
Multiprocessor Performance Estimation Using
Hybrid Simulation

Lei Gao, Kingshuk Karuri, Stefan Kraemer,
Rainer Leupers, Gerd Ascheid, and Heinrich Meyr

Institute for Integrated Signal Processing Systems
RWTH Aachen University, Germany

{gao,karuri,kraemer,leupers}@iss.rwth-aachen.de

ABSTRACT
With the growing number of programmable processing elements
in today’s MultiProcessor System-on-Chip (MPSoC) designs, the
synergy required for the development of the hardware architecture
and the software running on them is also increasing. In MPSoC
development environment, changes in the hardware architecture
can bring in extensive re-partitioning or re-parallelization of the
software architecture. Fast and accurate functional simulation
and performance estimation techniques are needed to cope with
this co-design problem at the early phases of MPSoC design space
exploration. The current paper addresses this issue by introduc-
ing a framework which combines hybrid simulation, cache simula-
tion and online trace-driven replay techniques to accurately pre-
dict performance of programmable elements in an MPSoC envi-
ronment. The resulting simulation technique can easily cope with
the continuous re-organizations of software architectures during
an Instruction Set Simulator (ISS) based design process. Ex-
perimental results show that this framework can improve system
simulation speed by 3-5× on average while achieving accuracy
closely comparable to traditional ISSes.

Categories and Subject Descriptors
I.6.7 [Simulation and Modeling]: Simulation Support Sys-
tems—environments

General Terms
Design

Keywords
HySim, Hybrid Simulation, MPSoC, Performance Estimation,
Address Recovery, Cache Simulation, Cross Replay

1. INTRODUCTION
Over the past few years, the exploding complexities of multi-

media, telecommunication and consumer electronic applications
have prompted embedded system designers to increasingly look
into MPSoC based solutions. Many embedded applications dis-
play a large amount of task-level parallelism which can be effec-
tively exploited by such multiprocessor architectures. The contin-
uous technology scaling trend is also fueling this paradigm shift by
offering an ever increasing amount of silicon area for integration
of several programmable processors on a single SoC.

The design and development of an MPSoC is a daunting propo-
sition. It involves simultaneous development of the hardware
architecture (i.e. selection of the proper set of processors and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA
Copyright 2008 ACM 978-1-60558-115-6/08/0006 ...5.00

the communication infrastructure) and the parallelized software.
This is an enormously complex task, since any change in the hard-
ware infrastructure may require a completely new set of parti-
tioning and parallelization schemes for the associated software.
A key to successfully accomplishing this task is comprehensive
design space exploration, which involves simulation of different
implementation alternatives to verify functional correctness and
evaluate performance. Since the speed of such an exploration
process is greatly dependent on the simulation speed, fast and
accurate simulators for MPSoCs are urgently needed.

This paper presents a novel MPSoC hybrid simulation frame-
work for fast and accurate performance estimation and functional
verification. The main focus is on introducing techniques to im-
prove performance estimation accuracy of individual processors.
These techniques combine novel hybrid simulation, memory sub-
system modeling, and trace-driven replay methods to provide
fairly accurate performance predictions for a wide range of proces-
sors - from simple RISCs to more complex DSPs and VLIW ma-
chines - with varying Instruction Set Architectures (ISA) and mi-
croarchitectures. The processor simulation techniques are bound
together by a model of the communication architecture for con-
trolling system level synchronization and providing overall per-
formance statistics.

The rest of the paper is organized as follows. In section 2 we
present a brief overview of the existing body of literature that
tries to tackle different issues in MPSoC simulation. In section 3,
we provide an overview of the hybrid simulation framework that
forms the base of the current work. The next two sections (4
and 5) present how the simulation framework has been extended
for performance estimation of simple RISC, and more complex
DSP/VLIW architectures. Section 6 introduces the communi-
cation and synchronization of these PEs, and section 7 shows
benchmarking result. The final section summarizes our current
work and provides some directions for future work.

2. RELATED WORK
Figure 1.(a) shows the abstract model for an MPSoC architec-

ture. The major components of such an architecture are the pro-
cessing elements (PEs) and the communication architecture. The
PEs can be of various types - dedicated hardware blocks, RISC
processors, VLIWs, domain specific processors such as DSPs and
Network Processing Units (NPUs) etc. The communication archi-
tecture can also be composed of a variety of components providing
dedicated point-to-point or shared connections between different
PEs. For our current discussion, we will only consider simulation
of programmable PEs (i.e. RISCs, VLIWs, DSPs etc.).

A large volume of work already exists targeting complete MP-
SoC simulation [18, 7]. The focus of the current work, however,
is on simulation of individual PEs which form a major bottleneck
in achieving high system simulation speeds.

Traditionally, individual PEs have been simulated using ISS. A
number of recent works have suggested various ISS acceleration
techniques such as compiled [21] simulation, or just-in-time com-
piled [15] simulation. However, with the increasing complexity of
MPSoCs, even such improvements are not enough to achieve the
desired simulation speed.

(a) Real Architecture

(b) Layered Simulation Model

Figure 1: MPSoC Design

A further orthogonal improvement is sampling [17, 20] (or sta-
tistical [2]) simulation which infers the performance behavior of
a PE by simulating selected phases (or synthesized traces) of an
application (instead of simulating to completion). Recent works
[16, 14] show that multiprocessor simulation can also benefit from
sampling. One major drawback of these approaches is that a large
amount of pre-processing is needed for discovering the phases (or
generating the traces) of the target application. In MPSoCs, mod-
ifications in the numbers and types of PEs or the communication
architecture might affect the organization of the software (e.g. the
software needs to be completely re-partitioned or re-parallelized).
In such cases, the time consuming pre-processing and training
phase has to be repeated for each re-organization of the software.

Muttreja et al. proposes a hybrid simulation technique [12,
13] for tackling the performance/energy estimation problem of
single processors. In their solution, some parts of an applica-
tion are executed on the native host machine, whereas the rest
runs on an ISS. Since native execution is much faster than ISS,
significant simulation speed can be achieved if the natively exe-
cuted parts are the most frequently executed pieces of code. The
performance estimation for the natively executed code requires a
training phase to build a procedure level performance model and
therefore, is not flexible to easily account for software modifica-
tions. This limitation restricts the use of their technique in the
MPSoC domain.

Another approach is trace-driven simulation which can be used
to evaluate the performance [19], power consumption [4] or the
memory access behavior [9] of computer systems. A trace is some
information of interest generated during the execution of a pro-
gram on a simple and fast simulation model. Later, analysis tools
can process the traces offline in a detailed fashion. One problem
with trace-driven simulation is that the generated traces might
become excessively large. Another issue is that trace-driven sim-
ulation relies on post-processing and cannot provide performance
information at runtime. The lack of such information can conse-
quently change the execution schedule of tasks in MPSoC simu-
lators [5].

This paper makes two major contributions on fast and accu-
rate processor performance estimation in an MPSoC environment.
Firstly, our framework can provide highly accurate performance
estimates without any time-consuming pre-processing or train-
ing phases. Therefore, it can easily cope with frequent software
re-organizations during an MPSoC design. Secondly, this frame-
work is applicable for a wide variety of programmable PEs, and
consequently, for various system designs.

3. OVERVIEW
This section provides an overview of our MPSoC simulation

framework presented in Figure 1.(b). The framework breaks the
system into simulation models for the PEs and simulation models
of the communication architecture.

We consider two types of programmable PEs for performance
estimation - single issue processors with RISC instruction sets,
and processors with domain specific instruction sets (e.g. DSPs)
or with higher degrees of static Instruction Level Parallelism (e.g.
VLIWs). These two types cover a large subset of processors used
in current embedded systems. This paper extends the hybrid
simulation technique, HySim [3, 8], for performance estimation
of both types of PEs. HySim accelerates the simulation process

Figure 2: HySim Workflow

by executing portions of the application natively on a Virtual
Co-Processor (VCP) while rest still on an ISS.

This work extends the performance estimation model of HySim
for RISC like PEs by introducing a novel Address Recovery Layer
(ARL) which facilitates fast and accurate memory subsystem and
cache simulation. Performance estimates for RISC like PEs can
be more accurately obtained through the VCP-ARL combination.
For DSP/VLIW PEs, the performance estimation uses a novel
technique named Cross Replay. To obtain the performance infor-
mation, cross replay uses dynamic profiling built on trace-replay
cross target and native ISAes.

None of these estimation techniques require training or pre-
processing phases. The combined framework, as shown in Figure
1.(b), can be applied for fast functional simulation and accurate
performance estimation for a large set of MPSoC architectures.

The next subsection briefly introduces the HySim framework
before going into the details of the proposed extensions.

3.1 HySim: A Hybrid Simulation Framework
The workflow of the HySim framework is presented in Figure 2.

HySim assumes that the application is written in a combination
of C and target architecture specific assembly language. This is a
reasonable assumption as far as most embedded applications are
concerned.

As has been mentioned earlier, HySim combines a target archi-
tecture specific ISS execution with native code execution on the
simulation host for achieving high simulation speed. Target inde-
pendent sections of code (i.e. basic blocks, program statements
or functions) are called virtualizable, since they can be executed
on the native simulation host to produce the same results as ISS
execution. Conversely, target dependent program elements (e.g.
assembly functions) or third party libraries without source code
are called non-virtualizable and have to be executed on the tar-
get ISS. Any segment of code executing on the simulation host is
called virtualized and similarly, one executing on the ISS is called
non-virtualized. Note that a virtualizable segment might not be
virtualized (i.e. it might still be executed on the ISS), but the
reverse is not true. Through hybrid simulation, the current work
can easily support third party libraries and target dependent code
which is a major advantage over pure source level performance
evaluation approaches [6, 11].

As is shown in Figure 2, the HySim workflow combines vir-
tual and ISS execution into one simulation framework. An en-
tire application is compiled through the target compiler to pro-
duce a target specific binary. On the other hand, virtualizable
portions of the application are instrumented through an instru-
menter and then, compiled through the native compiler to pro-
duce a binary for the simulation host. During execution, all the
non-virtualizable parts of the application are executed on ISS us-
ing the target binary. The virtualizable parts of the application
can either be simulated on the ISS, or can be executed on the
simulation host through the VCP. The functionalities of the in-
strumenter and the VCP will be shortly described. Whether a
virtualizable part is executed on the ISS or the native host is
decided by the control logic as per user preferences.

As can be seen from Figure 2, the simulation framework con-
tains two different data memories, namely the ISS memory and
the VCP memory. One major problem of virtualized execution
is maintaining the consistency between these two memories so as

to present an unified view of the memory to the executing ap-
plication. This is achieved in two steps. In the first step, the
instrumenter inserts extra code in the virtualizable segments af-
ter static analysis of the application. In the second step, the
VCP uses the added code fragments to maintain the consistency
of the two memories, and to synchronize ISS execution and native
execution so as to hide the details of virtualization from the user.

4. RISC PERFORMANCE ESTIMATION
RISC like architectures are often used in MPSoCs as controller

units. They do not contain too many domain/application spe-
cific features for enhancing the data processing, but are usually
equipped with memory hierarchies consisting of one or more lev-
els of caches. The cycle count estimates for these machines can
be constructed from two kinds of execution statistics : (1) the
operation execution frequencies, and (2) the caching behavior.

Usually, most of the C operations can be implemented using
one or more instructions in a RISC machine. Generally, a known
number of cycles are required to execute such an operation in
hardware, which is defined as the operation’s cost. Therefore,
if the costs of all the operations in a piece of C code and their
respective costs are known, the cycle count for executing these
operations can be easily inferred.

The number of cycles required to execute a memory reference
operation can not be statically calculated. It depends on the
cache behavior of the program. If a cache miss happens, extra
memory access time needs to be considered. Therefore, the
overall cycle count for a C application can be estimated using
the following formula:

Cycles = Σn

i=1
Ni × Ci + Nhit × Chit + Nmiss × Cmiss

where Ni and Ci are the execution count and cost, respectively,
for C operation i. Nhit and Nmiss are the estimated cache hits
and misses while Chit is the cost of a hit, and Cmiss is the penalty
of a miss.

To estimate the Ni for each operation i, our framework uses a
technique similar to [6]. Instead of estimating the performance at
the C code level, the application code is first lowered to a 3 Ad-
dress Code Intermediate Representation (3-AC IR) format where
all the operations, including all the non-scalar variable accesses,
all global variable accesses and all the control transfer statements,
are explicit. To enhance the accuracy further, a set of high-level
optimizations (such as constant propagation, constant folding,
dead code elimination etc.) are run on the 3-AC IR to eliminate
redundant operations. The instrumenter then accumulates the
operation costs of each basic block, and annotates it to the code.

4.1 Online Cache Simulation
For accurate performance estimation, it is extremely important

to take cache simulation into account, since the memory subsys-
tem forms a major performance bottleneck in many modern pro-
cessors. Previous works evaluate memory subsystems by analyz-
ing the information implicit in high-level programming languages.
For example, [6] generates a memory referencing trace when pro-
filing a C application, and replays the trace by using a cache
simulator. There are two major demerits of such an approach.
Firstly, native addresses of the variables are used for cache sim-
ulation. These addresses only reflect the collisions in memory
referencing, but not the actual memory layout which is also an
important factor in cache simulation w.r.t. cache-line fetching
and association. Secondly, performance estimation is only pos-
sible offline by replaying the memory trace afterward. This is
a major problem in MPSoCs, where inaccurate timing can bias
scheduling [5] and affect the overall performance estimation ad-
versely.

The cache simulation in this work addresses both problems.
As shown in Figure 3, all the ISS generated memory references
are simulated on the publicly available DineroIV [1] cache sim-
ulator when the application is only executed in completely non-
virtualized mode. When virtualized segments are executed, the
memory references are not directly passed to the cache simula-
tor, but processed by an Address Recovery Layer. The ARL tries
to translate a reference to an accurate (or, at least closer) mem-
ory address, which imparts better accuracy in cache simulation.

Figure 3: Cache Simulation Framework

Figure 4: Example of Instrumentation for Memory

Consistency

Moreover, the cache simulation is performed in situ to provide
precise timing information during an MPSoC simulation.

To explain how address recovery works, we consider the two
coexisting memory spaces (ISS memory and the VCP memory)
inside HySim. The knowledge needed to recover addresses comes
from both static and dynamic analysis. In Figure 4 (1©), there
are two virtualizable functions foo and bar. bar accesses a global
variable glb, the instance of which lies at the ISS memory space.
To access it, a linkage pointer _P_glb, containing the address of
glb in the ISS memory, is created by the instrumenter. During
simulation, the accesses to glb are handled through a set of ser-
vice routines (e.g. Write in Figure 4) which only dereferences
this linkage pointer. The precise ISS memory address for glb can
be passed to the cache simulator through these service routines.
Constant global variables (e.g. cglb) are handled in a slightly
different manner. Since constant globals are not modified during
execution, a native clone for each such variable is created inside
the VCP memory for faster access. Before performing cache sim-
ulation, ARL recovers actual address of these variables using the
mapping information obtained during instrumentation (2©).

Another important case, which requires dynamic analysis, con-
cerns joining of linkage and local pointers due to control flow. In
the source code of Figure 4, foo is called with a pointer. De-
pending on the value of opt, this pointer can either point to a
local variable (loc), or to glb which results in an ambiguity when
dereferencing the pointer [3]. To eliminate this ambiguity, the
local variable is spilled (by using Push and Pop) into the ISS
memory space. For this case 3©, ARL translates the address of a
local variable to an approximate address at the function stack at
ISS memory.

To summarize, HySim can approximate the memory layout, as
well as the access patterns, for a given application and a mem-
ory subsystem to provide both high simulation speed and better
accuracy than the pure high-level performance annotation coun-
terparts. Note that one limitation of this work is the absence of
instruction cache simulation support, which will be addressed in
our future work.

5. PERFORMANCE ESTIMATION FOR

DSP/VLIW ARCHITECTURES
Architectures with domain specific features (DSPs, NPUs,

VLIWs) are often used in MPSoCs for speeding up the compu-
tation intensive parts of an application. For such architectures,
the quality of the code heavily depends on the target dependent
optimizations of the target compilers. Unless the whole compiler
back-end is re-implemented, these optimizations cannot be imi-
tated. As a consequence, the operation count based approach for
RISC machines is not applicable for these PEs.

Fortunately, some assumptions about the nature of the
DSP/VLIW PEs and the applications running on them can sig-

Figure 5: Cross Replay Workflow

nificantly simplify the problem. Firstly, many of such PEs have
no affiliated caches. Therefore, the execution time of a specific
control path in such architectures is always the same (i.e. it does
not depend on the memory access patterns). Secondly, the code
segments running on such PEs often have high volume of data
processing and limited number of control paths (i.e. they contain
limited number of if-then-else statements, loops with statically
known iteration bounds etc.). So it is possible to infer the execu-
tion performance for such PEs by enumerating each control path,
and then one time calculation of the cost of each control path.
This is implemented using a dynamic profiling technique called
Cross Replay.

The overall workflow for cross replay is presented in Figure 5
which shows the execution of a virtualized function on the VCP.
While simulating a function on the VCP, a trace is generated
which uniquely enumerates the control path (referred to as a sce-
nario) taken during execution. Once the execution of the virtu-
alized function finishes, the scenario is searched into a database.
If the scenario is not found in the database (a miss), then the
part of the function that has been executed in virtual mode is
replayed on the ISS to obtain and record its performance in the
scenario database. If the scenario is already in the database (a
hit), it means it has been previously simulated on the ISS and its
performance has been recorded. In such a case, the performance
record is retrieved from the database. Since the application trac-
ing is done for each function on-the-fly, the total trace size is
manageable.

The major contribution of this approach is enabling the func-
tion level trace-replay, which is cross-ISA and supports optimized
target binaries.

5.1 Trace Generation and Replay
While a virtualized function is executed on the VCP, a exe-

cution trace is generated to represent the scenario. Addition-
ally, since the virtual execution also has side effect (e.g. chang-
ing global variable’s value), in order to replay the function in
ISS some records are generated dynamically as an alternative of
checkpointing.

There are 3 types of records. Input records are generated when
a function is invoked at VCP. Each input record stores the value
of one incoming function argument.

To correctly replay a virtualized function on ISS, the global
states have to be reproduced. If the function reads any memory
location which is not initialized in its own scope, the value or
this memory location must be recorded. This is called memory
records.

To generate memory records, a shadow memory is first created
to record clean or dirty status of each address. A dirty location
conceptually means that it has been changed by some outside
agent than the function in consideration. A read to a dirty loca-
tion must be recorded in the trace. A clean location means that
it has been updated only by the virtualized function, or its values
have been recorded. When a function starts executing on VCP,
all memory locations are marked as dirty. The first read/write
operation to a dirty memory changes its state to clean. Addition-
ally, the first read on a dirty location generates a memory record
which stores the value read for replay purposes. Any subsequent
access (read/write) to the same location does not generate any
more memory records or state changes.

Any non-virtualized subroutine invoked from a virtualized
function can, potentially, change any global data memory. There-

fore, if a global variable is read after such a function calling, the
value has to be recorded again. This is handled by simply marking
all memory locations as dirty after the invocation.

The third kind of records is called return value record. Such a
record is generated when a non-virtualizable subroutine is called,
and it stores the value returned by the invoked function. Note
that when replaying the function, the non-virtualizable subrou-
tine is not simulated again. The reason is not that of saving simu-
lation time, but that of the impossibility to replay the subroutine.
An example to explain this is when the subroutine modifies a not
recorded global memory, the next time when it is replayed, the
execution will be eventually different.

The replay phase commences for a trace miss. A dedicated ISS
(namely replay-ISS) is created, to ensure that replaying does not
affect the status of the original ISS.

5.2 Example Run of the Cross Replay
Figure 6.(a) shows a piece of virtualizable C code along with

its instrumented version. For cross replay, this piece of code is
first executed on the VCP. Figure 6.(b). presents the generated
trace when the function bar is executed on VCP.

(a) Trace generation

(b) Generated records

(c) Cross replay

Figure 6: Example of Cross Replay

The trace (in Figure 6.(b)) shows two scenarios - when the
variable opt is true and false. Firstly let us consider the sce-
nario where opt is true. The first record in the trace is an input
record which stores the value of the argument, opt, to the function
bar. The first two statements in bar are invocations of two non-
virtualized functions ext (an external function whose source code
is absent) and malloc (a standard library routine which has side
effect). Therefore, the next two records are return value records
correspondingly. The last record is a memory record. When opt
is true, bar calls foo with the address of the global glb. Reading
this global inside foo creates the memory record which stores the
value of glb. Only this memory record has a dep field whose
significance will be described shortly. In the instrumented code,
these recording tasks are accomplished by calling functions, such

as RecordInput, RecordRet, RecordMem from the corresponding
service routines. The traces generated for another scenario can
be understood similarly. Note that there is no memory record
since loc is initialized in the scope of function bar.

Figure 6.(c) shows the replaying of these traces on the replay-
ISS. The target compiler can perform a number of aggressive op-
timizations on the code. One possible example of the transformed
code is shown in the target pseudo code where the function foo
has been completely inlined. However, the replay can still work
with this optimized code.

HySim can only load trace records at some specific points of
replay. These points are - the beginning of the replayed function,
and after the call to a non-virtualized function. The input record
is loaded at the beginning of bar, to initialize the variable opt.
Since malloc and ext are simulated at ISS when bar is executed
at virtual mode, their performance has already been recorded.
Thus, replay-ISS directly get the return values from the return
value records, instead of simulating them again.

The dep fields indicate loading dependencies. For example,
since malloc has side effects, its invocation might change the value
of glb, thus the memory record for arg can only be loaded after
the call to malloc returns.

Last but not the least, target compiler may exchange the calling
sequence of malloc and ext as an optimization. This can only
happen if the target compiler thinks that the exchange is safe.
Consequently, the imitation of the function calls in cross replay
is also safe.

6. COMMUNICATION
Both the functional correctness and timing precision of multi-

processor applications rely on the accuracy of communication and
synchronization. There is a lot of work on cycle accurate model-
ing of whole systems which take accurate peripheral latency and
communication congestion into account. HySim offers a replace-
ment of traditional ISSes, and can be easily integrated into such
systems. However, since the motivation of this work is to increase
the simulation speed by raising the abstraction level, we also use
a simple, abstract model of communication which is described in
the experimental results section. Here we only discuss the syn-
chronization between PEs.

In a multiprocessor system, there is a global time, and each
processor has its local time. For virtualized functions, it is nei-
ther necessary nor possible to synchronize with the global time.
When a program is exiting the virtual mode (either through in-
vocation to a non-virtualized function, or returning from a vir-
tualized function), the performance for the virtualized execution
is estimated and updated to the corresponding processor’s local
time. The synchronization policy is to run a processor only when
its local time is earlier than the global one.

Since functions at virtual mode do not synchronize with each
other or with non-virtualized functions, there has to be one re-
striction that any function accessing volatile variables cannot
be mapped to VCP. Thus, it can be ensured that the virtual-
ized parts of an application do not need synchronization. Note
that virtualized parts can still invoke non-virtualized subroutines
which can do the communication.

This work support communication based on shared memory
(by detecting volatile variables) and DMA. Currently there is
a limitation that interrupts can not be handled in virtual mode.
We plan to address this in future.

7. EXPERIMENTAL RESULTS
This section presents some experimental results for our simu-

lation framework. Two sets of experiments have been done for
evaluating our framework. Firstly, the performance estimation
for a single RISC and a VLIW DSP processor have been ob-
tained for a set of benchmarks. Then, these components have
been integrated into an MPSoC model including a communica-
tion infrastructure, and multiprocessor performance estimations
have been obtained. Although there is an automatic partitioner
[8] designed for fast forwarding, for performance estimation pur-
pose, the applications are mannually partitioned into virtualized
and non-virtualized parts. All the experiments have been per-

formed on a simulation host with Athlon64 X2 5200+ processor
and 4 GB of memory, running Fedora Core version 4.

7.1 Single Processor Result
For the single processor performance estimation, we have

selected one representative each from the RISC architecture
class (32-bit little-endian MIPS-4K RISC processor) and the
DSP/VLIW architecture class (a floating-point clustered-VLIW
DSP named mAgic [10]).

Table 1 shows the results for 5 embedded applications se-
lected to evaluate MIPS-4K. Except for JPEG Dec, the simula-
tion speedup is significant. Investigation shows that the root of
such limited speedup for JPEG Dec is an inefficient partitioning.
The function being mapped to VCP is jpeg_idct_islow which
accesses data mostly from the ISS memory space. This lowers
the speedup considerably.

The performance estimates have been compared to a cycle ac-
curate ISS. The cache simulation is quite accurate (between 0.6%
and 8%) except for MD5. By looking into the generated target
binary of MD5, we find that about one third of memory accesses
are from spills and restores introduced by the register allocator.
In our 3-AC IR, all the scalar local variables are assumed to be
in register and no memory accesses are generated for them. This
is the source of the discrepancy.

Single processor simulation speed improvement for mAgic is
shown in Table 2. The simulation speed improvement is 10 to 50
times with tracing is enabled. And the overhead of cross replay
is quite marginal (0.6% to 9%).

7.2 MPSoC Evaluation
To illustrate the usage of hybrid simulation for MPSoCs, a mul-

tiprocessor software-hardware co-design case has been studied.
The target application is a multi-frame edge detection algorithm
which benefits from parallelization. The design space parameters
are data partitioning of the application and architectural configu-
ration. The objective is to observe the effects of these parameters
on the latency and throughput of frame-processing.

The target hardware has 1 MIPS-4K (running at 200 MIPS,
with 512 byte cache) processor and configurable number (8 or
4) of mAgics (running at 100 MIPS with 320K byte scratch-pad
memory). A shared bus (100 Million Cycles per Second (MCPS))
and a global DMA (4 bytes per cycle) are used for communication.
The bus and DMA are modeled in an abstract way. The DMA
has 8 programmable channels and are activated in a round robin
way. No bus congestion is modeled.

The hot-spot of the software is a spatial edge detection pro-
cedure (susan_edges), involving a lot of floating point compu-
tations. This procedure is mapped to the DSPs and the RISC
is used for input and output. Two different schemes are evalu-
ated for this application. The first scheme (called coarse grained
scheme) distributes whole frames to the DSPs minimizing the
synchronization overhead. The second (called fine grained ap-
proach) processes the frames one by one, and partitions them
into blocks which can be processed parallely. Since these blocks
have to be overlapped because of margin effect, the second scheme
involves more communication overhead.

The design space has two dimensions (software partitioning,
and the number of DSPs) and 4 schemes in total. To figure out
which proposal is better, fast simulation is desired.

Table 3 shows the results of enumerating various designs. Com-
pared to the detailed simulation involving cycle accurate ISS, an
error rate of less than 3% is achieved at almost 3-5× simulation
speed. Still, we can see the speedup is much smaller than single
processor hybrid simulation. This is because of the global syn-
chronization. Note that the speed of MIPS-4K cycle accurate ISS
is about 5 MIPS, and it has to simulate two instructions for each
bus cycle. Moreover, the dispatching and data collection loop in
MIPS-4K uses volatile variables and can not be virtualized. This
event loop executes on MIPS-4K even when the DSPs are pro-
cessing data, and since it can not be virtualized, forms the major
performance bottleneck.

Results are also presented for AES and DES cryptographic ap-
plications. They show a similar trend in terms of simulation speed
and performance estimates.

Estimated Error Cache Estimated Error Detailed Hybrid
Application Performance Performance Rate Misses Cache Misses Rate Simulation Simulation Speedup

(M cycles) (M cycles) (%) (M) (M) (%) Speed (MCPS) Speed (MCPS) (times)
DES 281.7 282.7 +0.4 11.84 11.53 -2.6 7.8 70.7 9.0
MD5 67.9 70.1 +3.1 0.37 0.28 -22.7 3.8 23.4 6.2
G721 Enc 371.7 404.9 +8.9 3.42 3.40 -0.6 4.0 18.4 4.6
G721 Dec 329.7 331.2 +0.5 1.20 1.18 -1.6 3.7 14.4 3.9
JPEG Dec 24.2 21.9 -9.4 0.58 0.53 -8.1 4.0 5.5 1.4

Table 1: Performance Estimation for MIPS-4K

Simulated 1© Detailed 2© Hybrid Simulation 3© Hybrid Simulation Cross Replay Speedup
Application Instructions Simulation (without Cross Replay) (with Cross Replay) Overhead (3©/ 1©)

(M insn.) Speed (MIPS) Speed (MIPS) Speed (MIPS) (2©/ 3© - 1) (%) (times)
Edge Detection 3061.5 8.5 248.0 246.6 0.6 29.2
DES 17.6 4.0 44.7 41.7 6.7 10.4
FIR 215.7 5.0 260.9 237.3 9.0 47.3
FFT 146.7 4.9 108.5 103.7 4.4 21.2

Table 2: Virtual Mode Speedup for mAgic DSP.

Architectural Simulated Estimated Error Estimated Error Simulation HySim
Application Configuration Bus Cycle Bus Cycle Rate Latency Latency Rate Speed Speed Speedup

(M) (M) (%) per Frame per Frame (%) (KCPS) (KCPS) (times)
Coase-grained Susan 8 DSPs 189.4 194.7 +2.8 59.03 ms 60.67 ms +2.8 113 411 3.6
Fine-grained Susan 8 DSPs 431.3 428.6 -0.6 16.83 ms 16.72 ms -0.7 114 384 3.4
Coase-grained Susan 4 DSPs 373.9 385.0 +3.0 58.33 ms 60.08 ms +3.0 209 515 2.5
Fine-grained Susan 4 DSPs 485.1 482.9 -0.5 18.93 ms 18.84 ms -0.5 218 526 2.4
Parallel Triple DES 8 DSPs 3.47 3.47 +0.0 N.A. N.A. N.A. 83 434 5.3
Parallel AES 8 DSPs 24.6 23.7 -3.7 N.A. N.A. N.A. 120 312 2.6

Table 3: Multiprocessor Hybrid Simulation Result

8. CONCLUSION
This paper presents a novel hybrid simulation framework which

can be used for multiprocessor performance estimation. The sim-
ulation framework can estimate the performance for a variety of
programmable processing elements and easily cope with the soft-
ware tuning of an MPSoC design environment. Experimental
results show that the simulation technique can reduce simula-
tion time significantly while delivering high accuracy in perfor-
mance estimates. For multiprocessor simulation, the described
techniques provide 3× to 5× simulation speed improvement with
very low (3%) errors in performance estimates.

The major bottleneck for further increase in multiprocessor
simulation is non-virtualizable synchronization segments running
on control processors. In future we would like to investigate the
acceleration of these segments. Moreover, our performance esti-
mation is not accurate in presence of high-degree of register spills.
We would also like to address this issue.

9. ACKNOWLEDGMENTS
This work is supported by the European project

SHAPES (www.shapes-p.org) and the HiPEAC Network
(www.hipeac.net).

10. REFERENCES
[1] J. Edler and M. D. Hill. Dinero IV Trace-Driven Uniprocessor

Cache Simulator
"http://www.cs.wisc.edu/ markhill/DineroIV/".

[2] L. Eeckhout, K. de Bosschere, and H. Neefs. Performance
analysis through synthetic trace generation. In ISPASS ’00:
IEEE International Symposium on Performance Analysis of
Systems and Software, 2000.

[3] L. Gao, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr. A
fast and generic hybrid simulation approach using c virtual
machine. In CASES ’07: Compilers, Architecture and
Synthesis for Embedded Systems, 2007.

[4] T. D. Givargis, F. Vahid, and J. Henkel. Trace-driven
system-level power evaluation of system-on-a-chip peripheral
cores. In ASP-DAC ’01: Asia South Pacific design
automation, 2001.

[5] J. Jung, S. Yoo, and K. Choi. Fast cycle-approximate MPSoC
simulation based on synchronization time-point prediction.
Design Automation for Embedded Systems, 11(4):223–247,
December 2007.

[6] K. Karuri, M.A. Al Faruque, S. Kraemer, R. Leupers, G.
Ascheid, H. and Meyr. Fine-grained Application Source Code
Profiling for ASIP Design. In DAC ’05: Design Automation
Conference, 2005.

[7] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid,
H. Meyr, and S. Goossens. A modular simulation framework for

architectural exploration of on-chip interconnection networks.
In CODES+ISSS ’03: IEEE/ACM/IFIP international
conference on Hardware/software codesign and system
synthesis, 2003.

[8] S. Kraemer, L. Gao, J. Weinstock, R. Leupers, G. Ascheid, and
H. Meyr. HySim: a fast simulation framework for embedded
software development. In CODES+ISSS ’07, 2007.

[9] M. Laurenzano, B. Simon, A. Snavely, and M. Gunn. Low cost
trace-driven memory simulation using simpoint. SIGARCH
Comput. Archit. News, 33(5):81–86, 2005.

[10] mAgic DSP. www.atmel.com.

[11] T. Meyerowitz, M. Sauermann, D. Langen, and
A. Sangiovanni-Vincentelli. Source-Level timing annotation and
simulation for a heterogeneous multiprocessor. In DATE ’08:
Conference on Design, Automation and Test in Europe, 2008.

[12] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha. Hybrid
simulation for embedded software energy estimation. In DAC
’05, 2005.

[13] A. Muttreja, A. Raghunathan, S. Ravi, and N. K. Jha. Hybrid
Simulation for Energy Estimation of Embedded Software. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2007.

[14] J. Namkung, D. Kim, R. Gupta, I. Kozintsev, J.-Y. Bouget,
and C. Dulong. Phase guided sampling for efficient parallel
application simulation. In CODES+ISSS ’06, 2006.

[15] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr, and
A. Hoffmann. A universal technique for fast and flexible
instruction-set architecture simulation. In DAC ’02, 2002.

[16] E. Perelman, M. Polito, J.-Y. Bouguet, J. Sampson, B. Calder,
and C. Dulong. Detecting Phases in Parallel Applications on
Shared Memory Architectures. In IPDPS ’06: IEEE
International Parallel and Distributed Processing Symposium,
2006.

[17] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder.
Discovering and exploiting program phases. IEEE Micro, pages
84–93, December 2003.

[18] S. Sonntag, M. Gries, and C. Sauer. Performance evaluation of
packet processing architectures using multiclass queuing
networks. In ANSS ’06: Annual Symposium on Simulation,
2006.

[19] T. Wild, A. Herkersdorf, and R. Ohlendorf. Performance
evaluation for System-on-Chip architectures using trace-based
transaction level simulation. In DATE ’06, 2006.

[20] R. Wunderlich, T. Wenisch, B. Falsafi, and J. Hoe. SMARTS:
Accelerating microarchitecture simulation via rigorous
statistical sampling. In ISCA ’03: International Symposium
on Computer Architecture, 2003.

[21] J. Zhu and D. D. Gajski. A retargetable, ultra-fast instruction
set simulator. In DATE ’99, 1999.

