Retargetable Code Optimization for Predicated Execution

M. Hohenauer, F. Engel, R. Leupers, G. Ascheid, and H. Meyr
Institute for Integrated Signal Processing Systems

RWTH Aachen University, Germany

Gerrit Bette
Associated Compiler Experts bv
Amsterdam, The Netherlands

Balpreet Singh
NXP Semiconductors
Eindhoven, The Netherlands

Abstract

Retargetable C compilers are key components of today’s
embedded processor design platforms for quickly obtaining
compiler support and performing early processor architec-
ture exploration. The inherent problem of the retargetable
compilation approach, though, is the well known trade-off
between the compiler’s flexibility and the quality of gener-
ated code. However, it can be circumvented by designing
flexible, configurable code optimization techniques applica-
ble to a certain range of target architectures. This paper fo-
cuses on target machines with predicated execution support
which is wide-spread in deeply pipelined and highly paral-
lel embedded processors used in next generation high-end
video, multimedia and wireless devices. We present an ef-
ficient and quickly retargetable code optimization technique
for predicated execution that is integrated into an industrial
retargetable C compiler. Experimental results for several
embedded processors demonstrate that the proposed tech-
nique is applicable to real-life target machines and that it
produces significant code quality improvements for control
intensive applications.

1 Introduction

Over the past few years, the complexity of embedded
System-on-Chip (SoC) designs has been increasing due to
the continually growing performance requirements of next
generation high-end video, multimedia and wireless appli-
cations. Contemporary embedded processors must provide
very high processing performance at low power and at low
costs along with programmability and flexibility. Therefore,
system designers employ more and more Application Spe-
cific Instruction Set Processors (ASIPs) [1, 2, 3] as build-
ing blocks in such systems, since they tend to meet these
constraints well. Consequently, the amount of ASIP-related
products has grown significantly in the past years. Compa-
nies like e.g. CoWare (Processor Designer) [7] or Tensil-
ica (Xtensa) [26] offer platforms for ASIP architecture ex-
ploration and design. These platforms build around retar-
getable software development tools (C-Compiler, Simulator,
Assembler,etc.) in order to explore different ASIP design al-
ternatives within a short amount of time for a given applica-
tion domain. Among these tools the retargetable C compiler
plays an important role for attaining high software develop-
ment productivity and to cope with the ever growing com-
plexity of today’s applications. Unfortunately, such compil-

978-3-9810801-3-1/DATE08 © 2008 EDAA

ers are often hampered by their limited code quality as com-
pared to hand-written compilers or assembly code due to a
lower amount of target specific optimizations. While such
optimizations are a necessity to generate high code quality,
however, this would be counterproductive to achieve the re-
quired flexibility to adapt quickly to different ASIP designs.
Consequently, once the ASIP architecture exploration phase
has converged and an initial working compiler is available,
it must be manually refined to a highly optimizing compiler.
This is both time-consuming and error prone. One way of
overcoming this dilemma is to design retargetable optimiza-
tions for those architectural features that are often recurring
in ASIP design, thus achieving retargetability and high code
quality for a whole target processor class. An example is
the retargetable SIMD support for the class of multimedia
processors recently proposed for the CoSy compiler devel-
opment platform [4, 6].

This paper focuses on another class of target processors,
namely those equipped with Predicated Execution (PE). It
refers to the conditional execution of instructions based on
the value of a boolean source operand p, called the predicate.

C—Code Jump Scheme Conditional Scheme
If (cond) { p =cond p = cond

Then Block [p [§J8 Then Block
} Else Block ['p]| Else Block
else goto End

Else Block | |Then:
} Then Block

End:

Figure 1. Jump instructions / predicated instructions

PE allows compilers to convert control dependencies into
data dependencies, also referred to as if-conversion [5].
Fig. 1 shows two possible implementation schemes for an
if-then-else (ITE) statement. Predicated instructions are
marked by the prefix “[p]” or “[!p]” (negated predicate). The
conditional scheme predicates the then block with the re-
sult of the if-statement’s condition and the else block with
the negation thereof respectively. This allows on Instruc-
tion Level Parallelism (ILP) processors the parallelization of
the still mutually exclusive then and else blocks. Addi-
tionally, PE enables more aggressive compiler optimizations
which are often limited by control dependencies. For exam-
ple software pipelining, which is crucial to achieve high per-
formance for ILP processors, can be substantially improved

by PE [13].

An important embedded processor class are VLIW ar-
chitectures. Such architectures are well suited for today’s
C compiler technology. Thus, high software development
productivity comes along with very high processing perfor-
mance. Since the performance of such processors [8, 10]
strongly relies on the available ILP, PE is almost a standard
feature in VLIW processors. However, it is by far not lim-
ited to highly parallel and deeply pipelined processors. Even
though less beneficial, standard embedded processors like
ARM [12] or configurable cores [11] are equipped with this
feature, too. Therefore, support for PE in retargetable com-
pilers is of high interest.

PE utilization can already be found in several target spe-
cific C compilers, but it is still very weakly supported in
ASIP compilers. For the use in this domain, retargetable
predicated execution optimizations are required. Therefore,
in this paper, we propose a novel concept for retargetable
code optimization for ASIPs with PE, and we prove this con-
cept by an implementation within an existing, well-tried re-
targetable compiler framework and an experimental evalua-
tion for several real-life embedded processors.

The rest of this paper is arranged as following. In sec-
tion 2 related work is discussed. The system overview is
given in section 3. Section 4 describes our retargetable PE
optimization and section 5 the code generation flow. Sec-
tion 6 presents results for several embedded processors with
PE support. Finally, we summarize the contribution of this
paper and point to some future avenues of work.

2 Related work

Many compilation techniques for PE are based on the
work by Mahlke et al. [14]. It describes the formation of
so called hyperblocks, an extended basic block concurrently
executing multiple threads of conditional code. The decision
whether to include a basic block in a hyperblock is based on
the criteria of execution frequency, block size and instruction
characteristics. Since it does neither take the degree of ILP
into account nor the dependencies between different blocks,
scheduling for machines with few issue slots increases the
resource interference and thus, results in performance degra-
dation. August et al. [15] improved this work by allow-
ing the scheduler to revise decisions on hyperblock forma-
tion. But this leads to a complicated scheduler implemen-
tation. Additionally, it extends the previous work by par-
tial if-conversion: in many cases, including only a part of
a path may be more beneficial than including or excluding
the entire path. Smelyanskiy et al. [20] try to solve the
resource interference of Mahlke’s approach by a technique
called predicate-aware scheduling. However, they state that
an architecture that supports their optimization proposal does
not exist yet. All hyperblock-based approaches optimize the
average execution time. Further approaches exist, but they
suffer from code size overhead [18] or increased register
pressure [16], both are issues in the embedded domain. An-
other approach supports only out-of-order architectures [19]
which is a non-typical embedded processor design.

ASIP design platforms comprising retargetable C compil-
ers include Processor Designer [7], Expression [23], Mescal
[1], Trimaran [25] and ASIPMeister [24]. Except for Tri-
maran, which is limited to a narrow range of architectures,

no PE support has been reported for those tools yet. In the
domain of “general purpose” retargetable compilers, the gcc
[21] supports if-conversion, but gcc is generally known as
being difficult to adapt efficiently to embedded processor ar-
chitectures.

In summary, a number of techniques for PE are avail-
able, most of which are adapted for a certain target ma-
chine. Porting one of them to a new target machine is still
a tedious manual process. Therefore, our approach empha-
sizes efficient utilization of PE and compiler retargetability
at the same time. We used the approach from [22] as start-
ing point for our work. It focuses especially on embedded
processors and optimizes the worst-case execution time. In
contrast to previous works it is capable of handling com-
plete (possibly nested) ITE statements with multiple basic
blocks at a time. The approach introduces several ITE im-
plementation schemes depending on the nesting level and
used instructions (conditional jumps or predicated instruc-
tions). The optimization algorithm is based on dynamic pro-
gramming. In the first phase, the costs (i.e. the worst case
execution time) for each implementation scheme are calcu-
lated. This is based on static formulas which incorporate the
ILP degree of the target processor. The second phase selects
the implementation schemes. The algorithm guarantees an
optimal solution for nested ITE statements provided that the
static formulas give an accurate estimation - which might not
always be the case.

As outlined in the next sections, we developed an effi-
cient concept for retargetable PE support. To the best of
our knowledge, our effort offers the first general treatment
of PE that is applicable across different architectures. Apart
from our main contribution, retargetability, we also extended
[22] in several directions. More specifically, we use sched-
uler feedback for a precise cost computation, account for
the then/else block order and added support for partial if-
conversion and transition probabilities. Furthermore, we de-
veloped a new technique called ITE splitting. It can achieve
significant speedups in case if-conversion fails. The amount
of required target specific information is quite limited, so that
most of it can also be extracted automatically from high-level

processor models.
| Backend
cgd - Generator

@

Target dependent backend engines

Figure 2. CoSy compiler generation with PE support

3 System overview

We employ the CoSy Compiler Development Platform
[6] as the retargetable C compiler. ASIP design platforms
like CoWare’s Processor Designer [7] use it as “backend™
to generate the compiler executable. As illustrated in Fig.
2, CoSy compilers are composed of so called engines which
work on the Intermediate Representation (IR) of the input
program. There is a dedicated Engine Description Language
(EDL) that describes the dynamic calling sequence and call-
ing parameters of the engines. CoSy takes Code Generator

Description (CGD) files as input and generates most of the
target dependent compiler backend components (code selec-
tor, scheduler, etc.) from it. Due to its modular architecture
and wide range of available engines, a CoSy compiler using
a variety of standard optimizations can be built in short time
and with minimum effort. Adding new optimization engines
can be done in a plug-and-play fashion. Hence, we added a
retargetable Predicated Execution engine (plus several aux-
iliary engines) into the CoSy framework that implements the
techniques described next.

4 Predicated Execution

As previously mentioned, PE allows if-then-else (ITE)
statements to be implemented without jump instructions, i.e.
the mutually exclusive then and else blocks are condition-
ally executed. As introduced in section 2 the optimization
algorithm is based on the costs for different implementa-
tion schemes. Thus, we present firstly in section 4.1 how
the costs are calculated using scheduler feedback informa-
tion and transition probabilities. Then we introduce the new
splitting mechanism in section 4.2. Thereafter, section 4.3
describes the required retargeting information and section 5
the PE code generation flow.

4.1 Cost Computation

A triplet S = (cond, Br, Bg) defines an ITE statement,
where cond is the condition and By and B the then and
else blocks, respectively. Let T'(B,) denote the execu-
tion time of block B, and J, the target dependent jump
penalty or jump delay slots for a conditional jump taken
(J%), a conditional jump not taken (J,,;) and an unconditional
jump (Jyne). They denote the number of cycles, the pipeline
needs to be stalled in order to prevent execution of incor-
rectly prefetched instructions (i.e. a control hazard). Taking
the implementation schemes in Fig. 1 as example, the worst
case execution time of the jump scheme is

. T(Br) + Ji,
T(S) = max { Jnt + June + T(Bg)

and for the conditional scheme
T(S) =T(Br o Bg)

where Bt o B denotes the joint execution of all instructions
in the then and else blocks, i.e. both blocks are merged.
Especially the computation of T'(Br o Bg) is difficult. In
prior work [22] this value is modeled by a static formula
which takes the execution times of the individual blocks, the
ILP degree and possible resource conflicts into account. In
certain cases performance degrades due to inaccurate estima-
tion. Figure 3 illustrates this. Suppose the static formula pre-
sumes the schedule in the left column for the jump scheme
and the schedule in the middle column for the conditional
scheme. As result, the latter will be selected because of the
lower T'(S). The real schedule for the conditional scheme
(right column) though results in a higher 7'(.S) and thus, in
a performance degradation. We reduced the number of such
cases by coupling the cost computation to the scheduler. It
has, naturally, concrete information about the resource us-
age, thus a more accurate execution time of the block merger
can be obtained. Since the scheduler description is already
part of the compiler backend, no additional retargeting effort

cycles

else | unused

then
v ‘mﬁl

Figure 3. Scheduling for a two issue slot processor

is required. However, one should notice that registers are
not allocated in that stage of the compiler and hence the val-
ues are still estimates. Since we integrated the optimization
for the average execution time as well we created new cost
formulas to regard the transition probabilities, P(Br) and
P(Bg), for the blocks. They can be provided via pragmas to
override the default values for the worst case optimization.
Additionally, we added support for if-then (IT) statements
and partial if-conversion. The latter leads to the following
new implementation schemes:

// only Then or only Else

p = cond p = cond
(p] B_T ['p] BLE
[p] goto End ['p] goto End
B_E B_T

End: End:

The execution time for predicating only then can be calcu-
lated as (for else, B and B need to be exchanged):

T(S) = T(Br)
A(Jt,BT) P(BT) > f)(BE)7

max A(Jt’ BT)’ worst case.
T(Bg) + A(Jne, Br)

where A(J,, Br), in case the then block complete fits into
the jump’s delay slots, regards the unused delay slots:

Jy —T(Br) J, > T(Br),
A(JI’BT):{OL) ealcse. (Br)

This technique proves advantageous in case of uneven long
blocks. Suppose the then block is much shorter than the
else block. It might be worthwhile to execute both blocks
conditionally, because it is likely that the instructions of the
then block fit into free instruction slots of the else block.
Regarding the worst case execution time this argument is cor-
rect. However, optimizing for the average execution time the
actual performance can degrade. For instance, if we assume
the transition to the ITE blocks is equiprobable then applying
if-conversion means an increase of the execution time in 50%
of all cases. If P(By) > P(Bg), it is even worse. In those
cases executing only the then block conditionally might be
beneficial. As stated earlier, further implementation schemes
exist to deal with nested ITE statements and different order
of then and else blocks (i.e. which block comes first after
the condition evaluation).

Apart from the jump penalties .J,, certain schemes must
account for target dependent setup costs. For instance, some

architectures might need an additional instruction to calcu-
late the negation [!p] for certain schemes in case it is not
directly supported. Thus, our approach retargets the cost for-
mulas according to the target configuration (see section 4.3).

4.2 Splitting Mechanism

The splitting mechanism is a technique which uses PE
to fill delay slots of conditional jumps. It targets ITE
statements to which if-conversion cannot be applied. For
various reasons the cost computation might decide against
if-conversion, one ITE block might have multiple incom-
ing control flow edges or one or both ITE blocks might
contain hampering elements, e.g. non predicable instruc-

tions. The mechanism is illustrated in Fig. 4. It alter-
I{f(p) g

9

e

facm

clse

then

L

v
C—code Splitting Mechanism

Jump Scheme

Figure 4. Splitting mechanism, two issue slots

nately selects instructions from the then and else block
(i.e. T.1, E.1, T.2in the example) and moves them into
the delay slots of the conditional jump where they are pred-
icated. An instruction is considered movable, if it can be
predicated and does not change the control flow. Further-
more, it must not write a predicate which is used as condition
of the jump or as guard of an ITE block (in case of partial if-
conversion). Moreover, it must not depend on an instruction
which is non-movable to simplify the dependency analysis.
If a non-movable instruction is found in one block it pro-
ceeds with instructions from the other block. The algorithm
stops either if no more movable instructions are found or if a
configurable threshold (3 in the example) is reached.

4.3 Retargeting Formalism

An evaluation of several processors for different domains
showed that processors featuring PE can be grouped accord-
ingly to the location the guard is stored in. We obtained the
following three categories which are all supported by our ap-
proach:

1. Processors using general purpose registers.
2. Architectures using dedicated registers and
3. those that use condition flags stored in a status register.

The first retargeting step is to configure the cost computa-
tion. Three boolean parameters for the PE engine specify to
which of the above classes the target architecture belongs.
Another boolean parameter indicates whether the architec-
ture directly supports negated conditions. Furthermore, the
jump penalties .J, need to be provided.

Moreover, some of the architectures can execute a wide
subset of their instruction set conditionally while others of-
fer only for a few instructions a predicated version. In or-
der to determine whether an instruction or a basic block can

be conditionally executed by the target processor, we em-
ploy the generated tree covering based code selector [28].
In CoSy, the code selector description consists of so called
code selection rules. Basically, each rule describes how a
certain IR operation is mapped to the target assembly code.
For retargeting the PE, each rule of the code selector that
can emit code which is conditionally executable, has to be
annotated. Fig. 5 shows two examples for the TriMedia [8]
processor. The rule covering a plus node can be condition-
ally executed (denoted by peinclude). The other rule is
missing that annotation and thus, is assumed to be not con-
ditionally executable by default. Consequently, if one of the
rules covering the then or else block is missing that an-
notation, if-conversion cannot be applied to the correspond-
ing if-statement. Furthermore, the instructions of such a rule
cannot be moved by the splitting mechanism.

RULE mirPlus(sl:reg_nt,s2:reg_nt) -> d:reg_nt;

CLASS peinclude;

EMIT {

print_with_condition("iadd Y%s Y%s -> %s",
REGNAME (s1) ,REGNAME (s2) ,REGNAME(d)) ;

}

RULE o:mirIntConst -> d:regi;
EMIT {
print ("uimm(%s) -> %s ",o.Value,REGNAME(d));}

Figure 5. Annotated TriMedia code selector rule

// Register r0 is always zero and rl always one

INSTRUCTION peSetCondition (cond:reg_nt) -> d:reg_nt;

EMIT {

print("IF %s diadd rl1 r0 -> Ys",
REGNAME (cond) ,REGNAME (d)) ;

}

INSTRUCTION peResetCondition (cond:reg_nt) -> d:reg_nt

EMIT {

print("IF %s diadd r0 r0 -> %s ",
REGNAME (cond) ,REGNAME(d)) ;

}

INSTRUCTION peNegateCondition (s:reg_nt) -> d:reg_nt;
EMIT {

print("IF rl bitinv %s -> %s",REGNAME(s) ,REGNAME(d));
}

INSTRUCTION peBranchAlways(label:BBlock) ;
EMIT {

print("IF rl ijmpi (%s)",label);

}

INSTRUCTION peBranchCond (cond:reg_nt,label:BBlock) ;
EMIT {

print ("IF %s ijmpi (%s)",REGNAME(cond),label); }

Figure 6. PE instruction rules for the TriMedia

For the code generation, the emitter must take care to print
the correct assembly syntax (see Fig.5) in case the rule is
used in a predicated block. The if-statement rules emit the
code for the selected ITE scheme. All ITE schemes can be
generated using the following instructions:

peSetCondition conditionally sets a predicate to true
peResetCondition conditionally sets a predicate to false
peNegateCondition conditionally inverts a condition
peBranchAlways unconditional jump instruction
peBranchConditional conditional jump instruction

We provide rule templates for these instructions which have
to be filled in with the assembly code that has to be emitted.
Fig. 6 shows the filled templates for the TriMedia proces-
sor. No other information, apart from those described above,

needs to be provided to retarget the extension. Thus, PE
can be quickly integrated into any CoSy based compiler with
minimum effort.

5 Code Generation Flow

Due to the modular concept of CoSy, we can intertwine
the standard backend components (tree pattern matcher,
scheduler, register allocator) with the PE modules. Fig. 7
depicts the backend of a CoSy compiler with PE support.

applied if-conversion

’{ match }—»‘PEpreproc scheduler }—b{ PEcosts match H
cover cover
pre— ;
scheduler regalloc PEcode scheduler emit

Figure 7. CoSy compiler backend with PE support

After an initial code selection with the standard tree pat-
tern matcher (match, cover) the engine PEpreproc builds ITE
trees (representing the structure of nested ITE statements)
and determines those if-statements to which if-conversion
can be applied. Reasons for an exclusion can be multiple
incoming control flow edges of the then or else block as
well as non predicable code in an ITE block. The latter is
detected utilizing the already described rule annotations. If
a basic block is covered by a rule emitting non conditionally
executable code, an infinite cost value is assigned to the PE
schemes of the corresponding if-statement. Then the costs
of the different schemes are calculated and the scheme selec-
tion is performed by the engine PEcosts (section 4.1). This
engine is coupled to the normal scheduler of CoSy. In the
first iteration, the scheduler calculates the execution times
of each basic block. These are used to compute the costs
for the implementation with jump instructions. Afterwards,
PEcosts instructs the scheduler to merge the then and else
blocks of the innermost statements. The scheduler paral-
lelizes them and provides cost estimates of the block merger.
Thereafter, PEcosts selects the schemes according to the cal-
culated costs. After the final code selection and register allo-
cation the engine PEcode generates the code for the chosen
schemes using the above mentioned instructions. The code
does not only depend on the scheme but also on the order
of the then and else block. The splitting mechanism op-
erates at the last scheduler run and targets all if-statements
to which if-conversion could not be applied. Apart from the
compiler’s dataflow information, it uses the annotations by
the tree pattern matcher whether an instruction is predicable
or not. Finally, the code is emitted.

Our approach requires limited retargeting information,
also due to the coupling to existing compiler backend mod-
ules. These are typically part of any retargetable compiler.
Consequently, our approach can be easily incorporated into
other compiler platforms as well.

6 Experimental Results

The proposed technique was successfully integrated into
CoSy compilers for the Adelante™VD32040 Embedded
Vector Processor (EVP) [9] and the TriMedia from NXP
Semiconductors [8] as well as the ARM9 [12]. The required
retargeting effort for PE support was one day for each com-
piler. All three architectures can execute almost all their in-

structions conditionally. The TriMedia can use any of its
128 general purpose registers to store the predicate, whereas
the EVP features eight dedicated predicate registers. The
negated predicate has to be computed explicitly for both pro-
cessors. The ARM uses condition code flags for predica-
tion. It can store one condition at a time in the status regis-
ter and supports negation. The maximum VLIW parallelism
available in the EVP equals five vector-, four scalar-, three
address-operations and loop-control. The TriMedia can pro-
cess up to five operations in parallel. The EVP jumps have
5-7 delay slots while the TriMedia jumps have two. In con-
trast, the ARM is a RISC like core. Since the ARM has no
delay slots the splitting mechanism was disabled. The only
benefit by PE for the ARM lies in the elimination of jump
instructions.

The benchmarks consist of some smaller, typical signal
processing kernels (up to 30 ITE statements) as well as some
larger and more complex applications (up to 2000 ITE state-
ments). The total number of if-statements vary between the
compilers due to their different design and integrated opti-
mizations. If not stated otherwise, we used the test data
that comes with these benchmarks for our measurements and
optimized for the worst-case execution time. For the small
benchmarks, PEpreproc determines that on average 80% of
all if-statements can be considered for PE, the only excep-
tion being the viterbi [29] for the EVP with no predicable
if-statements. Almost all these if-statements could finally
be converted for the EVP, whereas the TriMedia could not
convert all of them. This is mainly due to the higher de-
gree of parallelism the EVP offers over the TriMedia. Thus,
the chance is higher in TriMedia for resource conflicts re-
sulting in longer schedules and hence, higher costs for pred-
icated if-statements. Consequently, more if-statements are
split for the TriMedia than for the EVP. Fig. 8(a) shows high
speedups for the VLIW processors, whereas the ARM shows
smaller speedups. The programs cjpeg and djpeg [30] fea-
ture a large amount of if-statements (around 2000), how-
ever only approximately 15% of them were recognized by
PEpreproc for if-conversion. Finally, only 6 — 10% of all
if-statements could be converted by the compilers. Here,
the splitting mechanism proves advantageous and handles
nearly 80% (EVP) and 60% (TriMedia) of all if-statements.
The ARM shows only marginal speedups due to the disabled
splitting mechanism, but EVP and TriMedia show good
speedups for both cjpeg and djpeg (Fig. 8(b)). The ob-
tained speedups are less significant than for the small kernels
since a large amount of cycles are spent in the runtime library
for file operations. Considering the printf (implementa-
tion is shipped with CoSy) application, it contains many if-
statements (around 100), approximately 17% are converted
and around 60% are split by the EVP and TriMedia com-
pilers. No results are reported for the ARM, since it could
not be compiled due to a different runtime library setup. For
miniLzo [31], although it contains around 80 if-statements,
only a few could be converted. A look into the source code
revealed that the if-statements either contain function calls or
goto statements. Both is not allowed by PEpreproc and thus,
no performance improvement can be obtained. However, ex-
cept for the ARM, the splitting mechanism can be applied
again and optimizes almost all if-statements.

[JARM

WEVP W TriMedia

[OARM

WEVP

1,200

1,100

adpcm median viterbi wave idct cipeg

dipeg
(b) Speedup for large benchmarks

Figure 8.

(a) Speedup for small benchmarks

On average, speedups of 1.2 for the ARMY, 1.5 for the
EVP and 1.47 for the TriMedia can be obtained. For the code
size, PE typically saves some instructions (jumps and nops),
but may also generate new ones (e.g. negated conditions). In
general, code size is slightly reduced (see Fig. 8(c)).

The optimization algorithm itself has linear complexity
(O(n) worst case for n ITE statements). Furthermore, it re-
quires one additional tree pattern matcher pass and two addi-
tional scheduler passes (given the dataflow information, both
have O(n) worst case for n IR nodes in the ITE statements).
Thus, the total complexity remains linear. In practice we
found that the increase in compile time due to the additional
passes is negligible.

7 Conclusions

In contrast to previous, largely target specific, code op-
timizations for Predicated Execution, we propose a retar-
getable approach in order to enable PE for a wide range
of processor architectures at limited manual effort. This is
achieved by a retargetable Predicated Execution extension
for the CoSy compiler development system. This concept
has been proven by generating PE enabled compilers for em-
bedded processors with different PE configurations. For all
processors, we generally achieved good speedups.

In future, we will integrate PE in the Compiler Designer
tool [27] which is part of CoWare’s Processor Designer to
enable a complete and retargetable path from a single proces-
sor model, written in the LISA 2.0 Architecture Description
Language, to a C compiler with PE optimization. Addition-
ally, we will concentrate on further improvements in code
quality. For instance, conditions of if-statements are often
composed of expressions combined with boolean operations
which is mapped onto several nested ITE statements. If the
evaluation of the individual expressions is free of side ef-
fects, they can be evaluated in parallel. This idea could be
implemented by a new scheme for the PE engines. Further-
more, a mechanism to enforce PE for certain ITE statements
might be useful to enable other optimizations, e.g. software
pipelining, which are blocked by control flow.

References
[1] M. Gries, K. Keutzer, H. Meyr, et al.: Building ASIPs: The Mescal Methodol-
ogy Springer, 2005
[2] J.A.Fisher: Customized Instruction Sets for Embedded Processors, Design Au-
tomation Conference (DAC), 1999

[3] A.Oraioglu, A. Veidenbaum: Application Specific Microprocessors (Guest Ed-
itors’ Introduction), IEEE Design & Test Magazine, Jan/Feb 2003

printf

[4]

[5]

[6]
[7]
[8]
[9]

[10]
[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

(23]

[24]

[25]
[26]
[27]
[28]
[29]

[30]
[31]

Ml TriMedia [JARM EEVP W TriMedial
15
0,95 1
0,9 1
0,85
0,8 1
0,75+
a me viter wave idct cjpeg djpeg printf miniL
miniL.zo dpc dian bi z0

(c) Code size factors

M. Hohenauer, C. Schumacher, R. Leupers, G. Ascheid, H.Meyr and H. van
Someren, Retargetable code optimization with SIMD instructions, Proceedings
of the 4th international conference on Hardware/Software Codesign and Sys-
tem Synthesis, 2006

J. R. Allen and K. Kennedy and C. Porterfield and J. Warren, Conversion of
control dependence to data dependence, Proc. of the 10th ACM SIGACT-
SIGPLAN symposium on Principles of programming languages, 1983
Associated Compiler Experts ACE: CoSy compiler platform, www.ace.nl
CoWare Inc.: Processor Designer, www.coware.com

NXP Semiconductors: Nexperia PNX 1500 family and TriMedia media pro-
Cessors, Www.nxp.com

K. van Berkel, F. Heinle, P. Meuwissen, K. Moerman, M. Weiss, Vector
Processing as an Enabler for Software-Defined Radio in Handheld Devices,
EURASIP Journal on Applied Signal Processing, 2005

Texas Instruments: The VelociTI architecture of the TMS320C6x, www.ti.com
ARC International: www.arc.com

Advanced RISC Machines Ltd: www.arm.com

N. J. Warter, D. M. Lavery, and W. W. Hwu, The benefit of Predicated Ex-
ecution for software pipelining,Proceedings of the 26th Hawaii International
Conference on System Sciences, 1993

S. A. Mahlke and D. C. Lin and W. Y. Chen and R. E. Hank and R. A. Bring-
mann, Effective compiler support for predicated execution using the hyper-
block, 25th Annual International Symposium on Microarchitecture,1992

D. I. August and W. W. Hwu and S. A. Mahlke, A framework for balancing
control flow and predication, Proceedings of the 30th annual ACM/IEEE inter-
national symposium on Microarchitecture, 1997

K. M. Hazelwood and T. M. Conte, A Lightweight Algorithm for Dynamic If-
Conversion during Dynamic Optimization, International Conference on Paral-
lel Architectures and Compilation Techniques,2000

V. Bala and E. Duesterwald and S. Banerjia, Dynamo: a transparent dynamic
optimization system, Proceedings of the ACM SIGPLAN 2000 conference on
Programming language design and implementation,2000

L.Carter and B. Simon and B. Calder and L. Carter and J. Ferrante, Path Analy-
sis and Renaming for Predicated Instruction Scheduling, International Journal
of Parallel Programming,2000

W. Chuang and B. Calder and J. Ferrante, Phi-Predication for light-weight if-
conversion, Proc. of the intern. symposium on Code generation and optimiza-
tion (PLDI), 2003

M. Smelyanskiy and S. A. Mahlke and E. S. Davidson and H. S. Lee, Predicate-
aware scheduling: a technique for reducing resource constraints, Proc. of the
intern. symposium on Code generation and optimization (PLDI),2003

Free Software Foundation, GNU Compiler Collection,gcc.gnu.org

R. Leupers, Exploiting conditional instructions in code generation for embed-
ded VLIW processors, Proceedings of the conference on Design, automation
and test in Europe (DATE), 1999

P. Mishra, N. Dutt, A. Nicolau: Functional abstraction driven design space ex-
ploration of heterogenous programmable architectures, Int. Symp. on System
Synthesis (ISSS), 2001

A Kitajima, M. Itoh, J. Sato, A. Shiomi, Y. Takeuchi, M. Imai: Effectiveness
of the ASIP Design System PEAS-III in Design of Pipelined processors, Asian
and South Pacific Design Automation Conference (ASP-DAC),2001
Trimaran: An Infrastructure for Research in Instruction-Level Parallelism,
http://www.trimaran.com

Tensilica Inc.: Xtensa C compiler, www.tensilica.com

M. Hohenauer, O. Wahlen, K. Karuri, et al.: A Methodology and Tool Suite for
C Compiler Generation from ADL Processor Models, Design Automation &
Test in Europe (DATE), 2004

S. S. Muchnik: Advanced Compiler Design & Implementation, Morgan Kauf-
mann Publishers, 1997

DSPstone: http://www.ert.rwth-aachen.de/Projekte/Tools/DSPSTONE
Mediabench: http://euler.slu.edu/ fritts/mediabench/mb1

miniLZO: http://www.oberhumer.com/opensource/1zo

	Main
	DATE08
	Front Matter
	Table of Contents
	Author Index

