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Abstract—Non-linear detection for multi-antenna (MIMO)
systems using iterative detection and decoding offers superior
communications performance at the cost of an increased com-
putational complexity. Various algorithms from literature solve
the underlying search problem using quite diverse approaches.
Detection based on a Trellis diagram to structure the search has
shown close-to-optimal performance, however also a relatively
high complexity. This paper presents a novel Trellis based
algorithm that achieves a similar communications performance
at a significantly reduced complexity, requiring only 6% of the
original metric evaluations.

I. INTRODUCTION

Multi-antenna (MIMO) receivers for bit-interleaved coded
modulation with iterative decoding and detection (BICM-ID)
have received significant research attention. Since optimal
detection is prohibitively complex for hardware implemen-
tation, various sub-optimal algorithms have been devised.
While linear detectors basically perform estimation followed
by demapping, non-linear detectors treat the detection prob-
lem as a search. Within that class, the detectors differ in
the way that they structure the search, e.g. sphere decoders
use a depth-first search strategy. The soft-in soft-out (SISO)
path-preserving trellis-search (PPTS) based detector presented
in [1] uses a Trellis structure representing the search space,
thus is a specially structured breadth-first (BF) search. Its
communications performance is close to the optimal brute-
force max-log detector. Further advantages are the lower local
search complexity compared to BF based detection, and that
it obtains information on every possibly transmitted symbol
vector, which is not guaranteed for traditional BF based de-
tection. However, its complexity depends exponentially on the
modulation alphabet size. This leads to a poor implementation
efficiency, as evidenced by the very large VLSI area [1].

Contribution

A hardware-friendly trellis-search based soft-in soft-out
MIMO detection algorithm for use in a BICM-ID receiver
is presented. It features a significantly reduced complexity
compared to [1] at a similar communications performance.

Outline

The next section describes the assumed system model. It
follows an informal (Sec. III) and then formal (Sec. IV) de-
scription of the algorithm. Sec. V describes possible variants.
We evaluate the communications performance (Sec. VI) and
the complexity (Sec. VII), then compare to [1] (Sec. VIII).

II. SYSTEM MODEL

We consider a spatial-multiplexing Nt×Nr MIMO system
with BICM-ID. A message b ∈ {0, 1}Nb is encoded with
rate r = Nb/Nc and interleaved, yielding the code word c ∈
{0, 1}Nc . Let X ⊂ R be a modulation alphabet of size
M = |X | with K = log2 |X | bits per symbol. The code word
is partitioned into multiple sub-vectors cn ∈ {0, 1}KNt . They
are subsequently mapped to symbol vectors xn ∈ XNt that are
transmitted independently. Assuming a frequency-flat fading
channel characterized by Hn ∈ RNr×Nt , the received symbol
vector at time n is ỹn = Hnxn + wn where wn ∈ RNr is
a white Gaussian noise process with E[wnw

T
n ] = N0INr

. In
the remainder, the time index n is dropped for convenience.
Using iterative MIMO decoding following the Turbo Principle,
detector and channel decoder exchange extrinsic informa-
tion λ̃e = λ̃p − λ̃a in terms of log-likelihood ratios (LLRs),
usually denoted as soft decision, hence soft-in soft-out (SISO),
where λ̃

p
are the detector’s posterior LLRs and λ̃a are the

prior LLRs fed back from the decoder.
Orthogonal Real-Value Decomposition (ORVD): We as-

sume that the channel matrix H is derived from a complex-
valued channel model H̃ ∈ CNr/2×Nt/2 such that
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(1)

which is a structural constraint on H . The columns of the
matrix H̃ are sorted before the conversion to H by their
l2-norm in ascending order, where the P1-th column of H̃
has the smallest norm. An orthogonal matrix Q ∈ RNr×Nt

with QTQ = I and an upper-triangular matrix R ∈ RNt×Nt

are computed such that(
Q Qb

Qc Qd

)(
R
0

)
=

(
H
N0I

)
(2)

which is the decomposition of the regularized channel matrix.
Note that QR =H holds. The system model becomes

y = QT ỹ = Rx+QTw (3)

where y ∈ RNt . The input λa = N0λ̃
a and output LLRs

λ̃e = λe/N0 are scaled and permuted, where both permuta-
tions depend on the column sorting Pi of H̃ .
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Fig. 1. Trellis structure representing x ∈ X 4 with M = 4. Every stage is
fully connected to the next stage (as for x4 to x3, some edges not drawn for
visual purposes). A is an example for the incoming path selection in PR1,
and B for the outgoing path selection in PR2 (cf. Sec. IV, Path Reduction).

In this context, a MIMO system with four complex-valued
transmit streams, e.g. four antennas in the complex baseband,
offers Nt = 8 real-valued transmit layers (two per stream).

III. ORVD-TRELLIS BASED MIMO DETECTION

Fig. 1 shows an exemplary Trellis diagram. There is one
Trellis stage per transmit layer xt. Each stage contains one
node per symbol θm ∈ X . A path from left to right represents
one symbol vector x. It is attributed with a transmission
likelihood given y. We want to find L very likely paths through
every Trellis node. From these L×Nt×M paths, we compute
the output LLRs.

A. Definitions

Let θm ∈ X denote the m-th symbol of the modulation
alphabet, ϕt : {0, 1}K 7→ X be the per-layer mapping rule
and ϕ−1t its inverse, and x(m,t,l) denote the l-th path going
through the m-th node at the t-th stage, with x(m,t,l)

i ∈ X∪{0}
and the constraint x(m,t,l)

t = θm. Partial paths are paths with
zeros indicating not yet determined entries. To extend a path
means we replace the highest-index zero.

Attributed to each path is a metric defined as

µ (x) = ‖y −Rx‖2 + cTλa

=
∑Nt

t=1 µt (x)
(4)

where the code bit vector c maps to x and the per-layer metric
function is defined as

µt (x) =
∣∣∣yt −∑Nt

j=t rt,jxj

∣∣∣2 + ϕ−1t (xt)
T
λa
t (5)

with λa
t holding the prior LLRs associated with the t-th layer.

The most likely path has the lowest metric value.

B. Special Structure of R

The matrix R has a very special structure, e.g. for a system
with four transmit layers, we obtain

R =


a 0 b c
0 a −c b
0 0 d 0
0 0 0 d

 (6)

with only four distinct real-valued coefficients. An implemen-
tation should exploit this to process two layers in parallel and
reduce the number of operations (e.g. multiplications).
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Fig. 2. Overview of the algorithm: Preprocessing (PP), Top Layers (TL), Path
Completion (PC), Path Reduction (PR) and LLR Computation (LC) process

IV. ALGORITHM

Fig. 2 depicts an overview of the proposed algorithm. The
Preprocessing includes the channel column sorting, ORVD,
QR decomposition, LLR scaling and permutation. The Top
Layers and Path Reduction processes pass from left to right
through the Trellis. Intermediate partial paths generated by
these are extended to full length by the Path Completion.
Finally, the LLR Computation combines all paths, where only
paths through nodes at stage xt are used to generate the t-th
layer’s λe

t .
Top Layers: We process the two top layers together.

Compute for t ∈ {Nt − 1, Nt} the metric values

µt (θm) = |yt − rt,tθm|2 + ϕ−1t (θm)
T
λa
t (7)

for all symbols θm ∈ X . For both t, select the L smallest
metrics and their respective symbols x(l)t . Initialize the partial
paths for stage Nt with

x(m,Nt,l) =
(
0, . . . , x

(l)
Nt−1, θm

)T
(8)

and for the next stage Nt − 1 with

x(m,Nt−1,l) =
(
0, . . . , θm, x

(l)
Nt

)T
. (9)

All x(m,Nt,l) go to the Path Completion, and all x(m,Nt−1,l)

go to the first Path Reduction.
Path Completion: We want to extend every input partial

path x(m,t,l) by one step. Replace the next zero x(m,t,l)
n with a

suitable decision, where n is the highest index of the remaining
zeros. Cancel the known interference

y(ic) = yn −
Nt∑

j=n+1

rn,jx
(m,t,l)
j (10)

and determine the nearest symbol

xc = argmin
x∈X

∥∥y(ic)/rn,n − x
∥∥ . (11)

Assemble a bit vector ca containing the sign bits of λa
n, and

map that vector to a xa = ϕn(ca). For every bit index b in ca,
create a copy cab of ca with the bit at that respective index b
inverted, then map it to xab. Subsequently, find

xca = argmin
x∈{xa,xab∀b|x 6=xc}

|x− xc| . (12)



This is called optimized hybrid enumeration (OHE) in [2].
Select from xc and xca the symbol that has a lower per-layer

metric value µn. Extend the current partial path by putting the
winning symbol at x(m,t,l)

n . If zeros remain, feed the path to
the next Path Completion, otherwise to the LLR Computation.

LLR Computation: Once every path at stage t is com-
pleted, we first reduce the L paths for every node

µ
(
x(m,t)

)
= min

l
µ
(
x(m,t,l)

)
(13)

then compute the extrinsic LLRs by combining the per-symbol
metrics for every bit index b = 1 . . .K according to

λeb+(t−1)K = min
x(m,t):x

(m,t)
t ∈X 1

b

µ
(
x(m,t)

)
− min

x(m,t):x
(m,t)
t ∈X 0

b

µ
(
x(m,t)

)
− λab+(t−1)K

(14)

where X 0
b and X 1

b are the subsets of X with the b-th bit set
to 0 or 1 respectively. Nodes at stage t influence only the t-th
layer’s LLRs λe

t .
Path Reduction: We jointly process all L input paths

x(m,t,l) of the previous stage t. Temporarily extend every path
with every modulation symbol, then select the best new partial
paths. For every x(m,t,l), construct m′ = 1 . . .M candidates
x(m′,m,t,l) with x

(m′,m,t,l)
t−1 = θm′ . For all M × M × L

candidates, compute a corresponding metric

µ
(
x(m′,m,t,l)

)
=

Nt∑
j=t−1

µj

(
x(m′,m,t,l)

)
. (15)

For every m′, select the l′ = 1 . . . L best incoming paths

x(m′,t−1,l′) =
(l′)

argmin
m,l

µ
(
x(m′,m,t,l)

)
(16)

with the smallest metric (Eq. 15) from the M ×L candidates
leading into node m′ at the next stage t − 1. Symbol A in
Fig. 1 designates an example for this selection in the PR1

process (t = 3) at node m′ = 2.
For every m, select the l′ = 1 . . . L best outgoing paths

x(m,t,l′) =
(l′)

argmin
m′,l

µ
(
x(m′,m,t,l)

)
(17)

from the M × L candidates leaving node m at the current
stage t. Symbol B in Fig. 1 is a corresponding example in the
PR2 process (t = 2) at node m = 2.

If this is the last stage, deliver the paths to the LLR
Computation. Otherwise, feed x(m,t,l′) to Path Completion
and pass x(m′,t−1,l′) to the next Path Reduction.

V. ALGORITHM VARIANTS

The following suggested changes generate distinct variants
of the proposed algorithm: i) Vary L = 1, 2, 4. ii) Replace the
l2-norm in Eq. 5 by the l1-norm. iii) Introduce a compensation
factor to the min-functions in Eq. 13 and Eq. 14, known as
max-star. iv) Apply the QR decomposition to the unsorted
complex-valued channel matrix. v) Leave out the channel

matrix regularization. vi) Instead of the OHE in the Path
Completion, use full expansion and sorting as in the Path
Reduction.

VI. PERFORMANCE EVALUATION

A 40 MHz IEEE 802.11n-like scenario is considered assum-
ing a MIMO system with four receive and transmit antennas,
i.e., Nt = 8 real-valued transmit layers, and perfect knowledge
of the spatially uncorrelated Rayleigh channel. We use a tail-
biting convolutional code with polynomials [133, 171]8 and
puncturing, a random interleaver and a max-log BCJR decoder.
The frame lengths are 864, 1728 and 2592 code bits for
4-/16-/64-QAM respectively. We support seven modulation
and coding schemes (MCS) borrowed from the 11n standard:
4-QAM with r-1/2 and r-3/4, 16-QAM with r-1/2 and r-
3/4, and 64-QAM with r-2/3, r-3/4 and r-5/6 (11n-MCS 25
to 31), where r denotes the code rate. The gray-mapped
QAM schemes are decomposed into 2-/4-/8-ASK for our real-
valued model. For every data point, we simulated at least
105 frames. Erroneous frames are automatically retransmitted
as part of an automated repeat-request (ARQ) scheme, on
average 1/(1−FER) times for successful reception [3], where
FER denotes the frame error rate. The effective spectral
efficiency expressed as the on average correctly transmitted
information bits per symbol is η = rKNt(1− FER).

Fig. 3 visualizes the communications performance of the
four most important algorithm variants (L = 2, 4, l1/l2-norm,
rest as in Sec. IV) and of the PPTS [1] for one I = 1 and
two I = 2 detector-decoder iterations. The top dashed curves
mark the SNR points where the brute-force max-log detector
achieved 10% FER. For each algorithm, it shows the envelope

η (SNR) = max
r,K

rKNt (1− FER (SNR, k, r)) (18)

over the algorithm’s seven per-MCS spectral efficiency curves.
An MCS is deemed operational if FER ≤ 10%.

Observations: For lower SNRs, all five are very close. At
high SNR, the L = 2 variants perform significantly worse
than the PPTS, especially the (l2, L = 2) variant is very bad
at the first iteration. The L = 4 variants outperform (I = 1)
or closely match (I = 2) the PPTS algorithm. At the first
iteration for L = 4, the l1-norm is better than the l2-norm,
while this changes in the second iteration.

Also tested but not shown: i) The channel matrix regular-
ization brings a significant advantage and should not be left
out. ii) The channel matrix sorting provides an average gain
of around 0.2 dB, thus could be left out. iii) The max-star
variants, both for inner and outer reduction, have shown no
significant advantage over the max-log variant, despite being
computationally a lot more complex. iv) The L = 1 variants
perform very bad. v) The full expansion is slightly better than
the OHE based path completion, but a lot more complex, hence
the OHE is preferable (at least for M > 2).

As apparent in Fig. 3, both the PPTS and our algorithm with
L = 4 perform close to the max-log bound. The following
complexity analysis indicates that the proposed algorithm is
less complex and hence more hardware-friendly.
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Fig. 3. Communications performance: effective spectral efficiency over SNR

TABLE I
METRIC EVALUATIONS FOR Nt = 8, L′ = 2

This Work PPTS [1] Ratio

L = 2,M = 8 1456 45120 3%
L = 4,M = 8 2896 45120 6%
L = 2,M = 4 536 2832 19%
L = 4,M = 4 1064 2832 38%
L = 2,M = 2 220 180 122%
L = 4,M = 2 436 180 242%

VII. COMPLEXITY ANALYSIS

We use the number of metric µ(x) evaluations to approx-
imately quantify the algorithms’ computational complexities.
Our algorithm requires

(Nt − 2) (Nt − 1)LM + 2M + (Nt − 2)M2L

evaluations, while the PPTS algorithm [1] with L′ = 2 paths
per Trellis node requires

L′M4 (Nt/2− 2) [(Nt/2− 1) /2 + 1] +M2 +M4

evaluations. For Nt = 8 and L′ = 2, this reduces to 42LM +
2M+6LM2 and 11M4+M2 respectively. Tbl. I lists the data
for 4-/16-/64-QAM (M = 2, 4, 8) and L = 2, 4 with L′ = 2
fixed. For higher modulation orders, the saving is significant.
We only need a fraction compared to the PPTS algorithm.
For L = 4, our algorithm is very close to [1] in terms of
communications performance at 6% of the PPTS’ complexity.
The principal reasons for the complexity reduction are the
ORVD and the OHE based path completion.

VIII. COMPARISON TO THE REFERENCE ALGORITHM

This section describes differences to the PPTS detector [1]
which served as basis for the proposed algorithm. We consider
the PPTS with L′ = 2 and our algorithm with L = 4 due
to their comparable communications performance. A four-
antenna 64-QAM system is used as example.

The PPTS uses complex-valued arithmetic and only the l2-
norm. For the example system, it requires a Trellis structure

with four 64-node stages. Its size is the reason for the PPTS’
very large hardware implementation despite supporting only
16-QAM. The best incoming/outgoing path selections identify
the two smallest among 128 metric values. The channel matrix
is not regularized, but we assume that the columns are sorted
by their l2-norm (though not mentioned explicitly in [1]). The
path extension (corresponding to our path completion) uses
full expansion, as in the PR process. Both reductions in the
LLR computation use the max-star function.

We use real-valued arithmetic due to the ORVD and a Trellis
with eight 8-node stages. Our OHE-based path completion
is simpler than the PPTS’ corresponding process. There is
no compensation factor used in the LLR Computation’s re-
ductions. The l1-norm might further simplify the hardware.
Additionally, our algorithm features a reduced minimum-
search complexity. Our path selections (Eq. 16 and 17) identify
the four smallest out of only 32 values.

IX. CONCLUSIONS

We have introduced a new MIMO detection algorithm. For
the considered 802.11n-like scenario, it operates close to the
max-log optimal bound. The reduced complexity, amongst
others in terms of a significantly decreased amount of metric
evaluations, make it particularly hardware-friendly.

We are currently in the process of implementing the
proposed algorithm as application-specific integrated cir-
cuit (ASIC) to further assess its implementation efficiency.
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