination F (t) = X

High Impedance F (t) = Z

Bit-flip F (t) = not(N(ts))
Toggling-bit-flip F (t) = not(N(t))

4. VPI based Fault Injection

As introduced in Section 2, three essential tech-
niques for simulated FI are saboteurs, mutants and
simulator commands. Saboteurs and mutants require
source code modification resulting in recompilation
which can be crucial for the overall runtime depend-
ing on the number, variety and size of experiments.
However, there are no restrictions on the choice of the
simulator. The SC technique does not require recom-
pilation but is simulator dependent resulting in limited
portability between different simulators. In principle,
this FI technique could be applied to simulated designs
independently from the used HDL. However, due to
certain standardized behavior of Verilog, a fault cannot
be injected at every place using SCs, which is illus-
trated with the mechanism of event driven simulation
in Verilog in the following.
Essentially, there are six distinct regions of events

in Verilog simulators for the current simulation time,



which are referred to as slots, as shown in Table 3 [19],
[20]. Each slot includes several types of events. The
events are executed successively from slot 1 to 6. SCs
are placed into slot 1 to be executed. Thus, assuming
that a fault is injected at a certain time and place, this
event is scheduled in slot 1. If there are no events
scheduled on the same place in other slots, the injected
fault takes effect and the value can be held till the
next simulation time step. However, if there are events
scheduled after slot 1 at the same place, the injected
fault will be overwritten and never take effect.

Table 3: Stratified event queue in Verilog simulators

Slot: Queue Events

1: Active events queue

Blocking assignments
Evaluate right-hand side of non-
blocking assignments
Continuous assignment
$display and $write execution
Evaluate inputs and change out-
puts of primitives
PLI calltf routines

2: Inactive events queue #0 blocking assignment

3: Nonblocking events
queue

Update left-hand side of non-
blocking assignments

4: PLI read-write syn-
chronization

Registered cbReadWriteSynch
simulation callbacks

5: Monitor events queue
$monitor command execution
$strobe command execution

6: PLI read-only syn-
chronization

Registered cbReadOnlySynch
simulation callbacks

The Verilog HDL contains two types of procedu-
ral assignment statements, i.e the blocking and the
nonblocking procedural assignment [21], which are
used for updating the potential injection places. For
instance, if there is a nonblocking assignment assigning
values to the place the same as the injection place, the
injected value will be overwritten by the nonblocking
assignment scheduled in slot 3, as shown in Table 3.
This example shows, that it is impossible to inject a
fault on places where a nonblocking assignment is used
by applying the Verilog-based simulator commands
technique. Therefore, we introduce a novel injection
technique, overcoming the limits of the simulator com-
mands technique for Verilog simulation by accessing
the last slot of a simulation time step (i.e. slot 6). Ac-
cess to slot 6 of the Verilog event queue is enabled by
the Verilog programming interface (VPI) [19] allowing
to integrate C/C++ functions into a commercial Verilog
simulator.
One important feature of the VPI is the ability to
schedule and invoke specific simulation events, with
which the VPI-based fault injection technique can be
implemented. Figure 1 depicts the block diagram of
this technique. Due to the different injection mecha-
nisms of fault types, one callback function is created
for each fault type. A single system task/function (TF)
is provided to the user as an interface.

$HDL InjectFault (fault type, place, instant, duration)

As this system TF needs to be called once for each fault
to be injected, a testbench wrapper is created, in which
the original testbench is instantiated. The system TF is
called in the initial block of the wrapper specifying
each time the four fault properties fault type, place,
instant and duration. This way, different experiments
can be driven by changing the testbench wrapper only,
avoiding time consuming recompilation of the actual
design.

Figure 1: Implementation of VPI-based fault injection

At the beginning of the simulation (step 1), the sim-
ulator calls the system TF $HDL InjectFault, in which
one fault injection callback is registered according to
the specified arguments fault type and place. This
callback is to be executed at the injection instant and
the end of injection, which are specified by other two
arguments, instant and duration. Then, the simulator
proceeds to the inject instant (step 2) and the according
callback is executed. This callback sets the conditions
when the value modification on the specified place
will occur. During the injection (step 3), the value
of the injection place is modified by using VPI to
control the Verilog simulator. At the end of fault
(step 4), the injection callback is executed again to
restore the normal value. Several important features
of different HDL-based injection techniques are listed
in Table 4. Compared with the simulator-commands
technique, the limitation on the injection place is
removed with the VPI-based technique. In addition,
since the VPI is IEEE standard, it can be applied
to all VPI compliant Verilog simulators, while the

Table 4: Comparison of HDL-based fault injection
techniques

Injection Code Modification
Simulators

Verilog / Injection

Technique & Recompilation VHDL Place

Saboteur
required all both all

& Mutant

Simulator
— dedicated both most

Commands

VPI-based —
VPI

Verilog allcompliant
simulators



simulator-commands technique is simulator dedicated.
Compared with the saboteur and mutant techniques,
the VPI-based technique does not need to modify
and re-compile the source code. However, it can only
be applied to Verilog and VPI compliant simulators.
Nevertheless, as soon as the VHDL programming in-
terface (VHPI) is available [22], a similar VHDL-based
injection technique can be developed. In section 6 we
will show that the framework already takes this into
account by being extendable for other HDLs.

5. Failure Classification and Evaluation

The following error related metrics are defined to
evaluate the impact of the injected faults.
Error manifestation rate (EMR): The EMR is
the percentage of experiments which indicate errors on
the interface of a device. EMR = Ne/Ni, where Ne

indicates the number of experiments with manifested
errors on the interface of a device, and Ni is the
number of FI experiments. Errors manifest when the
injected faults cause inequality on the interface.
Error propagation latency (EPL): The EPL is
defined as the time required for the injected fault to
reach the interface of a device. EPL = tp − tinj ,
where tinj is the time when the fault is injected, and
tp is the instant when the first error manifests on the
device interface.
The impact of errors manifested on the interface of
a device is further analyzed at the application level and
categorized into failures, which show deviation of the
delivered service from the specified one.
The classification of failures depends on the de-
livered service of a device. Principally, failures can
be user-defined according to the individual device.
For evaluation of our concept, we focus on a failure
classification of a processor as shown in Table 5. The
proposed framework, however, can be easily extended
with other classifications of failures.

Table 5: Failure types for a processor core

Failure Type Definition

Crash
The accessed memory location is out of
boundaries of the application image

Data violation
The program terminates successfully.
However, the memory content is different
from that of the golden run.

Timeout

The program does not complete in the
expected time ts. (ts = tn×(1+10%),
where tn is the normal execution time
without fault injection)

Complete with delay
The program completes with delay in the
expected time

Error without effect
In spite of the errors on the interface, the
program terminates correctly

The FI evaluation is comprised of both the error
evaluation on the processor interface and the failure
evaluation at the application level. According to tradi-
tional evaluation approaches [2], [6], [8], FI evaluation
is based on the simulation traces recorded during each
FI simulation. After all the simulations are finished,

the traces of processor interface in the FI simulation
are compared with that of golden run for the further
analysis. Obviously this approach has two drawbacks.
On the one hand, many simulations are required to
ensure a convincing statistical analysis. Therefore, the
consumption of disk space is significant especially
for large test cases. On the other hand, the dump of
simulation traces consumes extra time.
Therefore, an on-the-fly evaluation approach is pro-

posed in this work. Instead of dumping the traces in
each FI simulation, only the traces of golden run are
initially dumped. Then, during each fault simulation
the traces of golden run are read on the fly and
compared with the actual values of the interfaces using
the VPI. If there are no inequalities detected, it means
that no errors manifested on the interface. Conversely,
if mismatches are found, their properties including
place, time and value are dumped for further analysis.
Several system TFs are created utilizing the VPI for
the on-the-fly evaluation in a similar fashion as for FI.
Failure evaluation sets the injected faults into rela-

tion of their impact. The characteristics of faults in-
clude injection place (P), fault type (T), fault duration
(D), injection instant (I) and possibility distribution
function (PDF). Several metrics are defined to quantify
the impact of injected faults. They include EMR, EPL
and failure distribution (FD).
In order to ease the result analysis, a result ana-

lyzer has been developed comprising several Matlab
functions. Each function plots one characteristic of
the fault space F{P, T, D, I, PDF} against one in the
evaluation space E{EMR, EPL, FD}.

6. A Flexible Platform for Fault Injection
and Evaluation

Figure 2 shows an overview of the developed plat-
form for fault injection and evaluation. Basically, the
flow consists of three phases, i.e. setup, simulation and
evaluation.
In the setup phase, the main objective is the

generation of faults, which is controlled by a
configuration file. This file is specified in XML
format, and users can setup fault properties including
all characteristics of the fault space F. The failure types
can be selected from the ones implemented in the fault
injection VPI library. If necessary, this library can be
extended with new fault types easily. A Verilog parser
reads in the model of the target design and creates
a hardware intermediate representation (HWIR). This
HWIR is independent from the used HDL and therefore
allows for later extension to other HDLs by adding for
instance a VHDL parser. The fault generator takes the
configuration file and the HWIR as input to generate
the simulation control script and the testbench wrapper.
Two fault injection backends (BEs) are currently in-
cluded: one for simulator commands and one for VPI-
based FI. New FI techniques could be integrated easily
by adding the according backend to the fault generator.



Figure 2: Overview of the fault injection and evalua-
tion platform

In the simulation phase, two operations are carried
out. Firstly, one golden run is performed to dump
the traces of interface signals and the memory image.
Then, the FI simulations are performed. According
to the on-the-fly evaluation, the differences between
traces of golden run and that of FI simulation are
dumped directly to the error information and failure
information files. In this phase, the created VPI li-
braries of fault injection and evaluation are linked to
the simulator to enable the VPI-based FI and on-the-
fly evaluation respectively. The libraries can be easily
extended to support new fault types and even VHDL,
once the VHPI is available.
Eventually, the dumped error and failure information
are used in the evaluation phase by the result analyzer
to create plots of dedicated relations between elements
of the fault space F{P, T, D, I, PDF} and the evalu-
ation space E{EMR, EPL, FD}.

7. Example Case Study

In order to show the applicability and functionality
of the platform, a case study is carried out for an
application-specific instruction-set processor (ASIP),
the ICORE [23], which is based on a mainly con-
ventional DSP instruction set of a typical load/store

Harvard-DSP architecture and extended for DVB-T
algorithms. The design has been synthesized with Syn-
opsys Design Compiler using a 130nm standard cell
library with a supply voltage of (1.2V ). A statistical
analysis is carried out at both RTL and gate level. The
CORDIC algorithm is chosen as application (259 cy-
cles), because the ICORE contains special instructions
speeding up its execution.

Figure 3: Exemplary error manifestation rate (random
places over whole core)

Figure 4: Exemplary failure distribution (1 cycle Bit-
flip, random place in according unit)

Figure 3 and 4 show two exemplary plots produced
with our framework. Each measurement point results
from 3000 FI experiments. Random selection of in-
jection instance and place are equally distributed over
whole simulation time and the architecture. The EMR
shows similar growth with fault duration at RTL and
gate level. However, absolute values differ meaning
that it can make sense to do relative comparisons on
RTL but absolute values are more accurate on gate
level. Plotting the failure distribution normalized to the
number of injected faults over the injection place helps
to find fault susceptible units of an architecture (here, it
can be seen that the fetch unit is much more susceptible
than for instance the ALU).
Setting up FI experiments with our framework

is quite comfortable and a matter of minutes. The
simulation runtime depends heavily on the test case



and the host machine. However, injecting 1000 faults
with our VPI-based FI into the gate-level simulation
of the ICORE increases simulation runtime by 13%
only. The same number of faults injected with SC-
based FI results in a 82% longer simulation time.
As our framework does not include code modifying
techniques we cannot give a direct comparison.
However, it was shown in [9] that these techniques do
not result in shorter simulation times than SC-based FI.

8. Conclusion and Outlook

In this work, a novel VPI-based fault injection for
Verilog simulations has been introduced. The VPI is
also used for fast on-the-fly evaluation of simulations
avoiding large simulation dump files. Based on these
two techniques, a flexible and extendable platform has
been developed. It supports both RTL and gate level.
The feasibility and functionality of the platform has
been shown by carrying out a number of injection
and evaluation experiments using various injection
configurations in a case study.
Future plans include the extension of fault models
and failure types. Parallel simulation of experiments
on multiple hosts to accelerate the statistical analysis
is another focus for future research. Moreover, the
concept of fault injection and evaluation using an HDL
programming interface can be applied to VHDL with
little effort, once the VHPI is available.

References

[1] S. Borkar et al., “Parameter variations and impact on
circuits and microarchitecture,” in Proc. 40th Design
Automation Conf. (DAC 03), 2003, pp. 338–342.

[2] E. Jenn et al., “Fault injection into VHDL models:
the MEFISTO tool,” in Proc. 24th Int’l Symp. Fault-
Tolerant Computing (FTCS 94), 1994, pp. 66–75.
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