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Abstract - The achievable rate of a coherent coded 
modulation (CM) digital communication system with data- 
aided channel estimation and a discrete, equiprobable 
symbol alphabet is derived under the assumption that the 
system operates on a flat fading MIMO channel and uses 
an interleaver to combat the bursty nature of the chan- 
nel. It is shown that linear minimum mean square er- 
ror (LMMSE) channel estimation directly follows from the 
derivation, and links average mutual information to the 
channel dynamics. Based on the assumption that known 
training symbols are transmitted, the achievable rate of the 
system is optimized with respect to the amount of training 
information needed. 

I. INTRODUCTION 

Due to complexity constraints, virtually all of todays digital 
wireless communication systems follow the principle of syn- 
chronized detection for which a channel estimate is formed 
and subsequently used for detection as if it were the true 
known channel [l]. Furthermore, we assume that known pi- 
lot symbols are transmitted in order to estimate the channel 
in a data-aided (DA) fashion. We are interested in the ques- 
tion of how DA channel estimation affects the average mu- 
tual information of MIMO communication systems. Similar 
problems have been treated in the literature and [7] gives a 
good overview of the area. In [4], for example, the capacity 
of a system with a fixed, modified nearest-neighbor decod- 
ing rule is analyzed with respect to errors in the estimation 
of the channel fading process. Here, since we make no as- 
sumption on the decoding rule, optimal decoding is implied. 
Similar problems are also treated in [5] and [6]. However, 
even if these two papers consider a similar problem, the ap- 
proach taken is entirely different. Here, the average mutual 
information of a flat fading MIMO system with perfect in- 
terleaving is computed, whereas [5] derives capacity bounds 
for a channel without interleaver, and [6] uses these bounds 
in the framework of MIMO block-fading channels. Further- 
.more, it is shown here that the MMSE channel estimator di- 
rectly follows from the derivation, whereas in [5] channel es- 
timation is introduced in an ad-hoc fashion and not an out- 
come of the derivation. The quantitative results presented here 
assume a time-varying (Rayleigh fading) channel model un- 
like the block-fading model used in [6]. In this paper, average 
mutual information is computed for a typical coded modula- 
tion (CM) transmission system operating on flat fading MIMO 
channels and using an interleaver to combat the bursty nature 
of the channel. The interleaver is an integral part of the sys- 
tem, since most well-known .codes have been devised to com- 

bat statistically independent channel realizations. Virtually all 
of todays communication systems are based on that assump- 
tion, and therefore this type of channel is of greatest practical 
interest. The results of the derivation are then used to optimize 
the achievable rate with respect to the amount of pilot informa- 
tion needed for a given scenario in terms of channel dynamics 
and the S N R  via Monte Carlo simulations. 

11. CHANNEL MODEL 

In the transmitter of a CM transmission system, the signal 
is encoded, interleaved, and pilot symbols are inserted.The in- 
ner receiver performs DA channel estimation and delivers the 
channel estimates and the received symbols to the outer re- 
ceiver. The outer transmission system thus comprises channel 
coding, modulation, interleaving/deinterleaving, and decod- 
ing. The interleaving/deinterleaving is employed to transform 
the bursty channel into an independently distributed channel. 
This is necessary, since most well-known codes have been de- 
vised to combat statistically independent channel realizations. 
We assume a flat fading channel which is characterized by the 
number of transmit antennas T and the number of receive an- 
tennas R. In the following such systems are referred to as 
R x T MIMO systems. For the encoded and interleaved data 
symbols a'k a linear transmission model results where at time 
instance k a received signal vector ik depends on a R x T chan- 
nel mamx Hk. Equivalently, one can also use a R x RT trans- 
mit signal matrix A: and a RT x 1 channel vector hi. The sec- 
ond representation is better suited for the subsequent deriva- 
tions. 

(1) 

The additive complex Gaussian noise at the different receive 
antenna elements is assumed to be independent, i.e. we have 
E{mkmiH} = NO .I. Furthermore, the entries hiik of the chan- 
nel vector hi are modeled as stationary, zero mean, circularly 
symmetric complex Gaussian processes of variance 0; and 
Doppler spectrum S(eJ"'). This choice models a Rayleigh fad- 
ing environment with enough separation of the receiving an- 
tenna elements such that the fades for each transmit-receive 
antenna pair are independent. Furthenpore, unity symbol 
power is assumed throughout, i.e. E{a'Fak} = 1. For purposes 
of DA channel estimation, it is assumed that, on average, N p  
known pilot symbol vectors {ap;k} per No data symbol vec- 
tors are multiplexed into the interleaved data stream. We call 
the period, with which we introduce one pilot symbol vector 
per each transmit antenna into the data stream, the channel 
sampling period L. For the received pilot symbol vectors, the 

I I 1  I I I  I 
Zk = Hkak f mk = Akhk f mk 
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following transmission model results 

Based on the received pilot symbols, the DA channel efti- 
mation produces estimates {hi} of the fading process {hk} .  
Both, the channel estimates and the received daJa symbols 
are passed to the de-interleaver which maps { z k }  + { Z k }  

and {hi} -b { f i k } .  If we assume an ideal interleavingde- 
interleaving operation which produces independent received 
data symbols then the mapping {dk} + { Z k }  results in the fol- 
lowing channel model 

where now the individual fading processes hpk of the channel 
vector hk are spectrally white. The entire sequence of N p  re- 
ceived pilot symbol vectors, denoted with the R - N p  x 1 vector 

(4) 
z p ,  is given by 

z p  = Aphp + mp 

Similarly, the received data symbol vectors are stacked in z ,  
and the corresponding transmitted data, channel, and noise are 
written as A, h, and m, respectively. 

111. DERIVATION OF THE ACHIEVABLE RATE 

Since the transmission model assumes the usage of pilot 
symbols in order to estimate the channel, the channel is said 
to be partially known to the receiver. We denote this chan- 
nel P-CSI. In contrast, if complete (perfect) channel knowl- 
edge is available, we choose to use C-CSI. The P-CSI chan- 
nel described in the previous Section, with inputs { A } ,  out- 
put { z , z p } ,  and known parameter {Ap}  is completely charac- 
terized by the distribution p(z,zplA,Ap). Hence, for a given 
symbol constellation the capacity of this channel is given by 
the average mutual information I(z,zp;A(Ap).  We will de- 
note this achievable rate with C” as compared to C which is 
reserved for the true channel capacity that requires the maxi- 
mization over the input symbol distribution. Mutual informa- 
tion is measured in bits per channel use, where one channel 
use is defined as one second per hertz. If we consider a block 
of N = ND + N p  transmitted symbol vectors, of which ND are 
usable data symbols vectors, the achievable rate over such a 
channel per channel use is given by 

Now, according to the chain rule for mutual information we 
can rewrite l(z ,zp;A,Ap) as follows 

where I(zp;AIAp) = 0, since z p  does not convey any infor- 
mation about A. Having that in mind, it is possible to write 

I(Z,Zp;AIAp) = I(Z;AJAp,Zp) = 

The channel characterized by the distribution p ( z (A ,  Ap, z p )  is 
not memoryless, because the fading co-efficients are not per- 
fectly known to the receiver. Therefore, in general, the re- 
ceived data symbol vectors { Z k }  are not independent. How- 
ever, with an ideal interleavingde-interleaving operation that 
completely breaks up the channel memory, and for a finite- 
index set N we can write [2,3] 

p (zlA,Af , z P )  = n P(zkIAktAP,Zf) (8) 
k€%! 

This is a key assumption in our derivation. It must be men- 
tioned that, exactly because the correlation between received 
data symbol vectors is not used, some information is actually 
“thrown away”. However, it is also true at the same time that 
the better the channel is known, the less information is con- 
tained in these correlations. This is plausible, since for a per- 
fectly known channel, the channel is indeed memoryless. A 
system with a reasonably good channel estimation scheme will 
therefore nevertheless exploit almost all the available informa- 
tion. Now, remembering that our transmission model is given 
by zk = Akhk + mk, it is obvious that Z k  and z p ,  conditioned on 
Ak and Ap, are jointly Gaussian. Therefore, p(ZklAk,Ap,Zp) 
is also normally distributed and completely described by its 
conditional mean and covariance matrix. From estimation the- 
ory we know that the conditional meanE{zklAk,Ap,zp} is the 
estimator iih of zk in the minimum mean square error (MMSE) 
sense. Since the channel model is linear and all associated 
quantities are Gaussian, the corresponding estimator is itself 
linear. The conditional mean f k  computes as 

& E{zk(Akr A f  , z P }  

= Ak-E{hklAp,Zp} 
= Akhk (9) 

where it is recognized that p (hk I Ap,zp) is also Gaussian dis- 
tributed and therefore E {hk 1 Ap, z p }  is the optimal linear min- 
imum mean square error (LMMSE) channel estimator hk. The 
covariance matrix of p(zk(Ak,Ap,zp) is given by 

c2k = E{(zk--k12 I Ak,Af ,Zf}  

= AkE{/hk-hk12}Ar+I-N0 

= AkCE;kAF + I .  No (10) 

The distribution p(zklAk,Ap,zp) is thus normal according to 

P(zkIAk,AP,Zf) =P(zklAk,hk) %(sk,AkCe;kAr +I.%) 
(11) 

It is noticed, that this distribution is a function of the error co- 
variance matrix CE;k of the channel estimate which depends on 
the time index k for which we wish to estimate the channel. It 
is therefore concluded that the capacity of an interleaved chan- 
nel is a function of the channel dynamics via LMMSE channel 
estimation. Since h k  is a linear combination of the Gaussian 
variables of z p ,  it is too Gaussian. The corresponding mean 
and covariance matrix are given by 
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The first result is due to the fact that for the LMMSE estimator 
the mean of the error is zero, and the latter result is a conse- 
quence of the orthogonality principle. In summary, two effects 
influence c ~ L ~ ~ ~ :  Firstly, the Gaussian. process p(zk IAk, hk) 
has a higher variance than the channel AWGN {mk}, which 
leads to an effective SNR loss. Secondly, the optimal LMMSE 
estimator h k  delivers channel estimates that are orthogonal to 
the estimation error. Hence, the estimated channel has a lower 
MSE than the true channel which, again, leads to an additional 
effective SNR loss. The quality of the LMMSE channel esti- 
mate is characterized by Cc;k. If pilot vectors are used that 
are orthogonal with respect to time, we have CE;k = bZik . I. 
It can then be shown that for a rectangular Doppler spectrum 
S(ejw), and assuming, in an information theoretic framework, 
an infinite length pilot symbol vector ap, we get [3] 

where F is the normalized cutoff frequency of the Doppler 
spectrum, and L is the channel sampling period (i.e. the period 
with which we introduce pilot symbols into the data stream). 

IV. CONSTRAINED CAPACITY ANALYSIS & 
CONCLUSION 

In the following we would like to examine how DA channel 
estimation affects the achievable rate of flat fading MIMO sys- 
tems. We recall that the average mutual information is a func- 
tion of the channel dynamics through LMMSE channel esti- 
mation which followed directly from the derivation. Specif- 
ically, it was shown that the total achievable rate is given by 
C;-csI = ;Z(z;Alzp,Ap) which can be calculated by evalu- 
ating eq. (7) via Monte Carlo simulation. Since each chan- 
nel coefficient is sampled with a rate 1/L, the fraction of the 
channel capacity available to data transmission is given by 
( N  - N p ) / N  = ( L  - T )  / L .  The assumption that the channel 
must be sampled at least with Nyquist rate, in order to guar- 
antee that the channel can be reconstructed properly, results in 
the constraint L 5 y .  Figure I shows the result of the simu- 
lations for 1 x 1, and 4 x 4 systems, plotting channel capacity 
versus channel sampling period L for several typical SNR’s 
and Doppler frequencies. The simulations presented here as- 
sume an M-ary communication system with QAM modulation 
(M = 16 was used), and equally probable symbol vectors, i.e. 
p(&) = l / M T .  Capacity curves are only shown for channel 
sampling periods L up to the Nyquist rate. Note that results for 
the 1 x 1 system are scaled by a factor of 4 for ease of com- 
parison to the 4 x 4 system. Inspection of the results reveals 
that all capacity curves for the 1 x 1 system exhibit a distinct 
maximum for channel sampling periods strictly smaller than 
Nyquist sampling. Two opposing effects are at work here: For 
very small L, the channel can be estimated very well and the 
channel estimates have a very small MSE. In order to achieve 
such a small MSE, however, a large portion of the data rate 
is sacrificed to the insertion of pilot symbols. For very large 
L approaching Nyquist sampling, the capacity is reduced not 
primarily due to inserted pilot symbols, but the increased MSE 
of the channel estimates now reduces I(z;Alzp,Ap). Further 
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Figure 1: Capacities of 1 x 1, and 4 x 4 Systems. 

inspection of the simulation results indicates that for smaller 
Doppler frequencies the capacity difference between the opti- 
mal L and Nyquist rate sampling is much larger than for the 
larger Doppler frequencies. In that sense, an optimal choice 
of L is much more important for a slow fading channel than 
for a fast fading channel, because potential capacity losses are 
larger. For C-CSI channels, it is well known that the capacity 
of a MIMO system scales linearly with the number of antenna 
pairs. The Figure demonstrates that for small Doppler frequen- 
cies capacity scales almost linearly, whereas for increasingly 
larger Doppler frequencies capacity eventually degrades sub- 
stantially. It is noted that in general the optimal capacities are 
achieved for the 4 x 4 system at significantly higher channel 
sampling periods L than for the 1 x 1 system. This is plausi- 
ble, since for larger numbers of transmit antennas T ,  more pi- 
lot symbol vectors are required in order to sample the channel 
adequately. We conclude that, considering that the percent- 
age of the data rate which is dedicated to pilots grows linearly 
with the number of transmit antennas, it becomes clear that, 
for a large amount of antennas and a rapidly varying channel, 
too many pilots are needed in order to adequately estimate the 
channel, and in such cases significant capacity losses are in- 
evitable. 
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