
Power-efficient Instruction Encoding
Optimization for Various Architecture Classes

D. Zhang, A. Chattopadhyay, D. Kammler, E. M. Witte
G. Ascheid, R. Leupers, H. Meyr

Institute for Integrated Signal Processing Systems
RWTH Aachen University, Germany

zhang@iss.rwth-aachen.de

Abstract— A huge application domain, in particular, wireless
and handheld devices strongly requires flexible and power-
efficient hardware with high performance. This can only be
achieved with Application Specific Instruction-Set Proces-
sors (ASIPs). A key problem is to determine the instruction
encoding of the processors for achieving minimum power
consumption in the instruction bus and in the instruction
memory. In this paper, a framework for determining power-
efficient instruction encoding in RISC and VLIW architec-
tures is presented. We have integrated existing and novel
techniques in this framework and propose novel heuristic
approaches. The framework accepts an existing processor’s
instruction-set and a set of implementations of various
applications. The output, which is an optimized instruction
encoding under the constraint of a well-defined cost model,
minimizes the power consumption of the instruction bus
and the instruction memory. This results in strong reduc-
tion of the overall power consumption. Case studies with
commercial embedded processors show the effectiveness of
this framework.

Index Terms— power-efficient, instruction encoding, instruc-
tion memory, instruction bus, embedded processors

I. INTRODUCTION

Due to the unique blend of performance and flexibility,
application-specific processors are used increasingly as
components of modern complex System-on-Chips (SoCs).
The design of such application-specific processors re-
mains a huge challenge owing to the conflicting design
goals such as power, performance, flexibility etc. During
the past years, two major design methodologies came
up to aid the processor designer. The first one targets a
processor design from scratch using a high-level Architec-
ture Description Language (ADL) [1] [2] [3]. The second
methodology extends or customizes a template processor
[4] [5]. For both kinds of processor design approaches, the
instruction encoding plays a major role in determining the
power consumption of the system [6].

The existing instruction encoding synthesis methods [7]
[8] during embedded processor design, do not cover the
effect of coupling capacitance and therefore are inade-
quate for deep submicron technologies. In [9] and [10],
a low-power instruction encoding approach is described

This Paper is based on “Power-efficient Instruction Encoding Opti-
mization for Embedded Processors,” by A. Chattopadhyay, D. Zhang,
D. Kammler, E. M. Witte, R. Leupers, G. Ascheid, and H. Meyr, which
appeared in the VLSI Design Conference, Bangalore, India, January
2007.

considering both self and coupling capacitances. This
technique is applied after the processor is designed and
for that reason an external hardware is used to decode the
instruction. In this paper, a methodology for detecting the
instruction-set encoding during the processor design phase
is proposed, which does not require external hardware.
Furthermore, we show that the framework used in our
approach can also be applied to only change the assembly
instructions to minimize power, without any changes in
the hardware.

A. Instruction Memory Power Consumption

Published results [7] on the power distribution of dif-
ferent processor cores reveal that the instruction memory
power consumption can have a strong impact on the
overall processor power. This can be seen, for example,
in the ICORE ASIP, where instruction ROM contributes
up to 32.4% of total processor power (figure 1).

instruction ROM (32.4%)
Processor Core (54%)

Clock tree (16.2%)

Data RAM (4.9%)IO Controller (1.7%)

Figure 1. Power Distribution for ICORE

The toggling activity in the instruction word has direct
influence on the instruction memory power consump-
tion. Exemplarily, NMOS-ROMs use a two-phase access
scheme, where during the first phase the bit lines are pre-
charged and during the second phase row decoder asserts
one word line. If a specific bit cell contains logic 0, then
the associated bit line is discharged, therefore resulting in
power dissipation. According to the case study in [11],
70% of the total energy consumption of an SRAM is
required for the bit lines, the associated sense amplifiers
and the bit cells themselves. In order to reduce the
memory power consumption, it would suffice to reduce
the toggling activity of the adjacent instructions. However,
the instruction bus power consumption demands a more

generic power model as presented below. This power
model is used for determining the optimized instruction
encoding.

B. Instruction Bus Power Consumption

An embedded processor typically accesses on-chip or
off-chip instruction memory via a bus. Two effects are
relevant for the power consumption in the bus lines. The
first effect is caused by the self capacitance of the bus
lines. The charging or discharging of this self capacitance
occurs due to the toggling of bus lines. The second
contribution to the power consumption results from the
coupling capacitance of adjacent bus lines. Coupling
capacitance is more prominent for technologies below
0.25 µm and for long off-chip buses, where the bus lines
are conventionally routed close to each other. With this
perspective, it becomes important to consider not only
the toggling of subsequent bits but also the toggling of
adjacent bits in the bus lines [12]. Consequently, detailed
modelling and power analysis for considering the effects
of opcode space and crosstalk has been done in recent
years [13]. The power model, which is used in this paper,
is described in the following.

Considering only 0 → 1 transitions as the power-
consuming transitions, which charges the capacitances,
the power consumption can be written as:

Pself = αfCsVdd
2 (1)

Here α is the average number of 0 → 1 bit transitions,
f is the clock frequency, Cs is the self capacitance of the
bus line and Vdd is the supply voltage. This model has
been extended in [13] [14], where the power consumption
due to the coupling capacitance (Cc) is also considered.
This power consumption arises from following different
transitions between adjacent bus lines.

• transition type 1: only one of the two lines toggle and
the final values of the adjacent bit lines are different
e.g. 00 → 01. The average number of such transitions
is referred as β.

• transition type 2: both of the lines toggle to different
final values e.g. 01 → 10. The average number of
such transitions is referred as γ.

Transition type 2 causes the coupling capacitance to
switch twice, while the other type of transition causes it
to switch once. Assuming λ = Cc

Cs
, which changes with

technology, the overall power consumption can be written
as following. The value of λ can be up to 3 for 0.18 µm
technology [13].

Pcon = Pself + Pcoupling (2)

= αfCsVdd
2 + (βfCcVdd

2 + 2γfCcVdd
2)

= Vdd
2fCs(α + βλ + 2γλ)

For the work in this paper, we have varied λ from
0 to 4, with higher values indicating deeper sub-micron
technology.

The rest of the paper is organized as follows: section II
introduces the previous work in this domain and outlines
the contribution of this paper. Section III describes the
overall optimization framework for instruction encoding
synthesis. In section IV and V, the optimization algo-
rithms are elaborated in detail. The results are analyzed
in section VI. This paper ends with a summary and an
outlook.

II. RELATED WORK

The minimization of power consumption in a processor
became a key research topic with increasing system
complexity and shrinking power budget. At the level
of physical design, there exist techniques for reducing
power consumption in deep submicron buses [12] [15].
Complementing these, there exist power-aware instruction
encoding synthesis methods during processor design.

The power-aware instruction encoding optimization
techniques can be classified into two categories according
to the part of the instruction it deals with. The hardware-
oriented techniques (which are applicable during new pro-
cessor design) target the opcode. The software-oriented
techniques deal with the encoding of the operands of the
instruction. The latter kind of techniques can be applied
even after the processor hardware is implemented.

Through hardware approach, the opcode of an instruc-
tion is modified to minimize power consumption. This
requires subsequent updating/generation of the processor
decoder [7] [16] or addition of external hardware [9].
Understandably, these techniques cannot be easily applied
to the extensible processor design methodology, where the
hardware is fixed beforehand. In [7] a method is outlined
to obtain power-efficient opcodes during processor design.
It assigns the maximum weighted code word in a greedy
manner to the most frequently occurring pair of instruc-
tions, thereby avoiding power-dissipating discharging in
the memory bit-lines. This method did not consider any
coupling effect. Similarly, the approach taken at [8] aims
at a reduction of the hamming distance of opcode between
the most frequently occurring pairs of instructions. In [9],
the complete instruction word is transformed dynamically
using an external hardware coupled with the processor’s
fetch unit. Essentially, this method can be considered as
a variant of techniques presented in [15] applied during
physical design. These approaches have high flexibility,
because they can be applied to arbitrary instruction-sets.
Any part of the complete instruction word can be chosen
for encoding. This offers strong optimization potential.
The major drawback of these approaches is that it is
employed after the processor is completely designed and
therefore, the achievable low power optimization may
conflict with other performance metrics at a very late
design phase.

Our approach does not require additional hardware,
rather the instruction decoder has to be adapted to the
modified instruction-set, which saves power and is com-
plementary to the approach presented in [10] and an
extension of the approaches presented in [7].

In software-based approaches, a post-assembly opti-
mization is plugged in for minimizing power-sensitive
transitions in the instruction word. These optimizations do
not call for any additional external decoder. For example,
the technique presented in [9] utilizes Register Name Ad-
justment (RNA) in order to rename the register operands
in the assembly program using a greedy algorithm. As
will be shown in this paper, a heuristic solution for RNA
improves the result considerably. Furthermore, in [9] the
RNA algorithm is applied within the program hot-spots
aided by a profiling tool. We show that using a graph-
based data structure, a hash table based data structure
and high level simulation, the transition information for
the entire program can be obtained and utilized precisely.

In summary, for the hardware-oriented techniques the
sophisticated power models are not used during instruc-
tion encoding at the processor design phase and the
software-oriented techniques are sub-optimal. This paper
contributes in both of these areas.

• Firstly, we offer a framework, which accepts an exist-
ing processor instruction-set and a group of assembly
programs. The output is an optimized instruction
encoding under the constraints of a well-defined cost
model, which minimizes the power consumption for
the target group of programs.

• Secondly, we present effective heuristic algorithms
to minimize memory and bus power consumption
under a given power model.

III. INSTRUCTION ENCODING SYNTHESIS FLOW

In this section, the overall instruction encoding syn-
thesis flow is outlined. On the basis of the flow, the
optimization problem is formulated.

Processor
Instruction-Set

Application

Instruction Encoding
Synthesis

Instruction Encoding
Optimization

High-level
Simulation

Register
Name Adjustment

Opcode
Re-Assignment

Assembly Code
Modification

Processor Decoder
Modification

Assembler
Modification

Figure 2. Overall Encoding Synthesis Flow

A. Overall Encoding Synthesis Flow

The encoding synthesis flow for application-specific
processors is depicted in figure 2. At first, the applications
are simulated using high-level simulators [17]. The infor-
mation is used to determine the optimum instruction width
requirements. This includes the space requirements for
opcode, immediate bits, register operands etc. This phase
is referred as instruction encoding synthesis. Traditionally,
the transition information is neglected in the instruction
encoding synthesis, as it would highly increase the prob-
lem complexity. The approaches, which considered the
transition information [7] [8], do not consider the cross-
coupling effect.

The work presented in this paper, deals exactly with
this problem. In this paper an initial instruction encoding
is taken and optimized according to an enhanced power
model. As shown in figure 2, the instruction encoding
can be optimized by performing Opcode Re-Assignment
(ORA) and/or Register Name Adjustment (RNA). For
ORA, the encoding of the opcode elements of each
instruction is modified. Therefore, it requires the modi-
fication of the processor decoder and also the assembler.
Usually, these are generated automatically in an ADL-
based ASIP design framework [1] [2]. The other tech-
nique, originally presented in [9], performs a renaming of
the registers in the hot spots of the assembly program. The
register name adjustment, without altering the program
functionality, alters the bit-transition characteristics of the
overall program. This reduces the power consumption in
the instruction bus as well as in the instruction memory.

In this paper the overall tool-flow is applied to an ADL-
based ASIP design environment. The ORA technique
modifies the instruction encoding in the ADL. From
the ADL description of the processor, the assembler,
linker and the RTL implementation including decoder are
automatically generated. The RNA technique basically is
a one-to-one mapping of each register in the assembly
program. A shell-script running over the assembly pro-
gram can modify it easily.

B. Problem Formulation

Opcode Re-Assignment (ORA) : Consider a total of
M instructions, where each instruction (i) is having a
binary opcode of C(i). Our goal is to determine a new
set of C(j) such that the power consumption Pcon is
minimized and C(i) 6= C(j), ∀i, jεM , where i 6= j.

Register Name Adjustment (RNA) : Consider a total
of N allocatable registers, where each register (regi) is
having a binary coding of C(regi). Our goal is to find a
bijective mapping BRNA : regi → regj , such that Pcon

is minimized.

IV. ALGORITHMIC OUTLINE OF THE SOLUTION

In this section, the algorithmic outline of our proposed
solution is described. Initially, the processor instruction-
set, which is to be optimized, is represented using a
grammar file. Using the grammar file and the assembly
program, a graph-like data structure and a hash table
based data structure are constructed, which store the
information about the opcode and register elements. They
also store the transition information, loaded from pre-
performed simulation of the program. Finally, based on
both data structures, the formulation for Pcon is done
and the algorithms for ORA and RNA are outlined. An
extension of this approach for optimization based on
multiple assembly programs will be shown in section V.

A. Grammar File Format

The instruction grammar represents the valid instruc-
tions in Backus-Naur Form (BNF) grammar. Table I

shows an exemplary instruction grammar. For this exam-
ple, the instruction word width is 16 bit and there are 16
available registers indexed by src and dst. The opcodes
are given in terminals ‘0’ and ‘1’, while terminals ‘r’, ‘i’
and ‘x’ represent registers, immediates and don’t cares
respectively. Syntactic variables in the grammar file are
referred as non-terminals, for example “add”, “sub”, etc.

TABLE I.
EXEMPLARY INSTRUCTION GRAMMAR

insn : add dst src src ‖ sub dst src src
‖ ld dst src imm ‖ nop
‖ jmp cond src dst imm

add : 0001
sub : 0010
jmp : 0011
ld : 10
src : rrrr
cond src : rr
dst imm : iiiiiiiiii
imm : iiiiii
dst : rrrr
nop : 01xx 0000 0000 xxxx

B. Instruction Encoding Representation

From the instruction grammar file, a set of all possible
instruction patterns of the processor is derived. Such a set
for the abovementioned grammar file is represented in the
table II.

TABLE II.
ALL POSSIBLE INSTRUCTION PATTERNS

insn 0(ld) : 10rr rrrr rrii iiii
insn 1(add) : 0001 rrrr rrrr rrrr
insn 2(sub) : 0010 rrrr rrrr rrrr
insn 3(jmp) : 0011 rrii iiii iiii
nop : 01xx 0000 0000 xxxx

This instruction pattern set can be used as an instruc-
tion filter. The instructions in the assembly program can
be compared with these instruction patterns to extract
concrete information contained in them. The extracted
information includes opcodes, registers, don’t cares, im-
mediates and µ-opcodes. A µ-opcode is a part of an
opcode, which will be introduced in the following section
in detail.

However, for VLIW architectures it is not reasonable to
generate all possible instruction patterns. There are mainly
two reasons for this. First, in a VLIW architecture the
number of all instruction patterns is huge. Considering a
five-slot VLIW architecture, even if only one slot contains
100 instruction patterns, the total number of instruction
patterns of the architecture is 1005 as the result of
permutation of the instruction patterns in all slots. Second,
since the decoding of instructions is independent from
each other in different slots, it is not necessary to generate
all the combinations between them. It is sufficient only to
generate instruction patterns for different slots separately.
Table III and table IV show an exemplary VLIW grammar
file and the corresponding instruction patterns in different
slots.

For extracting the information from the assembly pro-
gram, the instructions only need to be compared with the
instruction patterns slot by slot at corresponding bit-fields.

TABLE III.
EXEMPLARY INSTRUCTION GRAMMAR IN VLIW

root : slot1 slot2 slot3
slot1 : insntype1
slot2 : insntype1 ‖ insntype3
slot3 : insntype2 ‖ insntype3
insntype1 : add dst src src ‖ sub dst src src
insntype2 : ld dst src imm ‖ nop
insntype3 : jmp cond src dst imm
add : 0001
sub : 0010
jmp : 0011
ld : 10
src : rrrr
cond src : rr
dst imm : iiiiiiiiii
imm : iiiiii
dst : rrrr
nop : 01xx 0000 0000 xxxx

TABLE IV.
ALL POSSIBLE INSTRUCTIONS PATTERN IN SLOTS OF VLIW

slot1 insn 1(add) 0001 rrrr rrrr rrrr
insn 2(sub) 0010 rrrr rrrr rrrr

insn 1(add) 0001 rrrr rrrr rrrr
slot2 insn 2(sub) 0010 rrrr rrrr rrrr

insn 3(jmp) 0011 rrii iiii iiii

insn 0(ld) 10rr rrrr rrii iiii
slot3 insn 3(jmp) 0011 rrii iiii iiii

nop 01xx 0000 0000 xxxx

C. ORA Optimization

For the ORA optimization, the position information of
the opcodes in the instruction words is required. This
can be obtained from the instruction grammar file. With
this information, the toggling information and coupling
information between an opcode and other opcodes and
operands can be determined. Based on these informations,
the opcodes can be re-assigend with new bit patterns,
aiming at saving power.

Since the opcodes are used to identify different instruc-
tions, it is important to re-assign the opcodes in such a
way, that the instructions can still be decoded unambigu-
ously. For regular cases, where the opcodes lie in the same
bit-field of the instruction words, as illustrated in figure
3(a), the problem can be simply solved by assigning the
opcodes with different bit patterns. However, usually the
construction of the opcodes is irregular, as shown in figure
3(b) and 3(c).

Figure 3. Opcodes Example

In figure 3(b), instruction insn0 has a different opcode
bit-width from insn1 and insn2, which means that the
opcode of insn0 is always different from that of insn1
and insn2. However this is not sufficient for a unique
decoding, because some bits of opcode of insn1 and
insn2 are covered by the operand part of insn0. These
bits in the operand part cannot be used to distinguish
insn0 from insn1 and insn2, because operands (denoted
by ‘x’) can have arbitrary bit patterns. To achieve a

unique decoding in this case, the opcode of insn0 must be
assigned differently from the first three bits of the opcode
in insn1 and insn2.

Often the decoder structure in the processors is hier-
archically organized. In the example in figure 3(c), the
first three bits “001” of insn1 and insn2 indicate that
both instructions might be grouped into a same instruction
type. They are used to distinguish this instruction type
from other types, in this case insn0. Then in this type a
sub-decoder is used to distinguish insn1 from insn2 with
the remaining two opcode bits. To assign the opcode of
these three instructions, the first three bits of insn0 must
be assigned differently from those of insn1 and insn2, and
the first three bits of insn1 and insn2 must be assigned
with the same coding, while the remaining two opcode
bits of both instructions have to be assigned differently.

For the abovementioned reasons, the instruction pat-
terns generated from the instruction grammar file are
separated into several columns, in order to maintain the
uniqueness of the opcode allocation in different branches
of a hierarchical instruction-set. After that, column graphs
and a hash table are created for the assembly program.
Based on the column graphs and the hash table, a heuristic
approach is used to optimize the assignment of the
opcodes.

1) Column Separation for RISC: The column separa-
tion procedure is done in two steps.

• In the first step, for each possible instruction, a
dividing line between the opcode bit-field and the
other bit-fields is drawn.

• In the second step, the dividing line of each row is
extended across the complete table.

Table V shows the modified instruction table of table
II after the column separation.

TABLE V.
COLUMN SEPARATION

col 1 col 2 col 3 col 4
insn 0 10 rr rrrr rrii iiii
insn 1 00 01 rrrr rrrr rrrr
insn 2 00 10 rrrr rrrr rrrr
insn 3 00 11 rrii iiii iiii
nop 01 xx 0000 0000 xxxx

In this modified table, some columns capture a part
of the opcode, which is referred as µ-opcode. Each µ-
opcode contains the information about its position in the
instruction and its bit-width. Important is, that the µ-
opcodes with the same binary value in the same column
are considered as the same µ-opcode, even if they may
belong to different opcodes. By assigning different µ-
opcodes in a same column with different bit patterns,
the hierarchy of the coding architecture is maintained.
This also results in the benefit of reduced complexity
for finding a conflict-free instruction encoding, since it
is sufficient to separately ensure unique bit pattern for
the µ-opcodes of each column. Now the relation between
Instructions and µ-opcodes can be derived from table V,
which is shown in table VI.

TABLE VI.
INSTRUCTION PATTERNS AND µ-OPCODES

col 1 col 2 col 3 col 4
insn 0 µ-op0 rr rrrr rrii iiii
insn 1 µ-op1 µ-op3 rrrr rrrr rrrr
insn 2 µ-op1 µ-op4 rrrr rrrr rrrr
insn 3 µ-op1 µ-op5 rrii iiii iiii
nop µ-op2 xx µ-op6 xxxx

2) Column Separation for VLIW: For a VLIW archi-
tecture the separation of instruction patterns is more com-
plicated. Since the decoding of instructions in different
slots of a VLIW architecture is independent of each other,
the assignment of opcodes in different slots in principle
can also be done differently for each slot. For example in
table IV, the opcode for “add” may be “0001” in slot1,
while in slot2 it may be assigned with “0011”.

However, conventionally the same opcode in different
slots is still assigned with the same bit pattern, because
that simplifies the design of the instructions and also the
development of assembler and disassembler greatly. Since
the same opcode in different slots might be separated
differently, the way of separating instruction patterns
described above still needs to be extended. Without loss
of generality, with the VLIW grammar file and instruction
patterns in table III and IV, the separation of the instruc-
tion patterns for VLIW architectures is shown exemplarily
in the following steps:

• The first step is to do column separation in different
slots separately. An example is shown in table VII.

TABLE VII.
COLUMN SEPARATION IN SLOTS

slot1 insn 1 0001 rrrr rrrr rrrr
insn 2 0010 rrrr rrrr rrrr

insn 1 0001 rrrr rrrr rrrr
slot2 insn 2 0010 rrrr rrrr rrrr

insn 3 0011 rrii iiii iiii

insn 0 10 rr rrrr rrii iiii
slot3 insn 3 00 11 rrii iiii iiii

nop 01 xx 0000 0000 xxxx

• In a second step, the separation positions of the iden-
tical opcodes in different slots have to be merged.
This might produce new separation positions for
other opcodes. Then these new generated separation
positions need to be merged again. Thus, this pro-
cedure is recursive and settles when no more new
separation positions are generated. For example, in
table VII the opcode of “jmp” (coding 0011) in
insn 3 is separated in slot3, but not in slot2. So the
opcode of “jmp” in slot2 has to be separated, which
introduces new separation positions in the opcodes
of “add” (coding 0001) and “sub” (coding 0010) in
slot2. This again requires the opcodes of “add” and
“sub” in slot1 to be separated, too.
At the end of this recursive procedure, the columns
in the slots are updated, which are shown in table
VIII.

• In a third step, dependent columns in different slots
are determined. Dependent columns are the columns,
which contain common bit-fields of certain opcodes.

TABLE VIII.
UPDATED COLUMNS IN SLOTS

col 1 col 2 col 3 col 4
slot1 insn 1 00 01 rrrr rrrr rrrr

insn 2 00 10 rrrr rrrr rrrr

col 5 col 6 col 7 col 8
insn 1 00 01 rrrr rrrr rrrr

slot2 insn 2 00 10 rrrr rrrr rrrr
insn 3 00 11 rrii iiii iiii

col 9 col 10 col 11 col 12
insn 0 10 rr rrrr rrii iiii

slot3 insn 3 00 11 rrii iiii iiii
nop 01 xx 0000 0000 xxxx

For example, in table VIII col 1, col 5 and col 9 are
dependent columns, because col 1 and col 5 have the
same bit-field of the opcodes of “and” and “sub”,
and col 5 and col 9 have the same bit-field of the
opcode of “jmp”. The reason to determine dependent
columns is that in a VLIW architecture the common
bit-fields of an opcode in different columns still
have to be assigned with the same bit patterns. By
assigning same bit patterns to the common opcode
bit-fields in dependent columns, a unique assignment
of the opcodes is ensured.
The determination of dependent columns can be
explained using a matrix representation, as shown in
figure 4(a). The columns, which can be connected by
horizontal lines at the crossing points are considered
as dependent columns. In figure 4(b), an example
for a set of dependent columns is shown, namely,
{c1,c3,c4}. The other dependent columns in this
matrix are {c2} and {c5,c6}.

Figure 4. Example for Dependent Columns

• The last step is to assign the µ-opcodes to the
bit patterns in the columns, which is similar to
the assignment of µ-opcodes for RISC architectures
described above. The only difference is that here
same bit patterns in dependent columns must be
referred as the same µ-opcode, instead of in a single
column. The result after the assignment of the µ-
opcodes is given in table IX.

3) Information Extraction in ORA: To extract the
toggling and coupling information from the assembly
program, the program is at first simulated and a sequence
of instructions is dumped, which for example includes
unrolled loops, etc. Then this instruction sequence is
analysed and mapped to µ-opcodes. This mapping can

TABLE IX.
µ-OPCODES IN SLOTS

col 1 col 2 col 3 col 4
slot1 insn 1 µ-op0 µ-op3 rrrr rrrr rrrr

insn 2 µ-op0 µ-op4 rrrr rrrr rrrr

col 5 col 6 col 7 col 8
insn 1 µ-op0 µ-op3 rrrr rrrr rrrr

slot2 insn 2 µ-op0 µ-op4 rrrr rrrr rrrr
insn 3 µ-op0 µ-op5 rrii iiii iiii

col 9 col 10 col 11 col 12
insn 0 µ-op1 rr rrrr rrii iiii

slot3 insn 3 µ-op0 µ-op5 rrii iiii iiii
nop µ-op2 xx µ-op6 xxxx

be considered as “column-wise disassembling”. Each in-
struction is compared with the instruction patterns, and
only one instruction pattern will be met. Through the
relation between the pattern and the µ-opcodes, informa-
tion about the opcode for the instruction is extracted in
form of corresponding µ-opcodes information. The don’t
care, immediate and register fields are instantiated with
the appropriate values in the instruction. An example for
the ORA information extraction is illustrated in figure 5.

Figure 5. ORA Information Extraction

As shown in the figure, through comparing the in-
coming instruction word “1000110000001000” (assembly
code: ld r3, r0, 8) with the instruction patterns, the pattern
“insn0: 10rr rrrr rrii iiii” is matched (see table II). For
the pattern insn0, the corresponding µ-opcode information
can be obtained from table VI. So µ-op0 is extracted in
the first column, and the information in the remaining
columns is extracted by replacing the remaining parts of
the pattern with the coding of the instruction word: “00”,
“11000000” and “1000”.

With the extracted information about µ-opcodes, a
directed graph for the toggling information in each col-
umn and a hash table data structure for the coupling
information within columns and across columns can be
generated.

4) ORA Column Graphs: From the extracted informa-
tion, a directed graph for each column is prepared for the
ORA. The existing µ-opcodes of the same binary value,
are mapped to the same node of the graph.

Formally, the graph is defined as 〈V, E〉, where V

represents an unique µ-opcode for the column and E is
the edge set between two vertices. The edge set consists
of two directed edges (E 1, E 2), each representing the
frequency of occurrence of the adjacent nodes in one

direction. The column graphs of col 1 and col 2 for
a given assembly program are shown in figure 6. It
can be observed that for col 1, there are two distinct
binary values, resulting into two different µ-opcodes.
There is only one edge between the two µ-opcodes, which
represents the transition from the first instruction to the
second instruction. In col 2, transition from µ-op3 to µ-
op4 happens twice, therefore the correponding edge in the
graph is weighted with 2.

In a VLIW architecture, single graphs are at first cre-
ated for each column. Then the graphs of those columns,
which belong to the same set of dependent columns, have
to be combined into one graph to ensure a unique coding
assignment for the µ-opcode-nodes.

Figure 6. ORA Column Graphs and Coupling Information

5) ORA Hash Table: As shown in figure 6, the cou-
pling informaton among the nodes can also be created,
while the column graphs are created.

The coupling information is evaluated both inside of
the columns and across the columns. In the figure, only
the coupling information within col 1 and between col 1
and col 2 is shown, which includes exact information,
at which bits of the nodes a coupling transition occurs
and how frequently it occurs. Inside of col 1, only one
coupling transition occurs between the first bit and the
second bit of µ-op0 and µ-op1. Across col 1 and col 2,
coupling effects occur between the last bits of col 1 and
the first bits of col 2. For example, a coupling transition
happens twice from bit 0 of µ-op1 and bit 1 of µ-op3 to
bit 0 of µ-op1 and bit 1 of µ-op4.

Our goal is to determine a new coding for each µ-
opcode-node, such that the sum of Pself and Pcoupling

within columns and Pcoupling across columns is mini-
mized. Within a column, the only restriction is to have
unique binary coding for each node. Across columns,
there is no such restriction.

6) Solution of ORA: The task of determining the
optimum encoding with the given constraints is an NP-

complete problem, because it can be formulated as an
integer linear programming (ILP) problem. In our so-
lution, we have taken a two-phase approach. The first
phase determines an initial coding assignment through
gray code. In the second phase, a heuristic optimization
method based on simulated annealing is applied. Sim-
ulated annealing is a well known technique, which is
helpful to skip the local minima in the solution space by
introducing a probability mechanism [18]. The complete
algorithm is outlined in the following pseudo-code.

01 OpcodeOptimization(Column Graphs, Coupling Info)

02 {

03 for each Gcol in the Column Graphs {

04 Gcol undir := MergeEdges(Gcol);

05 if Gcol undir contains µ-opcode-nodes {

06 if Gcol undir contains fixed values

07 SubGcol undir := GetSubgraphWithoutFixedValue(Gcol undir);

08 else

09 SubGcol undir := Gcol undir ;

10 MWP := GetMaximumWeightedPath(SubGcol undir);

11 assign GrayCodecol values to the nodes in the MWP;

12 calculate Pinit from Gcol and Coupling Info;

13 ReplaceAndSwapWithSA(Gcol , Coupling Info, Pinit);

14 }

15 }}

16
17 ReplaceAndSwapWithSA(Gcol, Coupling Info, Pinit)

18 {

19 P := Pinit;

20 S(C) := get all codings of column bit-width;

21 T := T0, r := factor;

22 while (T > Tth) {

23 for each µ-op-nodei in Gcol {

24 for each Ci in S(C) {

25 Ctmp := Cµ−op−nodei
;

26 assign µ-op-nodei with Ci;

27 if(Ci used by another µ-op-nodej)

28 assign µ-op-nodej with Ctmp;

29
30 determine Pcurrent with new coding of µ-opcode-nodes;

31 diff := Pcurrent - P ;

32 if((diff<0) or (exp(−diff
T

)>random()))

33 P := Pcurrent ;

34 else if (µ-op-nodej is assigned)

35 UndoSwapCoding(µ-op-nodei , µ-op-nodej);

36 else

37 UndoAssignment(µ-op-nodei);

38 }

39 }

40 T := r∗T ;

41 }}

In the first phase of the algorithm, an initial solution
is determined. The column graph is at first converted
into an undirected graph by merging edges of reverse
direction and adding up the edge weights. From the
undirected graph, a subgraph is created by removing the
nodes with fixed values. To assign binary codes with

minimum hamming distance to this undirected graph
closely resembles the problem of address assignment
during DSP code generation [19]. We adopt the same pro-
cedure outlined there. From this subgraph, the Maximum
Weighted Hamiltonian Path (MWP) is determined. The
gray code is assigned to the nodes of this path. This
procedure of gray code allocation is done until all the
nodes of the column graph have been assigned to a
definite binary coding. An important point of this gray
code allocation is to find the ideal starting point in the
gray code set. While any continuous chain of gray code
elements ensure minimum toggling activity, a particular
one ensures minimum transition with the neighbouring
columns. Therefore, the starting point of the gray code set
is chosen carefully. Note that the removal of the directed
edges and the creation of the subgraph is just for preparing
the maximum weighted path. The power measurement is
performed over the unaltered graph (Gcol). During the
second phase of the algorithm, a heuristic replacement
and swapping of µ-opcodes based on simulated annealing
algorithm is performed.

For each µ-opcode node, each possible coding in the
S(C) is evaluated. If the coding is already assigned to
another µ-opcode node, the codings of both µ-opcode
nodes are swapped. For each new assignment, the power
Pcurrent is calculated, considering both toggling and
coupling information within the column and coupling
information between the column and adjacent columns. If
the Pcurrent is less than the old power or the difference
between them is small enough, as shown in line 32, the
µ-opcode nodes keep the newly assigned coding and the
old power is updated with Pcurrent. Otherwise, the coding
assignment is undone. After iterating all the µ-opcode
nodes, the temperature is reduced for the next annealing
step by multiplying it with the factor r < 1, until the
threshold temperature Tth is reached. The random number
varies between 0 and 1.

For clarity, in this pseudo-code the whole power con-
sumption is calculated at each temperature for each pos-
sible coding of the nodes. In fact, only the difference
between the old power and current power needs to be
calculated. This is important to reduce the complexity
of power calculation and therefore the runtime of the
algorithm.

D. RNA Optimization

In comparison to ORA, for the RNA, the complete
encoding of a register needs to be considered as a whole.
This is due to the fact that a part of a register encoding
does not carry a significance like a part of the opcode.
Therefore, for the RNA problem, the assembly program
and the grammar file are used directly as the entry point.
Based on these, toggling information and coupling infor-
mation for registers are extracted, and correspondingly
a graph and a hash table are generated. By applying a
heuristic approach to the graph and the hash table, the
registers are re-allocated. Note that there is no differece

between RNA optimization for RISC architectures and for
VLIW architectures.

1) Information Extraction in RNA: From table I and
table II, relation between instruction patterns and non-
terminals in the grammar file can be derived, which is
presented in table X. Based on this table, the toggling
information and coupling information between registers,
opcodes, immediates and don’t cares can be obtained
from the generated instruction sequence by simulating the
program. Figure 7 illustrates how the information about
registers and other items is extracted from an instruction.

TABLE X.
INSTRUCTION PATTERNS AND NON-TERMINALS

insn 0 10rr rrrr rrii iiii ld reg reg imm
insn 1 0001 rrrr rrrr rrrr add reg reg reg
insn 2 0010 rrrr rrrr rrrr sub reg reg reg
insn 3 0011 rrii iiii iiii jmp cond reg dst imm
nop 01xx 0000 0000 xxxx nop

Figure 7. RNA Information Extraction

2) RNA Graph and Hash Table: From the extracted
information, a directed multi-graph is derived. Formally,
the graph is defined as 〈V, E〉, where V represents an
instruction element (register, opcode, immediate etc.) and
E is the edge set between two vertices. The edge set
contains multiple directed edges between two vertices.
Due to the possible spread of a register encoding over
different parts of an instruction, it is possible to have
an edge, which indicates a partial overlap of the register
encoding. As shown in figure 8, the register reg[3]
has a single directed transition to the opcode of add,
which is partially overlapped. The details of overlapping
bit-width are not shown in the figure for clarity. It is
important to note that all register instances with the same
index in the assembly program are mapped to the same
node. This approach completely removes the complexity
of maintaining the define-use chain of registers in the
program, while doing the register name adjustment.

Exemplary coupling information between an addition
and a subtraction instruction is given in figure 9.

With the graph and the coupling information, the RNA
problem can be summarized as the determination of the
encoding of the register nodes of the graph, so as to
minimize the power consumption contained in the graph
and the hash table.

3) Solution of RNA: Since the register nodes in the
directed multigraph may have high number of edges

Figure 8. Directed Multigraph for RNA

Figure 9. Coupling Information for RNA

with other instruction elements, it is unlikely to have
a continuous chain of register elements. Therefore, the
allocation of gray code to the register elements is difficult.
We adopted a heuristic approach similar to that performed
during ORA, where codings of register nodes are replaced
or swapped to improve the overall power consumption.
Our solution for the RNA problem is outlined in the
following pseudo-code.

01 RegisterOptimization(GRNA, Coupling Info)

02 {

03 calculate Pinit from GRNA and Coupling Info;

04 ReplaceAndSwapWithSA(GRNA, Coupling Info, Pinit);

05 }

06
07 ReplaceAndSwapWithSA(GRNA, Coupling Info, Pinit)

08 {

09 P := Pinit ;

10 T := T0 , r := factor;

11 while (T > Tth) {

12 for each noderegi
in GRNA {

13 S(Ci) := GetAvailableCodings(noderegi
);

14 for each Ci in S(Ci) {

15 Ctmp := Cregi
;

16 assign noderegi
with Ci;

17 if (Ci used by another noderegj
) {

18 S(Cj) := GetAvailableCodings(noderegj
);

19 if (Ctmp /∈ S(Cj)) {

20 UndoAssignment(noderegi
);

21 continue;

22 }

23 else

24 assign noderegj
with Ctmp;

25 }

26 determine Pcurrent with new coding of registers;

27 diff := Pcurrent - P ;

28 if((diff<0) or (exp(−diff
T

)>random()))

29 P := Pcurrent ;

30 else if (noderegj
is assigned)

31 UndoSwapCoding(noderegi
, noderegj

);

32 else

33 UndoAssignment(noderegi
);

34 }}

35 T := r∗T ;

36 }}

The main algorithm of the RNA is controlled by
simulated annealing (line 28). For each register node, a set
of available codings is reserved. The significance of this
set is two-fold. Firstly, it includes the unallocated registers
from the processor architecture. Secondly, this allows
irregular cases of register access which simple register
replacement and swapping is unable to do. For example,
a processor may allow addressing of the same register
with 2 or 4 bits. With simple replacement and swapping,
the 4 bit register encoding will never be exchanged with
a 2 bit register, even though it is possible.

While assigning a register with a coding in its available
coding list, it is examined in the graph, whether another
register node already occupies the coding. If it is the case,
the algorithm continues to examine if the second register
node can be assigned with the coding of the first register,
by checking whether the coding of the first register node
exists in the list of available codings of the second register
node. Only when the second register node can be assigned
with the coding of the first register, a coding swapping
is performed between both register nodes. Otherwise, the
algorithm removes the assignment for the first register
node and continues with its next available coding. After
assigning the register nodes, current power with updated
coding of the register nodes is calculated, which is com-
pared to the initial power. If the difference between the
current power and the initial power fulfills the condition
given in line 28, the initial power is updated with current
one, otherwise the assignment for the register nodes is
changed back.

This presented solution of RNA augments the existing
RNA solution [9] by three important steps. Firstly, the
storing of the complete transition information in the
assembly program in a directed multigraph and a hash
table increases the accuracy and efficiency of RNA. Sec-
ondly, the heuristic replacement and swapping of register
encoding decreases the risk of hitting a local minima
in the solution space. Thirdly, the problem of irregular
addressing of registers can be easily solved by predefining
available codings for the registers.

It is interesting to observe that an approach based on
simulated annealing has been successfully employed to
reduce the power consumption for buses [20]. It orders
the bus lines in the routing phase to minimize the power
consumption. The approach presented in this section can
be thought of performing a similar re-ordering on a much
higher level of abstraction and therefore, complementing
the bus re-ordering technique.

V. OPTIMIZATION ALGORITHM FOR MULTIPLE

ASSEMBLY PROGRAMS

The technique for the instruction encoding optimization
mentioned in the last section is not limited to one assem-

bly program. It can be extended to the optimization for
a group of assembly programs. Typically, an embedded
processor can target several applications within or across
classes of algorithms. Since all the assembly programs of
the applications run on the same processor architecture,
the problem of optimization for multiple assembly pro-
grams can be formulated as the individual optimization on
the software part of the programs, with the opcodes being
optimized in common. The optimization flow is outlined
in figure 10.

Figure 10. Multiple Assembly Programs Optimization Flow

• Firstly, the columns information is extracted for each
assembly program. Out of each program, a set of
column graphs and a hash table are created. Based
on these, the ORA technique is used aiming at the
optimization in all programs.

• After the ORA optimization, the grammar informa-
tion is updated. The new grammar information is
used as the common grammar information for each
program at RNA optimization.

• In the last step, RNA optimization is performed for
each program individually, based on the common
grammar information. Out of each program, a regis-
ter graph for toggling information and a hash table
for coupling information are created for re-assigning
the registers.

Since RNA optimization can be applied to different
programs individually, which is the same as described
in the previous section, only the ORA technique for
common opcode optimization for a set of programs is
introduced here. With toggling information and coupling
information extracted for each program, the ORA algo-
rithm for opcodes optimization for multiple programs is
also based on the simulated annealing approach, similar
to the ORA algorithm applied to single programs. The
main difference between ORA for one single program
and ORA for multiple programs is that the condition of
simulated annealing for accepting a new coding assigment
has to be met for all programs. A brief pseudo-code of
the ORA optimization for multiple programs is shown in
the following.

01 ReplaceAndSwapForMultiAppWithSA(Gcol List, Coupling Info List)

02 {

03 for each programi of all programs {

04 Ppg iinit
:= get initial power of programi;

05 }

06 T := T0, r := factor;

07 while(T > Tth) {

08 S(C) := get all codings of column bit-width;

09 Listµ−op−nodes := get all µ-opcodes from Gcol List;

10 for each µ-op-nodei in Listµ−op−nodes {

11 for each Ci in S(C) {

12 Ctmp := Cµ−op−nodei
;

13 assign µ-op-nodei with Ci;

14 if(Ci used by another µ-op-nodej)

15 assign µ-op-nodej with Ctmp;

16
17 improve all := true;

18 random number := random();

19 for each programi of all programs {

20 determine Ppg icurrent with new codings of µ-opcode-nodes;

21 diff := Ppg icurrent - Ppg iinit
;

22 if((diff>0) and (exp(−diff
T

)<random number)) {

23 improve all := false;

24 break;

25 }}

26
27 if (improve all == true)

28 for each programi of all programs

29 Ppg iinit
:= Ppg icurrent ;

30 else if (µ-op-nodej is assigned)

31 UndoSwapCoding(µ-op-nodei , µ-op-nodej);

32 else

33 UndoAssignment(µ-op-nodei);

34 }}

35 T := r∗T ;

36 }}

The random mechanism is shown in line 22. For each
program, its current power is compared with the old
power. Only when the result of the comparison satisfies
the requirement of the simulated annealing process for
each program, the condition for accepting the new coding
assignment is met, otherwise, the new assignment is
changed back. Here, as seen in line 18, a same random
number is used for all programs at each coding assign-
ment iteration.

Since the stochastic information about the frequency
of running each program is absent, we assume that the
probability of running each program is the same. Hence,
in this pseudo code the condition of simulated annealing
has to be satisfied for each program (line 17-25). If the
stochastic information is known, the power consumption
on each program can be weighted. By summing up the
weighted power consumption on each program, an overall
power consumption can be calculated. Then this overall
power consumption can be used to determine whether a
new coding assignment is to be taken or not.

VI. RESULTS

The optimizations discussed in this paper are tested
with four different processors. The ICORE [7] architec-
ture is dedicated for Terrestrial Digital Video Broadcast
(DVB-T) decoding. We took two assembly programs
cordic01 and cordic02 running on this architecture. Both

assembly programs perform the same cordic algorithm,
but with different implementations. The second architec-
ture of our case study is LEON3. LEON3 [21] is a 7-
stage pipelined processor, compliant with the SPARC V8
architecture. Two programs running on LEON3 namely,
integer matrix multiplication (mmul), and bubblesort are
used for the case study. The third processor is for real-
time Retinex image and video filtering [22], which is also
a 7-stage pipelined architecture. Two image processing
programs color treatment (col treat) and image enhance-
ment (img enhance) are run on the architecture. The
last processor architecture that we studied is TriMedia
DSPCPU32, which is based on a 5-slot VLIW architec-
ture with 6 pipeline stages. On this architecture we ran
two programs, namely, Adaptive Differential Pulse Code
Modulation (adpcm) and blowfish encryption-decryption
(blowfish). The value of λ used for the measurements in
table XII, table XIII and table XIV is 3.

All the abovementioned architectures are implemented
using an ADL description. The instruction-set grammar is
automatically extracted from the ADL description. Note
that a hand-written instruction-set grammar can also be
used to employ the optimizations outlined. The optimized
assignment for the opcode is updated in the ADL and the
new HDL implementation is automatically generated from
that. The register name adjustment is performed directly
on the assembly program. The modified program is run on
the generated HDL description of the processor to check
the correctness of the optimized encoding. Finally, the
original and optimized toggling activity as well as the
coupling transitions are measured.

A. Power Reduction in the Instruction Memory

Table XI summarizes the toggling activity reduction in
the instruction word lines.

TABLE XI.
TOGGLING ACTIVITY REDUCTION

architecture program reduction

ICORE cordic01 50.00%
cordic02 20.32%

LEON3 mmul 24.22%
bubblesort 23.53%

Retinex col treat 36.11%
img enhance 34.46%

TriMedia adpcm 24.12%
blowfish 19.69%

B. Memory Power Reduction : System-level Effect

In order to investigate the system-level effect of these
savings, the power consumed by an ICORE processor
and memory are measured using commercial RTL power
measurement tools [23]. In a typical use-case scenario,
32.4% of the total power is consumed by the instruction
memory. The toggling activity improvement corresponds
to a strong instruction memory power savings, assuming
60% of the memory power is consumed due to this
toggling activity [11]. For ICORE, this corresponds from
3.95% up to 9.72% of the overall power consumption.

Although the overall effect is not dramatic, yet it is
significant as it is achieved without any performance or
area overhead.

C. Power Reduction in the Instruction Bus

The power reduction in the instruction bus strongly
depends on the value of capacitances, bus-length, bus-
width, supply voltage and other parameters. The absence
of an RTL power measurement tool with deep submicron
bus power model prevented us from obtaining precise
bus power consumption as part of the overall system. In
existing literature, often a specific value of abovemen-
tioned parameters is chosen to present the power reduction
[14]. In this paper, in order to maintain a fair basis for
comparison, a model from equation 3 is extracted without
the capacitance, frequency and supply voltage. This is
referred as Power Consumption Cost (PCC). Table XII
summarizes the improvement of PCC for the four target
processors.

PCC = (α + βλ + 2γλ) (3)

TABLE XII.
OVERALL PCC IMPROVEMENT

architecture program original optimized(improvement)

ICORE cordic01 4310 2237 (48.10%)
cordic02 1603 1223 (23.71%)

LEON3 mmul 58660 43150 (26.44%)
bubblesort 112045 79989 (28.61%)

Retinex col treat 756131 437598 (42.13%)
img enhance 266669 168526 (36.80%)

TriMedia adpcm 6903677 4808683(30.35%)
blowfish 15869089 11792815(25.69%)

Note that the instruction-set for the ICORE architecture
was already optimized for the two test programs using
the techniques outlined in [7]. Their approach did not
consider the coupling effects. The optimizations by the
RNA technique (not covered in [7]) also contributed to
the strong reduction of power consumption.

Figure 11 shows the overall improvement for the pro-
grams with λ varying from 0 to 4. It can be observed that
the improvement of PCC approaches a saturation value,
for λ → ∞. We can also observe that the simulated
annealing algorithm introduces slight variations due to the
random mechanism.

D. Separate Optimization Contributions

The individual contributions in power consumption
improvement by the ORA and the RNA technique are
shown in table XIII. For both the ORA and the RNA,
the improvements are measured across the complete in-
struction, not only for the modified parts of the coding.
The improvements, therefore, are indices of the individual
width and organization of the coding elements in the
total instruction. The main reason, why the improvement
based on ORA optimization for LEON3 and TriMedia is
relatively low, is that the opcode is arranged sparsely in
the instruction word compared to the regular opcode or-
ganization in ICORE and Retinex. The low improvement

Figure 11. Overall Improvement with Variable λ

based on RNA for the program cordic02 is caused by a
customized instruction in the architecture, which uses 6
out of 8 general purpose registers as dedicated registers
for a special functionality. So those registers must not
be changed in this program. Hence, the scope of the
optimization in the register field of the program is very
limited. In contrast, since this special instruction is not
used in the assembly program cordic01, the limitation
of the scope of the optimization does not exist. At the
design phase of the processor architecture, this limit can
still be taken off by modifying the architecture and the
program correspondingly together. In this case for the
optimization on cordic02, the improvement of PCC can
reach more than 11%, by changing both the architecture
and the assembly program.

TABLE XIII.
SEPARATE PCC IMPROVEMENT BY ORA AND RNA

architecture program ORA RNA

ICORE cordic01 24.66% 17.08%
cordic02 22.46% 1.81%

LEON3 mmul 4.28% 20.80%
bubblesort 6.89% 22.39%

Retinex col treat 23.61% 17.13%
img enhance 24.27% 16.63%

TriMedia adpcm 7.69% 23.35%
blowfish 9.89% 15.56%

Note that the sum of improvement by ORA and by
RNA is not necessarily the same as the improvement by
RNA after ORA in table XII. The reason is that in the
latter case after the ORA optimization, the coding charac-
teristic in the programs is changed. Based on the changed
program, the following RNA may produce different result
than the RNA based on the original program.

E. Comparison with Greedy Approach for RNA

In order to show the efficacy of our approach, we have
compared the approach based on simulated annealing with
the greedy approach for RNA outlined in [9]. The results
of these comparisons for the four processors are given
in table XIV. In all the cases, the simulated annealing is
performing better compared to the greedy one. In some

cases, the greedy algorithm is actually producing worse
PCC results than original PCCs. The reason is that the
greedy algorithm outlined in [9] does not take coupling
effect into account.

TABLE XIV.
COMPARISON WITH GREEDY APPROACH

architecture program Improvement
Greedy SA

ICORE cordic01 -8.65% 17.08%
cordic02 1.56% 1.81%

LEON3 mmul 7.39% 20.80%
bubblesort 0.34% 22.39%

Retinex col treat 6.48% 17.13%
img enhance -3.89% 16.63%

TriMedia adpcm -10.2% 23.35%
blowfish -8.91% 15.56%

Furthermore, the greedy approach does not have the
ability to know the information about the global directions
of the edges in the graph. Therefore, such an approach is
inherently limited in its ability. The following example
shows the limitation of greedy method clearly. In figure
12, a simple register graph is shown. The initial indices
for r0, r1, r3 are “00”, “01” and “11” respectively. For
simplicity, here we don’t consider the coupling effect. So
the initial PCC is zero. According to the greedy method,
the registers r0 and r1 are assigned at first, because the
weight of the edge between them are the largest in the
graph. Assuming the registers r1 and r0 are assigned with
“11”and “10”, which surely makes the toggling from r1 to
r0 to zero, the best index left for r3 is “01”. It results in a
PCC of 3. In comparison to the initial zero-PCC, the result
gets worse. So for already quite optimized encoding, using
the greedy method has potential risk, getting a worse
result.

Figure 12. Example for Optimization with Greedy Method

F. Comparison with Odd/Even Bus Invert Encoding Tech-
nique

It is worthwhile to compare the power savings achieved
in the proposed framework to those achievable by pure
encoding-decoding techniques. We select one such tech-
nique namely, Odd/Even Bus Invert Encoding Technique
(OEB) [15], which considers the effect of coupling ca-
pacitance and adds two extra bus-lines. Depending on the
code transmitted in these extra lines, the data is encoded
and decoded by inverting odd or even lines of the original
bus. As can be observed from figure 13, the instruction
encoding techniques presented here outperforms the OEB
technique. In some cases, where the bus lines are already
in low consumption state, the OEB technique even gets
worse result due to the added power consumption of extra
bit lines.

G. Bus Power Reduction : System-level Effect

In order to judge the effect of the above reductions
on the overall system, the scaling trends of interconnect

Figure 13. Comparison with OEB

power with technology are considered. Based on [24],
the following results were obtained. For microprocessor-
based systems, on-chip signaling interconnects are re-
ported to constitute 46% of overall power in 180 nm
technology and predicted to contribute 27% of overall
power in 50 nm technology. As indicated in the results,
our proposed techniques save from 25.69% up to 48.10%
of the instruction bus power, which is 11.82% to 22.13%
of total power in 180 nm technology and 6.93% to 12.99%
in 50 nm technology.

H. Runtime

The simulated annealing is a computation-intensive
heuristic. In our case, the algorithm runtime largely de-
pends on the complexity of the instruction grammar. Note
that the size of the program affects the run time only if the
additional instructions create a new graph edge or a new
coupling information. Therefore, beyond a certain size the
run time is affected by the programs only slightly.

We ran the experiments on an AMD Athlon(tm) 64x2
processor mit 2.4GHz CPU and 2G Memory. The whole
run time including ORA and RNA for ICORE, LEON3
and Retinex is under 10 Minutes. For Trimedia, the run
time is around 1 hour. The main reason is that the registers
in this architecture are encoded with 7 bit and a huge
number of registers are used in the programs. The number
of iterations on the registers and the available codings for
registers is increased significantly, in comparison to other
architectures.

VII. SUMMARY

The decreasing power budget of modern application-
specific processors have created strong interest towards
low-power design techniques. Instruction memory and
bus, being two strong power consuming components of a
system, are of special interest in a low power processor
design methodology. Hence, an efficient instruction-set
encoding is required for reducing power consumption in
the instruction bus and the instruction memory. In this
paper, this problem is addressed. In the following, the
limitations and contributions of this paper are summa-
rized.

Limitation: The limitation of the approach presented in
this paper can be readily appreciated by comparing with
the work presented by Petrov et al [10]. In our approach,
the instruction encoding is determined during processor
design phase and therefore, one instruction can have one

unique opcode. In the approach outlined by Petrov et
al, the program binary is transformed considering purely
the bit-sequences. This technique (and likewise other
sophisticated bus encoding techniques) can potentially
have more flexible transformations.

From another point of view, the approach of [10]
is a processor-independent encoding technique and thus
needs additional circuitry for encoding and decoding.
In contrary, our approach is strongly dependent on the
organization of the processor instructions. The ORA ap-
proach presented in this paper is highly beneficial for
application-specific processor design, where the program
set is well known in advance. The power savings under
that scenario is significant and is achieved without any
associated overhead. Understandably, our approach can be
combined with other processor-independent approaches (
[10], [12]) to reap further benefits.

Contribution: The contributions of this paper are two-
fold. Firstly, this paper contributes a framework and
technique for determining low-power instruction opcode
(ORA) during application-specific processor design. Sec-
ondly, this paper contributes a novel algorithm for register
name adjustment (RNA), which shows better results than
the existing greedy algorithm.

Outlook: In the future, our work will focus on the com-
bination of the ORA and RNA techniques with available
bus encoding techniques to optimize the power consump-
tion. It will also be highest interesting to integrate the
RNA technique into compiler to get power efficient allo-
cation of registers, with additional information provided
by the profiling of the programs.

REFERENCES

[1] P. Grun, A. Halambi, A. Khare, V. Ganesh, N. Dutt,
and A. Nicolau, “EXPRESSION: An ADL for System
Level Design Exploration,” Department of Information and
Computer Science, University of California, Irvine, Tech.
Rep., 1998.

[2] A. Hoffmann, H. Meyr, and R. Leupers, Architecture
Exploration for Embedded Processors with LISA. Kluwer
Academic Publishers, 2002.

[3] http://www.retarget.com, Target Compiler Technologies.
[4] http://www.tensilica.com, Tensilica.
[5] http://www.stretchinc.com, Stretch.
[6] T. Mudge, “Power: A First-Class Architectural Design

Constraint,” Computer, 2001.
[7] T. Gloekler and H. Meyr, Design of Energy-Efficient

Application-Specific Instruction Set Processors. Springer,
2004.

[8] L. Benini, G. De Micheli, A. Macii, E. Macii and M.
Poncino, “Reducing Power Consumption of Dedicated
Processors through Instruction Set Encoding,” 1998.

[9] P. Petrov and A. Orailoglu, “Transforming Binary Code for
Low-Power Embedded Processors,” IEEE Micro, vol. 24,
no. 3, 2004.

[10] P. Petrov and A.Orailoglu, “Low-power instruction bus
encoding for embedded processors,” IEEE Trans. Very
Large Scale Integr. Syst., 2004.

[11] M. F. Chang and M. J. Irwin, and R. M. Owens, “Power-
Area Tradeoff in Divided Word Line Memory Arrays,”
Journal of Circuits, Systems, Computers, vol. 7, no. 1,
1997.

[12] E. Macii, M. Poncino and S. Salerno, “Combining Wire
Swapping and Spacing for Low-power Deep-submicron
Buses,” in GLSVLSI ’03: Proceedings of the 13th ACM
Great Lakes symposium on VLSI. New York, NY, USA:
ACM Press, 2003.

[13] P. P. Sotiriadis and A. Chandrakasan, “Bus Energy Mini-
mization by Transition Pattern Coding (TPC) in Deep Sub-
micron Technologies,” in ICCAD ’00: Proceedings of the
2000 IEEE/ACM International Conference on Computer-
aided Design. IEEE Press, 2000.

[14] L. Macchiarulo, E. Macii and M. Poncino, “Low-energy
Encoding for Deep-submicron Address Buses,” in ISLPED
’01: Proceedings of the 2001 International Symposium on
Low Power Electronics and Design. ACM Press, 2001.

[15] Y. Zhang and J. Lach and K. Skadron and M. R. Stan,
“Odd/even Bus Invert with Two-phase Transfer for Buses
with Coupling,” in ISLPED ’02: Proceedings of the 2002
International Symposium on Low power Electronics and
Design. ACM Press, 2002.

[16] A. C. Cheng and G. S. Tyson, “An Energy Efficient
Instruction Set Synthesis Framework for Low Power Em-
bedded System Designs,” IEEE Trans. Comput., vol. 54,
no. 6, 2005.

[17] A. Nohl and G. Braun and O. Schliebusch and R. Leupers,
H. Meyr and A. Hoffmann, “A Universal Technique for
Fast and Flexible Instruction-set Architecture Simulation,”
in DAC ’02: Proceedings of the 39th conference on Design
automation. ACM Press, 2002.

[18] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimiza-
tion by Simulated Annealing,” Science, Number 4598, 13
May 1983, vol. 220, 4598, pp. 671–680, 1983.

[19] R. Leupers and P. Marwedel, “Algorithms for Address
Assignment in DSP Code Generation,” in ICCAD ’96:
Proceedings of the 1996 IEEE/ACM international confer-
ence on Computer-aided design. IEEE Computer Society,
1996.

[20] Y. Shin and T. Sakurai, “Coupling-driven Bus Design for
Low-power Application-specific Systems,” in DAC ’01:
Proceedings of the 38th conference on Design automation.
New York, NY, USA: ACM Press, 2001.

[21] http://www.gaisler.com/, Gaisler Research.
[22] S. Saponara, L. Fanucci, S.Marsi, G. Ramponi, D. Kamm-

ler, E. M. Witte, “Application-specific instruction-set pro-
cessor for retinex-like image and video processing,” IEEE
Transactions on Circuits and Systems - II: Express Briefs,
vol. 54, no. 7, July 2007.

[23] Prime Power
http://www.synopsys.com/products/power/primepower ds.pdf,
Synopsys.

[24] G. Chandra, P. Kapur and K.C. Saraswat, “Scaling Trends
for the On Chip Power Dissipation,” IEEE Interconnect
Technology Conference, 2002.

Diandian Zhang received the Diploma degree in electrical
engineering from the Institute for Integrated Signal Processing
Systems (ISS), RWTH Aachen University, Germany, in 2006.
He is currently a Ph.D. candidate in electrical engineering at
RWTH Aachen University. His current research focuses on
architecture exploration and implementation for application spe-
cific processors and multiprocessor System-on-Chips (MPSoCs).

Anupam Chattopadhyay received the Master of engineering
in embedded systems design from the University of Lugano,
Switzerland, in 2002 and is currently pursuing the Ph.D. degree
from the Institute for Integrated Signal Processing Systems
(ISS), RWTH Aachen University, Germany. His research inter-
ests include automatic implementation of processors with LISA,
architecture optimization techniques and a tool flow for re-
configurable ASIPs.

David Kammler received the Diploma degree in electrical
engineering from the Institute for Integrated Signal Processing
Systems (ISS), RWTH Aachen University, Germany, in 2003
where he is currently pursuing the Ph.D. degree. His research
interests include ADL based automatic implementation of pro-
cessors, architecture exploration and implementation and fault
tolerant processor design.

Ernst Martin Witte received the Diploma degree in electrical
engineering in 2004 from the Institute for Integrated Signal
Processing Systems (ISS), RWTH Aachen University, Germany,
where he is currently pursuing the Ph.D. degree. His research
focuses on architecture exploration and implementation with
special respect to application specific processors and the field
of Software Defined Radio (SDR).

Gerd Ascheid is professor and director of the Institute for
Integrated Signal Processing Systems (ISS), RWTH Aachen
University, Germany. He holds a Diploma and a Ph.D. degree
in electrical engineering (RWTH Aachen University, 1977 and
1983). He was a co-founder of CADIS GmbH (acquired by
Synopsys in 1994) and later a senior Director at Synopsys.
His research interests include advanced modems for wireless
communication and their efficient implementation using digital
signal processing.

Rainer Leupers received the Diploma and Ph.D. degrees in
Computer Science with honors from the University of Dort-
mund, Germany, in 1992 and 1997. Since 2002, he has been
professor for Software for Systems on Silicon (SSS), RWTH
Aachen University, Germany. He was a co-founder of LISATek
Inc. (acquired by CoWare Inc. in 2003). His research activities
revolve around software development tools, processor architec-
tures, and electronic design automation for embedded systems,
with emphasis on C compilers for application specific processors
in the areas of signal processing and networking.

Heinrich Meyr received his M.Sc. and Ph.D. from ETH Zurich,
Switzerland. From 1977 to 2007, he was professor and director
of the Institute for Integrated Signal Processing Systems (ISS),
RWTH Aachen University, Germany. He was a co-founder of
CADIS GmbH (acquired by Synopsys in 1994) and a co-
founder of LISATek Inc. (acquired by CoWare Inc. in 2003).
As well as being a Fellow of the IEEE he has served as Vice
President for International Affairs of the IEEE Communications
Society. His research interests include the interactive design
of receiver algorithms for advanced wireless systems and their
implementation as heterogenous platforms.

