Just-in-Time Verification in
ADL-based Processor Design

Dominik Auras, Andreas Minwegen, Uwe Deidersen
Stefan Schiirmans, Gerd Ascheid, Rainer Leupers
Institute for Communication Technologies and Embedded Systems
RWTH Aachen University, Germany
{auras,minwegen,deidersen,schuerma,ascheid,leupers } @ice.rwth-aachen.de

Abstract—A novel verification methodology, combining the two
new techniques of Live Verification and Processor State Trans-
fer, is introduced to Architecture Description Language (ADL)
based processor design. The proposed Just-in-Time Verification
significantly accelerates the simulation-based equivalence check
of the register-transfer and instruction-set level models, generated
from the ADL-based specification. This is accomplished by omit-
ting redundant simulation steps occurring in the conventional
architecture debug cycle. The potential speedup is demonstrated
with a case study, achieving an acceleration of the debug cycle
by 660x.

I. INTRODUCTION

Embedded systems increasingly feature a multi-processor
system on chip (MPSoC) architecture at their core. Driven by
partly contradicting constraints such as performance and en-
ergy efficiency, these MPSoCs are most likely heterogeneous,
i.e. comprising processors with different architectures suited
for different types of tasks. Examples are general-purpose,
digital signal or application-specific instruction-set processors
(ASIPs) tailored towards a certain application domain. While
for the first two designers can resort to off-the-shelf compo-
nents by various vendors, ASIPs are by nature custom designs.

The development of programmable processors on register-
transfer level (RTL) is an error-prone task which is further
aggravated by the necessity of a software toolchain. In order to
solve this issue, several model-centric design methodologies,
based on a single formal model of the target architecture spec-
ified in terms of an architecture description language (ADL),
have been proposed [1}, |2l (3], some of which have been
commercialized [4, [5]. One of the main advantages of such
a model-centric design flow is the inherent consistency that
stems from the fact that all information about the target
architecture is captured in one centralized model from which
models on various abstraction levels can be generated auto-
matically. These are typically an instruction-set level (ISL)
model (in this paper always cycle-accurate) used for the fast
functional exploration of the target architecture and a RTL
model which can be used for implementation at a later point
of the design flow. The relationship between the models is
illustrated by

Although the models on different abstraction levels are
generated from the same architecture description, practice
has shown that verification of the RTL model against the
ISL model is indispensable. Potential mismatches between

ADL
gean wrme
RTL ¢ ------=---- > ISL
verify

Fig. 1. Relationship between models

models may be caused e.g. by constructs in the ADL model
that are allowed on the instruction-set level but have no
equivalent hardware implementation. In this paper we focus on
verification by simulation-based equivalence checking, which
compares traces of the model states obtained by simulating
the RTL and ISL models, as described in [6, Ch.5.4.1]. In
case a mismatch is detected, the designer has to modify the
ADL model, regenerate the ISL and RTL models and perform
the equivalence check again. This process, referred to as
architecture debug cycle, is part of a typical ASIP development
flow, shown in [Figure 2| Verification is performed after the

Initial
Design
Debug Cycle

Final
Verification

Fig. 2. Architecture debug cycle

initial design. For every mismatch, several debug cycle itera-
tions may be required for locating and fixing the underlying
bug. Additionally, a final verification is required, since the
design modifications can possibly introduce new bugs. The
main bottleneck of such a simulation-based approach is in the
relatively low speed of RTL simulation. Furthermore, usually
a significant amount of time in the debug cycle is spent on
simulating time steps in which no mismatches are encountered,
before and after the mismatch occurs. During debugging, these
parts are usually re-simulated numerous times, which results
in a high degree of redundancy in the debug cycle and thus a
high turnaround time.

Contributions. This paper introduces a novel verification
methodology that drastically reduces the redundancy observed
in the conventional debug cycle described above. The key
idea is to use the fast instruction-set simulation as much as
possible and to avoid simulating time steps that are irrelevant
for the bug targeted in the debug cycle. This is accomplished
by means of two novel techniques combined together. First, a
live verification mechanism compares the processor states, i.e.
all register contents, in realtime while simulating the ISL and
the RTL model and stops right after finding any mismatch,
thus avoiding redundant simulation steps after the discovery.
The second technique is a processor state transfer mechanism
that transfers the state across different abstraction levels, to
omit redundant RTL simulation steps before the mismatch
while debugging the ADL model. The proposed methodology
was implemented as a plug-in to a state-of-the-art commercial
ADL-based [1] processor design tool suite [4] in a non-
invasive manner allowing the novel methodology to be applied
to new as well as legacy models. In principle, the concept is
also applicable to other tool flows.

The remainder of this paper is organized as follows: After
presenting related work in [Section II} in [Section III| the state-
of-the-art verification methodology and the proposed meth-
odology are introduced. Implementation aspects are covered
in [Section IV} In [Section V| the advantages of the proposed
methodology are then demonstrated with two case studies.

Conclusions are given in [Section V

II. RELATED WORK

Verification methodologies can be roughly categorized into
formal, simulation-based and hybrid techniques. Formal verifi-
cation approaches [7, |8] are based on mathematically proving
that an implementation fulfills a formal specification, either
by applying deductive methods or by enumerating the whole
state space and checking for invalid states. In order to enable a
mathematical proof, the implementation is usually represented
by a formalized model, which has to cover all relevant aspects
of the real implementation. If this is not the case or the formal
specification is incorrect or incomplete, the formal proof is
not meaningful. However, when checking the compliance of
an RTL implementation with an ADL specification, proving
the validity of the ADL specification is out of scope, and
the RTL code constitutes a formal model amenable to formal
techniques. Deductive formal methods are hard to apply to
complex designs like modern processor architectures, as the
high level of abstraction in the ADL and RTL code does
not allow proofs to be found automatically, and thus require
manual expert work. Moreover, methods based on state space
enumeration suffer from state space explosion resulting in
extremely high runtimes and memory needs for the verification
of large designs.

Simulation-based verification [9, |10] tries to circumvent
those problems by running simulations over a set of test cases.
While this approach allows to quickly detect major issues, its
error coverage depends very much on the selection of the test
cases and the set of input data. Therefore, a high coverage

requires running many different test cases, which can result in
very long simulation times.

Hybrid methods [[11} |12] apply formal methods and simula-
tion at the same time to obtain the benefits of both approaches.
They use formal methods to analyze the specification and the
model to find a set of test cases with the highest possible
coverage proving the correctness if no errors are found in
simulating these test cases.

The presented work belongs to the simulation-based verifi-
cation methodologies and tackles its main limitation, speeding
up the typical development cycle by omitting redundant parts
of the simulation. To the best of our knowledge, this is
the first methodology that shortens the debug cycle during
RTL verification in ADL-based processor design. The concept
does not make any attempt to replace existing verification
approaches with high coverage, which are still recommended
as final step, as shown in It rather allows to drive
the simulations faster to the current point of interest and can
thus allow to reach the state of successful verification faster.

III. VERIFICATION METHODOLOGIES
A. State-of-the-Art Verification

In the state-of-the-art verification flow as typically supported
by commercial tools, the ISL and RTL models are simulated
separately with the same stimuli. During simulation the state
of the respective model is traced by dumping the evolution
of the state to a file, e.g. in the value change dump (VCD)
format. The equivalence check is then performed post-mortem
by comparing the traces of the entire simulation cycle-by-

cycle, as shown in

ISL RTL

} clock cycle

Simulated Time

:*?‘:

success/
failure

Fig. 3. State-of-the-art verification

While this straightforward approach is widely used, it
suffers from two major drawbacks. First, in case of extensive
simulations the dump files quickly become very large and
difficult to handle, eventually resulting in a slow-down of the
entire verification process. More importantly, the simulation
is always entirely executed from beginning to end. This leads
to the simulation of redundant time steps as depicted in
[Figure 4(a) since the time steps after the first mismatch are
irrelevant for debugging. Moreover after trying to fix the
bug that led to the mismatch the previous time steps are

also redundant on RTL in the next iteration of the debug
cycle. Hence the state-of-the-art verification flow prolongs the
turnaround time unnecessarily, since multiple iterations are
required.

% %

.
4 % K
Co..

(9//] 7 o

+ Simulated Time

(redurlldant) | | irrelevant

(a) State-of-the-art

7

' ¥

2 T [

after bug fix : 1
1

! 1

! 1

é :| don’t simulate
1

fast forward |

(b) 1st Iteration

7] |

-

1
I
1
1
1
:
Just-in-Time l
I
i
1
i
i

2nd Iteration

Fig. 4. Simulation procedure

B. Just-in-Time Verification

The novel verification methodology proposed in this paper,
referred to as Just-in-Time Verification, significantly reduces
the turnaround time. This is achieved by reducing the time
spent for simulating redundant time steps in the simulation.
depicts the Just-In-Time Verification. In contrast to
the state-of-the-art verification methodology the simulation
execution of the ISL and RTL models is now interleaved. The
reduction of simulated time steps is then accomplished by em-
ploying two novel techniques referred to as Live Verification
and Processor State Transfer.

Simulator Control

ISL

Breakpoint

Simulated Time

success/
failure

Fig. 5. Just-in-Time Verification

1) Live Verification: Live Verification is based on the idea
to perform the comparison of states on-the-fly during simula-
tion execution. The basic mechanism is depicted in
The RTL simulation is run for an episode comprising several
time steps with tracing enabled and hence the corresponding
state trace is dumped to a VCD file. Subsequently the same
episode is executed in the instruction-set simulator (ISS) and

the ISL state is compared to the corresponding state of the RTL
simulation at each time step. This procedure is repeated until
the first state mismatch is detected. By running the verification
episode-wise the simulation of irrelevant time steps after the
first mismatch is minimized, thus reducing the turnaround time
(Figure 4{b)). Moreover, large dump files are avoided as traces
are only generated for a single episode and solely the RTL
simulation is traced.

2) Processor State Transfer: While Live Verification avoids
simulating irrelevant time steps on both ISL and RTL, the Pro-
cessor State Transfer technique is based on the observation that
the simulation of an arbitrary episode requires significantly
more time on RTL compared to the ISL. Thus, in order to
avoid the RTL simulation bottleneck, only the ISS executes
from the beginning until it reaches a dedicated breakpoint
that indicates the begin of the current region of interest, as
shown in Subsequently the processor state on ISL
is transferred to the RTL model and the Live Verification is
enabled just in time. In this way, the simulation is rapidly
forwarded leveraging the speed of the ISS, thus reducing the
turnaround time (Figure 4(b)). Note that still a final verification
is required to make sure that the bug fix did not introduce new
mismatches.

IV. IMPLEMENTATION ASPECTS
A. Formalized Description

The ISS state comprises the ISL model state Stsr, procs
which is partly made up of registers modelled in the ADL,
like the register file, pipeline and status registers. Let the
state space created by them be denoted as Sisi,_regs. Addi-
tionally, the ISL model state contains implicit states denoted
as Sisr,_impl>, Which do not correspond to register contents but
rather to internal states such as a stall condition of a pipeline
stage. Furthermore, not all registers available in the ISL model
are also available on RTL, hence the ISL register state space
is further divided into subspaces:

SISL_proc = SISL_regs X SISL_impl (D

= Scom_regs X SISL_only_regs X SISL_impl

where Scom_regs 18 the state space of the registers common
to the ISL and RTL model, and Sist._only_regs cOmprises the
states of those registers that have been removed from the RTL
model by optimizations during the HDL generation. Typically,
the common registers cover all registers explicitly modelled
in the ADL specification, amongst others the register file,
pipeline and status registers of the processor.
Considering RTL, the RTL model state is defined as

SRTL_proc = SRTL_regs = Scom_regs X SRTL_only_regs ()

where SRTT,_only_regs describes the registers only existing in
the RTL model. Those register states correspond to the implicit
ISL states as the implicit information on ISL is stored in actual
registers on RTL. There is a one-to-one mapping ¢ from the
implicit ISL states to the RTL only register states:

t: SISL_impl — SRTL_only_regs (3)

This function depends on the architecture model and also
requires explicit knowledge of the ADL tools, e.g. about the
HDL generation details.

B. Live Verification

The central idea of Live Verification is to extract the state
of the common registers from both the ISL and RTL states
using observer functions

bISL : Scom_rcgs X SISL_only_rcgs X SISL_impl - Scom_rcgs
(scom_regsa SISL_only_regs; SISL_impl) — Scom_regs
bRTL : Scom_regs X SRTL_only_regs — Scom_regs

(Scom_regsy SRTL_only_regs) > Scom_regs
and executing the equivalence check:

&)

where €.g. S1S1,_proc € SIsL,_proc denotes a specific state of the
ISL model. It is assumed that any value mismatch caused by
a bug is visible at least once in one of the common registers.

Using the above definitions and assumptions, the
defining Live Verification can be introduced. For every
simulated time step, the common register states are extracted
from the simulator states and compared. As stated previously,
performing the comparison in every cycle avoids redundant
simulation steps after the bug discovery.

!
brst, (SISL_proc) = brTL (SRTL_proc)

Algorithm 1 Live Verification
while not end_of_program do
simulate one cycle
if brst, (S1SL_proc) 7 bRTL (SRTL_proc) then
return error
end if
end while

C. State Transfer

Regarding the state transfer technique, it is essential to
cover the complete model state. Cores, memory subsystem
and peripherals have to be considered. For the following con-
siderations, a simulation of a single-core pipelined processor
is assumed.

1) Processor State Transfer: The processor state transfer
process exploits the fact that there is a formal link between the
generated models given by the ADL specification. This covers
Scom_rcgs and the mapplng from SISL_impl to SRTL_onIy_rcgs-
For example in models described with the Language for In-
struction-Set Architectures (LISA) [1], the RTL only registers
comprise bubble state, activation and delayed stall registers.

The transfer of the processor state is described by the state
transfer function

T: SISL_proc — SRTL_proc
(Scom_regsa SISL_only_regs; sISL_impl) (6)
= (Scom_regsa t (SISL_impl))

which uses the model- and tool-dependent mapping function

¢ from

Upon triggering state transfer, the HDL simulator is in-
structed to set the state in the RTL simulation to the translated
ISL state

(7

by overriding the drivers of registers during a single clock
cycle.

2) Peripherals State Transfer: The memory subsystem is
a peripheral external to the ADL-based specification. Its a
state must be included in the state transfer. Being external,
no formal information on its internal structure is available on
ISL which can be exploited for the state transfer technique. In
principle, the state only depends on the reads and writes issued
by the core, therefore by replaying the memory transaction
history, the subsystem can effectively be driven into the desired
state. Assuming that the subsystem comprises the storage and
an attached controller, the required number of transactions can
be significantly reduced if the storage content is transferred,
i.e. all committed requests are summarized into a single
transfer. Only a few transactions need to be replayed in order
to restore pending requests within the controller part of the
memory subsystem.

In general, the state of any passive peripheral can be
restored by recording all transactions on the core interface
to the peripheral and subsequently replaying the transaction
history. Additionally many peripherals do not require the
complete history to be replayed, if the previous cycles can
be summarized into a single update or if the state is simply
not dependent on the previous cycles. For passive peripherals
with a synchronous interface, tracing the interface pins during
simulation is sufficient. Upon state transfer, peripheral and
processor core are decoupled in the RTL simulation, then the
last cycles are replayed on the interface. The handling of active
peripherals is more involved and beyond the scope of this

paper.

SRTL_proc ‘= 1 (SISL_proc)

V. CASE STUDIES

We have implemented the proposed methodology as proof-
of-concept plug-in for LISA [I] ADL models. Two case
studies demonstrate the potential speedup for the ASIP de-
velopment. The first case study features a customized ASIP
for image processing, where Just-in-Time Verification is used
to shorten the debug cycle. The second case study was
performed for a RISC core and demonstrates another gain of
Processor State Transfer which avoids implementing debug-
only functionality on RTL. We used Synopsys Processor De-
signer F-2011.06-SP1 [4] for ASIP development and Synopsys
VCS MX 2011.03 [13]] for RTL simulations. In the following,
the proof-of-concept implementation for Synopsys tools shown
in is introduced before the case studies are presented.

A. Proof-of-Concept for Synopsys Tools

Synopsys Processor Designer provides APIs to augment the
ISL model using custom functions. The additional code can
be included either outside or inside the processor model class.
Code inserted into the processor model class can attach to the

LISA Simulator VCS
ISL Hook control RTL
Plug-In
Model Model
get_resource() search
== " 8 IR A (N AR (N LAy I
| . 0 .. |
L@_ _ _@_J CResource_IF_API L@_ _@_J
\ parse run dump
Resources
VCD VPD
H
File | |10 VCD ﬂ File
Fig. 6. Implementation of Just-in-Time Verification

main control step function that executes for every cycle, via
pre- and post-operation hooks. Furthermore, it can access the
generic simulator API to obtain information about the model
and to control it (e.g. stop the simulation, set a breakpoint).
Our implementation attaches to the simulator in order to
execute after every cycle and at the reset event. Initialization
takes place upon reset. The plug-in forks a new process which
starts the RTL simulation in VCS. Communication with VCS
is performed using POSIX pipes.

Resource Detection and Matching. At initialization, the
plug-in enumerates all ISL and RTL resources, then finds
a matching of the instances. On the ISL side, the LISA
API function get_resource() provides information about all
available model resources. All registers are stored in the
resource list. Regarding the RTL simulator, the implementation
uses commands sent over the POSIX pipes to search for
all signals following a dedicated naming convention (e.g. all
registers have the prefix "REG_") and stores them. Then for
every RTL resource, a corresponding ISL resource is identified
using simple pattern matching based on the naming convention
followed by the HDL generator.

State Retrieval. Before the comparison, the models need
to be queried for the state. For the ISL model, the re-
source interface API enables easy access to all registers.
For every resource, the corresponding interface instance is
retrieved and polled for the current value. The special states
are retrieved, for example the pipeline flush state by calling
get_pipe_stage_info() for the appropriate pipeline stage. On
the RTL side, VCS is instructed to dump traces of the selected
signals. The HDL simulator advances the simulation for one
episode comprising a configurable number of cycles. VCS
generates a VPD dump file that is first converted to a VCD
file. While parsing the VCD file, the plug-in tracks the RTL
states for every time step.

Live Verification. When Live Verification is enabled, the
plug-in, triggered after every ISL cycle, compares all matched
resources. The queried ISL states are compared against the
corresponding RTL states. All mismatches are reported imme-
diately. In case of at least one mismatch, the plug-in stops the
simulation execution. The contents of the external memories
are not compared explicitly, as the implementation assumes

that any mismatch should always be observable in at least one
register.

Processor State Transfer. When a state transfer occurs,
the plug-in basically injects the queried and subsequently
translated ISL states into the RTL model. To this end, it
has to override the drivers of the signals corresponding to
the RTL states. Using VCS, the command “force -deposit”
can be used (VPI [14] or VHPI [15] are other possibilities).
It overrides the signal value until the original signal driver
changes the value again. The implementation generates a script
that automatically performs the state transfer, including a
copy of the memory content. Furthermore, for the external
peripherals like e.g. the memory subsystem, a replay script is
generated that drives the controller part of the peripheral into
the desired state.

Memory Subsystem. For the plug-in targeting LISA mod-
els, the approach of tracing the interface pins is easily im-
plementable with the recently introduced Busport API. All
interface pins and the internal controller state are accessible as
model resources. However, for the sake of backward compat-
ibility, the implementation also supports the legacy memory
interface for LISA models in terms of memory interface
description files (MIDF) [16] using a small modification of
the ADL model. The plug-in translates the accesses to the
appropriate RTL interface transactions using the information
available from the MIDF.

B. ASIP For Image Processing

The proposed methodology has been applied to the Retinex
processor [17], an ASIP for image processing. The core
has seven pipeline stages and uses pipeline bypassing. Its
memory subsystem, customized for the application, comprises
four memories. The ISA contains 42 instructions. The core
uses a simple register file with 16 general purpose 32-bit
registers and a few additional special registers. In summary,
the architecture design is customized to a great extent and the
model complexity is high.

We have run the target application, which processes a color
image of size 640x480 pixels, on a reference host that has an
AMD Athlon64 Processor 3500+ and four GB of memory. The
ISL simulation takes about two minutes to complete, while the
RTL simulation needs 11 hours in total. The state-of-the-art
verification produces two dump files of 15 GB each.

During the development of the published architecture, the
designer encountered a hardware bug in the processor model
that was dependent on the input data (i.e. the image) and
resulted from a mismatch between the ISL and the RTL model.
In this case study, the model before the bug fix is used to
demonstrate the impact of Just-in-Time Verification. The errors
occurred at the image center. Some pixels that are supposed
to be white after processing become black. When debugging
the architecture with the state-of-the-art verification, the ver-
ification run after each trial fix would have taken 11 hours.
Using the Live Verification technique, the verification stops
right after processing the image center. Still, after every trial
fix, we need to wait for about six hours. With Processor State

TABLE I
IMAGE PROCESSING ASIP CASE STUDY

Verification Runtime for Asymptotic Speed-
Methodology | NV debug cycles | up of debug cycle

State-.of-th.e-Art N .11h .
Verification

JIT w/o Proc.

State Transfer N - 6h 1.83x

JIT with Proc.]

State Transfer 6h + NN - Imin 660x

Transfer in addition, the simulation state can be fast forwarded
to the relevant image region, to enable the verification and
check if the fix was successful. Using the proposed verification
methodology, one iteration of the debug cycle takes about
one minute instead of six or 11 hours respectively. This is
an asymptotic speedup of 360x to 660x. The results for this
case study are summarized in Note that usually, there
will be several debug cycle iterations for each bug.

C. RISC Core

With this case study, the potential speedup for the ASIP
development via the functional gain of Processor State Trans-
fer is demonstrated. Assuming that a H.264 video decoder
ASIP has to be developed, the first step could be to compile
and run the reference C application on a verified RISC core
model. Subsequently profiling information recorded during the
simulation could be used to extend the ISA. Assume that the
memory of the core is too small to store the complete test
video file. File handling is required, but it is not desired to
attach peripherals to the core nor run an operating system,
because the input will be provided by other cores in the
final system. A simple solution just for debugging is required.
In the implementation of the RISC, the simulated core can
read the files of the simulation host by executing a special
trap instruction. The implementation of this instruction is
not synthesizable and hence not available in the RTL sim-
ulation. The designer may implement the same functionality
on RTL manually, however there is an easier solution. With
the Processor State Transfer technique, part of Just-in-Time
Verification, the state can be transferred after every system
call. Whenever the simulated cores get out of synchronisation,
e.g. due to functionality available only in the ISL model, the
state transfer resynchronizes them. This approach saves a lot
of development effort. Functionality that is only needed during
the development phase does not have to be implemented for
the RTL model, as Processor State Transfer allows to use the
ISL model.

VI. CONCLUSIONS

A new verification methodology has been presented. Just-
in-Time Verification combines two novel techniques, Live
Verification and Processor State Transfer, that significantly
shorten the architecture debug cycle occurring in ADL-based
processor design. During verification in the debug cycle, the

ISL and RTL models generated from the single ADL model
are checked for equivalence on the basis of simulations. This
technique is a common practice to debug ADL specifications.
The state-of-the-art methodology compares state traces after
completing the ISL and RTL simulations, thereby discovering
bugs only post-mortem. This verification approach is very
slow, especially for complex modern processor architectures,
because the RTL simulation has a long runtime. Live Verifica-
tion enables early discovery of ISL versus RTL mismatches.
It avoids redundant simulation steps after bug discovery by
stopping right at the occurrence, because the state comparison
is performed on-the-fly cycle-by-cycle. Furthermore, the Pro-
cessor State Transfer technique is used to omit redundant RTL
simulation steps before the region of interest while fixing the
bug, leveraging the ISS speed to fast forward the simulation
state before enabling Live Verification. The benefit of the
proposed methodology was demonstrated in a case study,
where a speedup of 660x compared to the state-of-the-art
methodology is achieved.

REFERENCES

[11 A. Hoffmann, H. Meyr, and R. Leupers, Architecture Exploration for
Embedded Processors with LISA. Kluwer Academic Publishers, 2002.

[2] A. Fauth, J. Van Praet, and M. Freericks, “Describing instruction set
processors using nML,” in Proceedings of the European conference on
Design and Test, 1995.

[3] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau,
“EXPRESSION: a language for architecture exploration through com-
piler/simulator retargetability,” in Design, Automation and Test in Europe
Conference and Exhibition. Proceedings, 1999.

[4] Synopsys, ‘“Processor Designer,” http://www.synopsys.com/Systems/
BlockDesign/ProcessorDev/Pages/default.aspx, 2011.

[5] Target, “IP Designer,” http://www.retarget.com/products/ipdesigner.php,
2011.

[6] P. Mishra and N. Dutt, Processor Description Languages, Volume 1.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[7] P. Camurati and P. Prinetto, “Formal verification of hardware correct-
ness: introduction and survey of current research,” Computer, 1988.

[8] C. Kern and M. R. Greenstreet, “Formal verification in hardware design:
a survey,” ACM Trans. Des. Autom. Electron. Syst., 1999.

[91 M. Levinger, M. Molcho, Y. Lichtenstein, Y. Malka, C. Metzger,
D. Goodman, G. Shurek, and A. Aharon, “Test program generation
for functional verification of PowerPC processors in IBM,” Design
Automation Conference, 1995.

[10] R. E. Bryant, “A methodology for hardware verification based on logic
simulation,” J. ACM, 1991.

[11] D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal,
“Coverage-directed test generation using symbolic techniques,” in For-
mal Methods in Computer-Aided Design. Springer Berlin / Heidelberg,
1996.

[12] H. mo Koo and P. Mishra, “Coverage-driven functional test generation
for processor validation using formal methods,” 2006.

[13] Synopsys, “VCS,” http://www.synopsys.com/tools/verification/
functionalverification/pages/vcs.aspx, 2011.

[14] S. Sutherland, The Verilog PLI Handbook. Kluwer Academic Publish-
ers, 2002.

[15] “IEEE standard VHDL language reference manual amendment 1: Proce-
dural language application interface,” IEEE Std 1076¢-2007 (Amendment
to IEEE Std 1076-2002), 2007.

[16] D. Kammler, B. Bauwens, E. Witte, G. Ascheid, R. Leupers, H. Meyr,
and A. Chattopadhyay, “Automatic generation of memory interfaces,” in
System-on-Chip, 2009. SOC 2009. International Symposium on, 2009.

[17] S. Saponara, L. Fanucci, S. Marsi, G. Ramponi, D. Kammler, and
E. Witte, “Application-specific instruction-set processor for retinex-like
image and video processing,” Circuits and Systems II: Express Briefs,
IEEE Transactions on, 2007.

http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.synopsys.com/Systems/BlockDesign/ProcessorDev/Pages/default.aspx
http://www.retarget.com/products/ipdesigner.php
http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx
http://www.synopsys.com/tools/verification/functionalverification/pages/vcs.aspx

	Introduction
	Related Work
	Verification Methodologies
	State-of-the-Art Verification
	Just-in-Time Verification
	Live Verification
	Processor State Transfer

	Implementation Aspects
	Formalized Description
	Live Verification
	State Transfer
	Processor State Transfer
	Peripherals State Transfer

	Case Studies
	Proof-of-Concept for Synopsys Tools
	ASIP For Image Processing
	RISC Core

	Conclusions
	References

