
VLSI Design of a Parallel MCMC-based MIMO
Detector with Multiplier-Free Gibbs Samplers

Dominik Auras, Uwe Deidersen, Rainer Leupers, Gerd Ascheid
Institute for Communication Technologies and Embedded Systems

RWTH Aachen University, 52056 Aachen, Germany

email: auras@ice.rwth-aachen.de

Abstract—Little consideration has so far been dedicated to
the investigation of the implementation complexity of stochastic
detectors for multi-antenna (MIMO) systems although they
promise communications performance close to max-log detection
for certain SNR regimes. In this work, we propose a complete
redesign of the only reported parallel VLSI architecture for
soft-input soft-output Markov chain Monte Carlo based MIMO
detection to date. Using multiplier-free Gibbs Sampler implemen-
tations, dynamic scaling of the noise density and multiple further
architectural optimizations, we significantly reduce the area and
improve the timing, yielding AT-efficiency improvements of as
much as 3.6 times.

I. INTRODUCTION

In multi-antenna (MIMO) systems using bit-interleaved

coded modulation with iterative decoding (BICM-ID), the soft-

input soft-output (SISO) detector constitutes one of the main

challenges for VLSI implementation, as the optimal detection

has an exponential complexity. Stochastic detection based

on Markov chain Monte Carlo (MCMC) methods enables

particularly small detector implementations due to the simple

randomly guided search. Furthermore, when iterating between

detector and channel decoder, MCMC detection shows a

communications performance close to max-log detection for

certain SNR regimes [2].
Related Work: The only MCMC-based SISO MIMO detec-

tor ASIC design truly supporting independent parallel Gibbs

Samplers to date is presented in [1]. Amongst other things, [1]

introduces an initialization scheme for the completely recur-

sive, and thus simplified, computation of the detector states,

and shows how to reuse the circuitry to draw independent

first samples. However, a multiplier in the timing critical

path yields a limited throughput and a relatively large area

consumption.
In [3], the authors propose an MCMC-based SISO MIMO

detector architecture mapped on an FPGA. It features one

multiplier-free Gibbs Sampler pipelined at the symbol vector

level. The architecture uses a simple recursive metric compu-

tation, but requires one dot-product per cycle. The first sample

of every chain needs to be generated externally.
The hybrid soft-output only MCMC detector architecture [4]

combined with a hard-output fixed-complexity sphere detec-

tor (FSD) features parallel multiplier-free Gibbs Samplers that

This work has been supported by the Ultra High-Speed Mobile Information
and Communication Research Centre, RWTH Aachen University.

start with the best candidates found by the FSD. However, the

design requires the QR-decomposition of the channel matrix,

and the results are only given in terms of operation counts.

Contribution: We present a complete redesign of the

MCMC-based MIMO detector architecture presented in [1],

with multiplier-free Gibbs Samplers and further architectural

improvements that result in a significant area reduction and

timing improvement. Post-layout area and clock period reduce

by about 50% and 40% respectively.

Outline: First, we introduce the general concept of MCMC-

based MIMO detection (Sec. III), describe the implemented

algorithm (Sec. IV), then we propose the redesigned archi-

tecture (Sec. V). Subsequently, we explicitly highlight the

differences to the reference design [1] in Sec. VI. Our im-

plementations results are presented in Sec. VII.

II. SYSTEM MODEL

We consider a spatial multiplexing Nt × Nr MIMO sys-

tem with BICM-ID. A message b ∈ {0, 1}Nb is encoded

with rate r = Nb/Nc and interleaved, yielding the code

word c ∈ {0, 1}Nc . Let X ⊂ C be a modulation alphabet

with K = log2 |X | bits per symbol. The code word is

partitioned into multiple subvectors cn ∈ {0, 1}KNt . They are

subsequently mapped to symbol vectors xn ∈ XNt that are

transmitted independently. Assuming a frequency-flat fading

channel characterized by Hn ∈ C
Nr×Nt , the received symbol

vector at time n is yn = Hnxn + wn where wn ∈ C
Nr is

a white Gaussian noise process with E[wnw
H
n] = N0INr

. In

the remainder, the time index n is dropped for convenience.

Using iterative MIMO decoding following the Turbo Principle,

detector and channel decoder exchange extrinsic informa-

tion λe = λp − λa in terms of log-likelihood ratios (LLRs),

where λp are the detector’s posterior LLRs and λa are the

prior LLRs fed back from the decoder.

III. MCMC-BASED MIMO DETECTION

The Markov chain Monte Carlo based MIMO detector class

that we consider performs a randomly guided search in the

space c ∈ {0, 1}KNt . It starts with a random candidate,

then walks around randomly. On its way, it evaluates and

saves metric values of the current candidates, which are later

used to approximate the posterior LLRs. The random process

(Monte Carlo) from which it draws new candidates evolves

978-1-4799-6016-3/14/$31.00 © 2014 IEEE

recursively (Markov chain). By design the search converges

towards candidates of high probability [2].

We select independent first samples c(q,0) ∈ {0, 1}KNt ,

one per chain q = 1 . . . Nq , either randomly from the prior

distribution c(q,0) ∼ p(c) = f(λa) or given by an external

hard-output detector c(q,0) = cext (usually for at most one

chain). Every sample s = 1 . . . Ns is drawn in KNt steps.

The algorithm sequentially replaces every bit with 0 and 1,

computes the metric for those two candidates, then selects

one of them as the next partial sample.

Let ϕ : {0, 1}NtK 7→ XNt be a rule that maps bit labels

onto symbol vectors x ∈ XNt . We define the metric

µ(c) = −
1

N0
‖y −Hϕ(c)‖

2
− cTλa (1)

for the candidate c ∈ {0, 1}KNt , which is related to the

posterior probability P (c|y,H,λa). Furthermore, let

cbβ = (c1, . . . , cb−1, β , cb+1, . . . , cKNt
) (2)

be the vector c with the b-th bit replaced by β. The detector

approximates the posterior LLRs as

λp
b ≈ max

q,s
µ(c

(q,s)
b0)−max

q,s
µ(c

(q,s)
b1) (3)

where we search for the two maxima for every bit over all

chains and samples.

IV. LOW-LEVEL ALGORITHM

The presented algorithm implements the max-log variant

of the Rao-Blackwellized MCMC detection algorithm with

uniform sampling described in [2]. Its basic idea is to recur-

sively compute the metric in Eq. (1) by tracking the changes

while drawing bits [1]. First, we introduce the basic concepts

required for understanding the algorithm, then describe the

algorithm in detail. For the theoretic background, the reader

is kindly referred to [1], [2].

A. Basic Concepts

1) Matched Filter: The algorithm in [1] replaces H with

the Gram matrix R = HHH and the received symbol

vector y with the matched filter output ymf = HHy in the

metric. This does not influence the posterior LLR calculation,

however it allows to use the symmetry R = RH .

2) Gibbs Sampler (GS): We realize the Markov chains

with Gibbs Sampling. To this end, the GS draw bits se-

quentially according to an approximation of the marginal

distribution P (cb|c1, . . . , cb−1, cb+1, . . . , cKNt
). The state of

the q-th GS at the s-th sample after drawing the b-th bit is

denoted as

c
(q,s)
b = (c

(q,s)
1 , . . . , c

(q,s)
b , c

(q,s−1)
b+1 , . . . , c

(q,s−1)
KNt

) (4)

and thus contains bits from the previous sample c(q,s−1) and

the current sample c(q,s).

3) Common Starting Point: All chains start with c(−1),

which maps onto x(−1) with xt = 1 + j, i.e. we

have ϕ(c(−1)) = x(−1). This concept enables the initialization

of parallel independent Gibbs Samplers [1].

4) Symbol Deltas: When the GS state changes, at most one

bit is different. We introduce the notation

|∆|
2
b(c) = |ϕn(cb1)|

2 − |ϕn(cb0)|
2

∆b(c) = ϕn(cb1)− ϕn(cb0)
(5)

where ϕn is the mapping rule for the n-th antenna, and the

b-th bit belongs to the n-th antenna.

5) Recursive Dot-Product: The algorithm tracks the current

value of

S = ymf − R̃ϕ(c
(q,s)
b) (6)

where R̃ is the matrix R with the diagonal set to zero.

Starting from S(−1) = ymf−R̃x(−1), it updates S recursively

when c
(q,s)
b changes.

6) Recursive Metric Computation: We introduce an arbi-

trary offset such that µ(c(−1)) = 0, which cancels out in

Eq. (3). Let the distance update be

δ
(q,s)
b = Re{rnn}|∆|

2
b(c

(q,s−1))−2Re{S∗
n∆b(c

(q,s−1))} (7)

where the b-th bit belongs to the n-th antenna, then the metric

update is

∆µ =
1

N0
δ
(q,s)
b + λa

b (8)

which we either subtract from or add to the current met-

ric µ(c(q,s)), depending on the bit flip direction, if the b-th
bit changes.

7) Log-domain Bit Probability: The term

γ =
1

ηN0
δ
(q,s)
b + λa

b (9)

expresses the probability of the next bit being 1 in the log-

domain, where the temperature parameter η mitigates lock-in

effects in the high-SNR regime [2]. For the conversion to the

linear domain, we apply a piece-wise linear approximation

to logistic(γ) = 1/(1 + e−γ) as in [1], [3]. To this end, the

GS simply limits γ to the range [−4, 4) and compares −γ to

a uniformly distributed pseudo-random number u ∼ U(−4, 4)
in the same range.

B. Overall Algorithm Design

Fig. 1 depicts the algorithm partitioned into four different

parts: the Front-end Processing (FEP), that transforms the

channel observations, the parallel Gibbs Samplers (GS) real-

izing the Markov chains, the Metric Update (M) tracking the

current metric state, and the LLR Computation, which searches

for the two maximum metric values per bit.

GS

GS

GS

M

M

M

..
.

..
.

FEP
LLR

Fig. 1. Partitioning of the low-level algorithm: Front-end Processing,
Gibbs Sampler, Metric Update, LLR Computation.

C. Front-end Processing

First, choose Γ = 2α/(ηN0) with α such that Γ ∈ [0.5, 1).
We assume η = 2. The FEP computes

R = ΓHHH

S(−1) = ΓHHy − R̃x(−1)
(10)

as described in Sec. IV-A5 but scaled by Γ.

D. Gibbs Sampler

Alg. 1 describes how the GS sequentially draws bits of

the candidate sequence c(q,s). GS and Metric Update share

the term δ
(q,s)
b computed in line 6. Note the back-shifting

with α to compensate the normalization of Γ. For the first

sample (s = 0), only the prior LLRs are used, in order

to draw c(q,0) ∼ λa (line 7). The saturation in line 8

produces a threshold in the range [−4, 4) (cf. Sec. IV-A7).

The comparison to a uniformly distributed pseudo-random

number in the same range (line 13) yields the new bit value.

Afterwards, we need to update the S state (lines 15-18).

E. Metric Update

Alg. 2 recursively computes the current candidate’s metric,

and produces the two metrics for the current bit µ(cb0/1).
As stated earlier, we arbitrarily set the metric for the common

starting point to zero (line 1). Lines 4 to 9 show the underlying

metric update. Of the two possible states, one is identical to

the current state, and thus has the same metric value (line 4).

The other one is updated according to the direction of the bit

flip (lines 6 and 8). In line 10, we select one of the two as

the new current metric. It remains unaltered if the bit does not

change.

F. LLR Computation

Alg. 3 searches for the maximum metrics among all chains,

then compares these local maxima with the current global

maxima. It excludes the s = 0 step, which is the transition

from c(−1) to c(q,0), from the search (line 3). The computation

of the extrinsic LLRs in line 9 is included, as it can be easily

implemented in hardware.

V. VLSI ARCHITECTURE

After an overview of the proposed architecture design, we

present the details of the core components.

GS M LMux

rn,λa
b

Np Np

FSM

FEP

Fig. 2. Architecture design of the MCMC detector. The n-th column rn of
R and λa

b are selected in the Mux stage. FEP and MCMC core computations
overlap thanks to double buffering.

Algorithm 1: Gibbs Sampler

input: S(−1),R, cext,λa, Chain Index q
output: c

(q,s)
b , c

(q,s−1)
b , δ

(q,s)
b

1 c
(q,−1) = c

(−1)

2 S ← S
(−1)

3 for s = 0 to Ns do
4 for b = 1 to NtK do
5 n← ⌊(b− 1)/K⌋+ 1

6

δ
(q,s)
b =

[

Re{rnn}|∆|
2
b(c

(q,s−1))

−2Re{S∗

n∆b(c
(q,s−1))}

]

2−α

7 γ ← λa
b +

{

0 if s = 0

δ
(q,s)
b otherwise

8 γ ← saturate(−4, 4, γ)
9 draw u ∼ U(−4, 4)

10 if s = 0 and q = 1 then /* first sample, first chain */

11 c
(q,s)
b = cextb

12 else

13 c
(q,s)
b = sign(u+ γ)

14 end

15 ∆St ← rtn∆b(c
(q,s−1)) ∀ t = 1 . . . Nt, t 6= n

16 if c
(q,s−1)
b 6= c

(q,s)
b then

17 St ← St +

{

∆St if c
(q,s−1)
b = 1

−∆St if c
(q,s−1)
b = 0

∀ t 6= n

18 end
19 end
20 end

Algorithm 2: Metric Update

input: c
(q,s)
b , c

(q,s−1)
b , δ

(q,s)
b , λa, Chain Index q

output: µ(c
(q,s)
b0), µ(c

(q,s)
b1)

1 µ(c
(q,−1)
b) = 0 ∀ b = 1 . . . NtK

2 for s = 0 to Ns do
3 for b = 1 to NtK do

4 µ(c
(q,s)
b0) = µ(c

(q,s)
b1) = µ(c

(q,s−1)
b)

5 if c
(q,s−1)
b = 0 then

6 µ(c
(q,s)
b1) = µ(c

(q,s−1)
b)− (ηδ

(q,s)
b + λa

b)
7 else

8 µ(c
(q,s)
b0) = µ(c

(q,s−1)
b) + (ηδ

(q,s)
b + λa

b)
9 end

10 µ(c
(q,s)
b) =

{

µ(c
(q,s)
b0) if c

(q,s)
b = 0

µ(c
(q,s)
b1) if c

(q,s)
b = 1

11 end
12 end

Algorithm 3: LLR Computation

input: µ(c
(q,s)
b0), µ(c

(q,s)
b1),λa

output: λe

1 µmax
b0 ← −∞ ∀ b = 1 . . . NtK

2 µmax
b1 ← −∞ ∀ b = 1 . . . NtK

3 for s = 1 to Ns do /* Note: ignore input for s = 0 */
4 for b = 1 to NtK do /* For every bit index */

5 µmax
b0 ← max(µmax

b0 ,max
q

(µ(c
(q,s)
b0)))

6 µmax
b1 ← max(µmax

b1 ,max
q

(µ(c
(q,s)
b1)))

7 end
8 end
9 λe

b = µmax
b0 − µmax

b1 − λa
b ∀ b = 1 . . .KNt

×2

×4

×2

−

×8

×16

×4

×2

×8

+

− ×4

rnn

2Re{S∗

n|∆b|}

Re{rnn}|∆|2b

+
/
−

1

SUpd.S

Re

Im

rtn

ASH

α 2

+ Q + sgn

3

γ
0 λa

b cextb

uLFSR

c

c
(q,s−1)
b

c
(q,s)
b

∆b(c
(q,s−1))

control
signals

|∆|2b(c
(q,s−1))

δ
(q,s)
b

+

+
/
−

µ

×η

c
(q,s)
b

c
(q,s−1)
b

µ(c
(q,s)
b)

µ(c
(q,s)
b0)

µ(c
(q,s)
b1)

δ
(q,s)
b

λa
b

c
(q,s−1)
b

GS M-Circuit

Fig. 3. GS/M-Circuit. Multiplications with ∆b and |∆|2b are realized with shifts and adders. The arithmetic shifter (ASH) reverts the normalization of Γ.

A. Overview

The macro pipeline of FEP-Circuit and MCMC core, shown

in Fig. 2, constitutes the proposed MCMC detector. Both

components require multiple clock cycles per input vector,

but double buffering between FEP and Core ensures that the

computations can overlap. The MCMC core in turn contains

four stages connected via registers. The stages exchange

information in every clock cycle. They effectively run in a

pipeline manner.

The FSM and the multiplexers (e.g. λa
b , and for the column

of R) are part of the Mux stage. There are Np GS-Circuits

implementing Alg. 1. For every GS-Circuit, there is one corre-

sponding M-Circuit executing Alg. 2. The L-Circuit performs

the LLR Computation in Alg. 3.

Every GS/M-Circuit can run several chains sequentially. For

example Nq = 8 chains can be run on Np = 4 GS/M-Circuits

by executing two chains sequentially per GS/M-Circuit.

B. FEP-Circuit

The architecture contains in total five multipliers. Using four

of these, the dot-product for the terms HHy and R = HHH

requires Nr cycles per complex entry. We need only the lower

triangular of R due to RH = R. The architecture computes

either one complex off-diagonal entry, or two real diagonal

entries in parallel. The fifth multiplier alternatingly multiplies

real and imaginary parts with Γ. In parallel, we multiply the

entries of R with x
(−1)
t = 1 + j (cf. Sec. IV-A3) using

only adders and multiplexers, and accumulate the results to

obtain S.

C. GS/M-Circuit

Fig. 3 depicts the combined GS/M-Circuit including the

connecting register. The |∆|
2
-multiplier exploits the lim-

ited range of |∆|
2

∈ {−3,−2, . . . , 3} × {8, 16} which

assumes only 14 different values for 4-/16-/64-QAM. The

factor ∆ is either purely real or imaginary. We de-

fine |∆| = |Re{∆}|+j|Im{∆}|. Then we have Re{S∗
n|∆|} =

Re{Sn}Re{|∆|}+Im{Sn}Im{|∆|}. For 4-/16-/64-QAM this

assumes only the four values {1, 3, 5, 7} × 2, which greatly

simplifies the ∆-multiplier (only shifts, adders and multi-

plexers). The control of the subsequent adder-subtractor 1

considers if ∆ < 0 and if ∆ is imaginary to decide whether

to add or subtract. To generate the independent first samples,

the multiplexer 2 ensures γ = λa
b . For the external initial-

ization, we have the multiplexer 3 that selects c
(q,s)
b = cextb .

The circuit uses a 32-bit maximum length Galois-LFSR that

generates one 32-bit word per clock cycle. The part on the right

side that implements Alg. 2 uses a write-enabled register for

the current metric, which is updated when we flip the current

bit. The timing critical path of the whole MCMC detector

starts in the |∆|
2
-control, goes through the multiplexers in the

|∆|
2
-multiplier towards c

(q,s)
b , then finishes in the write-enable

control for the S registers.

The Update-S-Circuit shown in Fig. 4 has (Nt−1) complex-

valued ∆-multipliers. Using the multiplexers 3 and 4 , we

can update all Nt elements of S, however only Nt − 1
change per clock cycle. The entries of R e.g. r1n, r2n are

selected in the Mux stage. Similar to the GS-Circuit, the adder-

subtractor control 1 considers ∆ < 0, if |∆| is imaginary,

and additionally the old bit c
(q,s−1)
b and if the input needs to

be conjugated, i.e. Im{rtn} = −Im{rnt}. The write-enabled

S registers are updated if the current bit flips. This control 2

is part of the aforementioned critical path.

S

S

S

S

2

S(−1)

S(−1)

S(−1)

S(−1)

3+
/
−

+
/
−

+
/
−

1

a|∆b|

a|∆b|

a|∆b|

r1n
r2n

r2n
r3n

r3n
r4n

4
Sn

Fig. 4. Update-S-Circuit. Example for Nt = 4 antennas. All units exist for
the real and for the imaginary parts respectively (not drawn).

D. L-Circuit

The L-Circuit shown in Fig. 5 contains two register

files (RFs) for the current maximum metrics with KNt entries

each. We use tokens propagating alongside the data to indicate

whether a value is valid. The Compare Select (CS) elements

select the maximum of the valid inputs. The registers also store

tokens per entry, which are reset to zero when the processing

of a symbol vector starts.

CS

CS

CS-Tree

CS-Tree

− −

λa
b

µmax
b0

µmax
b1

λe
b

µ(c
(q,s)
b0)

µ(c
(q,s)
b1)

Fig. 5. L-Circuit. Data tokens propagate alongside the data values. The
registers hold tokens and values. The Compare Select (CS) elements forward
the data item with the larger value if both are valid.

VI. DIFFERENCES TO REFERENCE ARCHITECTURE

This section explicitly highlights the proposed architectural

modifications to [1]. The original and new timing critical path

are located in the GS-Circuit.
1) Multiplier-Free Gibbs Sampler: Similar to [3], we move

the multiplication with 1/(ηN0) out of the GS into the FEP,

by scaling R and S with Γ. This removes the multiplier from

the detector’s critical path, but increases the required word

lengths.
2) Dynamic Scaling: The normalization of Γ ∈ [0.5, 1)

allows to use smaller word lengths, mitigating the previously

mentioned increase. Consequently, we need an arithmetic

shifter in the GS-Circuit at the previous location of the

multiplier, which reverts the normalization.
3) Pipelined Input Multiplexers: Our MCMC detector se-

lects the column of R and the entry of λa in the new

Mux stage in front of the GS stage. While this removes

those multiplexers from the detector’s critical path, it adds

an additional latency cycle.
4) Reduced Update-S-Circuit: We remove two ∆-

multipliers (one per real and imaginary part) from the

Update-S-Circuit, since in every cycle one of the entries of S

does not change. This requires multiplexers for the resource

sharing, which are however not in the critical path and are

smaller than the removed ∆-multipliers.
5) Shared Maximum Metric Register File: The RFs are

moved from the M-Circuit [1] to the L-Circuit. This reduces

the required RFs from Np to one. We also add a pipeline

register after the L-Circuit to improve timing, which requires

another extra latency cycle. Also, our M-Circuit in Fig. 3 has

one adder-subtractor instead of two adders, similar to [3].
6) Adder-Subtractor Units: These new units right after the

∆-multipliers in the GS- and the Update-S-Circuit, replace the

original adders and the conditional negation units. The control

selects addition or subtraction depending on the sign of∆, if∆

is imaginary, the old bit c
(q,s−1)
b and if Im{rtn} = −Im{rnt}.

7) Simplified Delta Multiplier: Our ∆-multipliers, used

for γ and S, compute the absolute value |∆|. This removes

one multiplexer stage from the critical path.
8) Postponed Conjugation: We are storing only the lower

half of R. Due to the hermitian property of R, we have

Im{rtn} = −Im{rnt}. The control of the subsequent adder-

subtractor units considers the required negation, instead of an

explicit conjugation [1].

VII. RESULTS

Our parameterized architecture implementation1 currently

supports up to 4 × 4 MIMO and 64-QAM. MIMO mode

and QAM scheme can be configured at run-time within the

supported range, which in turn can be configured at design-

time. Each GS/M-pair can process up to 16 chains sequentially,

with up to 16 samples per chain. The FEP-Circuit requires

nfep = Nr((Nt + 1)Nt/2 + ⌈Nt/2⌉) + 3 (11)

cycles for its computation. This is slightly faster than the

FEP-Circuit in [1]. The MCMC core runs for

ngs =
Nq

Np
(Ns + 1)KNt + 5 (12)

cycles. Compared to [1], we need two extra latency cycles

(cf. Sec. VI-3 and VI-5). The code bit throughput of the

architecture is θc = KNt

ngs
fclk assuming ngs ≥ nfep and

sufficient input data.

A. Synthesis Results

We synthesized the design with Synopsys Design Compiler

I-2013.12-SP2 in topographical mode using a 1.0V standard-

performance standard cell library for the UMC 90nm SP-

RVT LowK CMOS process. Fig. 6 compares the four in-

stances Np = {1, 2, 4, 8} to [1]. While the most efficient

design in [1] has an ATexec-product of 181.7 kGEµs2, our
proposed design achieves 50.0 kGEµs, which is 3.6 times more

efficient.

0 2 4 6 8 10
0

50

100

150

200

250

This Work

Deidersen et al. [1]

181.7 kGEµs

50.0 kGEµs

Texec [µs]

P
o
st
-S
y
n
th
es
is

A
re
a
[k
G
E
]

Np = 1

Np = 2

Np = 4

Np = 8

Fig. 6. Area vs. execution time based on the MCMC detector’s synthesis
results, comparing this work to [1], assuming Nt = 4, K = 6.

1A 802.11n-like 4 × 4 MIMO system is considered assuming a spatially
uncorrelated Rayleigh channel, perfect channel knowledge. and a max-log
BCJR decoder. The frame length equals the interleaver’s length. The required
word lengths for an SNR loss of ≤ 0.1dB compared to the floating-
point model at a frame error rate of 10% are: [integer.fractional] y [7.8],
H [3.8], λa [5.4], 1/N0 [6.11], R [6.10], S [9.9], δ [17.6], µ [19.5],
γ [3.4], 2αδ [14.6], α [4.0], λe [8.4]. All are signed, per entry, and
for real and imaginary part identical. We always assume Nq = 8 chains
with Ns = 8 samples per chain (i.e. Ngs = 64 in [1]).

2One gate-equivalent (GE) is the area of one 2-input drive-1 NAND gate.

TABLE I
MCMC DETECTOR SYNTHESIS RESULTS

Component This Work [1]

FEP-Circuit 16.0 11.0 kGE

GS-Circuit 8× 10.7 16.9 kGE

M-Circuit 8× 0.9 12.2 kGE

L-Circuit Np = 8 13.3 3.3 kGE

Miscellaneous 5.0 17.9 kGE

Update-S-Circuit (cont. in GS) 5.2 7.7 kGE

Total Np = 8 127.1 265.0 kGE

Clock frequency 526 312 MHz

Cycles (Nq = Ns = Np = 8) 221 219
Average throughput 57.4 34.2 Mbit/s
Area efficiency 0.45 0.13 Mbit/s/kGE

Tbl. I lists the synthesis results for our fastest design in-

stance and the reference design [1]. The FEP is larger (5 kGE),
while the GS is smaller (−6.2 kGE per GS), since we moved

the multiplier from the GS to the FEP. The additional area of

the new arithmetic shifter is partially compensated for by the

other improvements. The Update-S-Circuit becomes smaller

(−2.5 kGE) since we save one complex ∆-multiplier and use

|∆| now. The saving effect is larger than the additional area

from the multiplexers required for the resource sharing. The

M-Circuit exhibits only about 7.4% of the original area, since

we moved the RFs to the L-Circuit, which consequently be-

came larger (10 kGE). The remainder of the area (−12.9 kGE)
is occupied amongst others by theR column multiplexers. The

area is reduced because the multiplexers are no longer in the

timing critical path.

In total, the redesigned architecture takes on only about

48% of the original area for Np = 8. The saving depends on

the number of GS/M-Circuits. The critical path was shortened

by about 40%, i.e. the maximum clock frequency increased

from 312MHz to 526MHz.

B. Layout Results

A layout was obtained with Cadence SoC Encounter 9.1

for each configuration’s fastest design instance, depicted in

Fig. 7, in order to further study the proposed architecture’s

implementation complexity and to enable more precise com-

parison with future related work. All following area figures

are taken from the layout results. The consumed area slightly

increased, while the achievable clock frequency decreased. It is

interesting that the throughput mainly depends on the number

of parallel GS/M-Circuits and the chain parameters, i.e.

θc =
KNt

ngs

fclk ≈
Np

Nq(Ns + 1)
fclk (13)

as can be seen in Fig. 7.

The largest instance, for 64-QAM, Nt = 4 and Np = 8,
requires 149.5 kGE or 0.47mm2 and achieves a maximum

clock frequency of 479MHz, yielding a code bit throughput

of 52Mbit/s. The fastest instance in terms of throughput

supports 4-QAM, Nt = 2 and has Np = 8 GS/M-Circuits.

It occupies in total an area of 70.7 kGE or 0.22mm2 and

runs at 664MHz, which results in a throughput of 66Mbit/s.

To determine the smallest instance, which should be the

lower corner of the covered design space, 1 in Fig. 7,

we synthesized the detector with Nt = 2, 4-QAM and

one GS/M-Circuit for a target of 100MHz. This ASIC con-

sumes 19.2 kGE or 0.06mm2, runs at 165MHz and yields

a 2.27Mbit/s throughput. The FEP-Circuit and MCMC core

require 10.9 kGE and 8.3 kGE respectively. Further word

length optimizations could yield additional area reductions.

0 10 20 30 40 50 60 70
0

50

100

150

Np = 8

Np = 4

Np = 2
Np = 1

1

Code Bit Throughput [Mbit/s]
P
o
st
-L
ay
o
u
t
A
re
a
[k
G
E
]

64-QAM

16-QAM

4-QAM

4× 4

2× 2

Fig. 7. Area vs. throughput based on the MCMC detector’s layout results.
For each design-time configuration, the ASIC with the fastest clock is shown.
As an example, the 16-QAM 2× 2 design supports one or two antennas and
4- or 16-QAM at run-time.

VIII. CONCLUSION

The presented synthesis and layout results show the ef-

fectiveness of the proposed architectural modifications. The

area reduces by up to 52% and the timing improves by up to

40% while the communications performance remains identical.

There are no known drawbacks of the proposed changes.
Still, the architecture suffers from a relatively low but deter-

ministic throughput, which stems from the MCMC detection

method itself. The main advantage appears to be its simple

scalability through Np and configurability through Nt and K.

This allows the architecture to cover a large design space.

Practically, only the availability of sufficient data might limit

the architectural parallelism. As future work, we could foresee

a pool of e.g. 64 Gibbs Samplers, requiring possibly less

than 1MGE, that exploits the algorithm parallelism at symbol

vector and chain level.

REFERENCES

[1] U. Deidersen, D. Auras, and G. Ascheid, “A parallel VLSI architecture
for markov chain monte carlo based MIMO detection,” in Proc. ACM

GLSVLSI, 2013, pp. 167–172.
[2] M. Senst and G. Ascheid, “A rao-blackwellized markov chain monte carlo

algorithm for efficient MIMO detection,” in Proc. IEEE ICC, 2011, pp.
1–6.

[3] S. Laraway and B. Farhang-Boroujeny, “Implementation of a markov
chain monte carlo based multiuser/MIMO detector,” IEEE Trans. Circuits

Syst. I, Reg. Papers, vol. 56, no. 1, pp. 246–255, 2009.
[4] F.-L. Yuan, C.-H. Yang, and D. Markovic, “A hardware-efficient VLSI

architecture for hybrid sphere-MCMC detection,” in Proc. IEEE GLOBE-

COM, 2011, pp. 1–6.

