
Efficient VLSI Architectures for Matrix Inversion in

Soft-Input Soft-Output MMSE MIMO Detectors

Dominik Auras, Rainer Leupers, Gerd Ascheid

Institute for Communication Technologies and Embedded Systems

RWTH Aachen University, 52056 Aachen, Germany

Email: auras@ice.rwth-aachen.de

Abstract—A computational complexity analysis of matrix
inversion used in soft-input soft-output minimum mean square
error (MMSE) MIMO detectors and a comprehensive litera-
ture comparison of corresponding VLSI implementations are
presented. They indicate that the application specific integrated
circuit (ASIC) proposed in this paper is — to the best of our
knowledge — the most area-throughput efficient VLSI architec-
ture reported so far, outperforming the second best by a factor
of 1.7x. The ASIC achieves the IEEE 802.11n standard’s peak
data rate of 600 Mbit/s.

I. INTRODUCTION

Bit-interleaved coded modulation with iterative decod-
ing (BICM-ID) promises impressive communication per-
formance gains. To take advantage of these in multi-
antenna (MIMO) systems with high data rates, Soft-Input Soft-
Output (SISO) MMSE MIMO detection is an economically
reasonable near-future option for VLSI implementation. The
matrix inversion is the computationally most demanding oper-
ation of the MMSE filter matrix computation. Reported circuits
for this context can be roughly divided into four algorithmic
categories: (a) The input matrix is inverted using a Divide-
and-Conquer (D&C) approach [1]–[3]. (b) A series of rank-1
updates iteratively converges from a trivial inverse to the final
one [4]. (c) The QR decomposition of a regularized channel
matrix is computed [5], or (d) the matrix is decomposed into
matrices that are easier to invert [6].

Contribution: We introduce an area-throughput efficient
VLSI architecture performing matrix inversion based on a
computationally efficient decomposition, and present a com-
prehensive comparison of matrix inversion circuits.

Outline: Section II gives an introduction to the context
of this work. Section III provides the algorithm details and a
computational complexity analysis with respect to two other
algorithms. In Section IV, the implementation results are
discussed and compared to related work.

E
n
co
d
er

In
te
rl
ea
v
er

M
ap
p
er

D
et
ec
to
r

D
ec
o
d
er

M
IM

O
C
h
an
n
el

y
=

H
x
+

w +

+

b c

λp λe

λa

−

−

b̂

xn yn

Fig. 1. Assumed MIMO BICM-ID System Model. Detector and decoder
iteratively exchange information to improve the final decoding result.

II. SYSTEM MODEL

We consider a spatial multiplexing Nt×Nr MIMO system
with BICM-ID, depicted in Fig. 1. A message b ∈ {0, 1}Nb

is encoded with rate r = Nb/Nc and interleaved, yielding
the code word c ∈ {0, 1}Nc. Let X ⊂ C be a modulation
alphabet with K = log2 |X | bits per symbol. The code word
is partitioned into Ns subvectors cn ∈ {0, 1}KNt. They are
subsequently mapped to symbol vectors xn ∈ XNt that are
transmitted independently. Assuming a frequency-flat fading
channel characterized by Hn ∈ CNr×Nt , the received symbol
vector at time n is yn = Hnxn + wn where wn ∈ C

Nr is
a white Gaussian noise process with E[wnw

H
n] = N0INr

. In
the remainder, the time index n is dropped for convenience.
Using iterative MIMO decoding following the famous Turbo
Principle [9], detector and channel decoder exchange extrinsic
information λe = λp − λa in terms of log-likelihood ra-
tios (LLRs), where λ

p
are the detector’s posterior LLRs and

λa are the prior LLRs fed back from the decoder.

A. SISO MMSE MIMO Filter Matrix

We assume a SISO MMSE MIMO detector model derived
from [7]1. The computation of the MMSE filter matrix

G = C−1
y H =

(

HCxH
H +N0INr

)

−1

H (1)

requires the inversion of Cy , where Cx = diag{σ2
1 , . . . , σ

2
Nt

}
holds the symbol variances σ2

t = f(λa) computed from the
decoder feedback λa. The matrix Cy is hermitian positive
definite (HPD) since xHCyx > 0, ∀x 6= 0 and CH

y = Cy

hold. Thus we apply the well-known LDL decomposition
to Cy . Subsequently we perform the easier inversions of the
resulting matrices. This is computationally more efficient as
e.g. the LU decomposition (cf. Sec. III) and the other reported
algorithms, which could all also be applied. Our approach falls
into the fourth algorithmic category mentioned before (d). Note
that our VLSI implementation includes the computation of Cy

from H , λa and N0, since the evaluation context is important.

In the next section, we introduce the LDL decomposition
and analyze its computational complexity. The analysis shows
the superior computational efficiency of the proposed approach
compared to two algorithms.

III. LDL-BASED MATRIX INVERSION

We consider the inversion of the square HPD matrix A ∈
CM×M , e.g. A = Cy from (1), which can also be used

1We do not perform iterations between equalizer and demapper as in [7].

in soft-output (SO) only MMSE detection [1]–[4]. First, we
compute the LDL decomposition A = LDLH using Alg. 1,

then subsequently solve LDLHG = H for G using forward
and back substitution steps. The matrix L = [lij] ∈ CM×M is
lower triangular with unity diagonal, i.e. lij = 0 ∀i < j and
lii = 1, and D = diag(d1, . . . , dM) is a real-valued diagonal
matrix with positive entries dj > 0.

Algorithm 1: LDL Decomposition

Require: A ∈ C
M×M is HPD

1 for j = 1 . . .M do
2 dj = Re{ajj}
3 for k = 1 . . . j − 1 do
4 dj = dj − Re{ljkt

∗

jk} ⊲ 2 Mult., 2 Add

5 end

6 d−1
j = 1/dj ⊲ 1 Reciprocal

7 for i = j + 1 . . .M do
8 tij = aij
9 for k = 1 . . . j − 1 do
10 tij = tij − likt

∗

jk ⊲ 4 Mult., 4 Add

11 end

12 lij = d−1
j tij ⊲ 2 Mult.

13 end
14 end

The annotations in Alg. 1 denote the number of real-
valued operations. In total, it requires Cmul = 2

3M
3 − 2

3M
multiplications, Cadd = 2

3M
3 −M2 + 1

3M additions and M
reciprocals for a square matrix of size M ×M . Note that for
spatial-multiplexing MIMO systems, the number of antennas
is typically not more than eight, i.e. it is reasonable to assume
M ≤ 8. More specifically, M = 4 is a widely used choice.

We compare the required computational complexity to
compute G for M = 4 using Alg. 1 to the LU-based [6]
and D&C-based [1]–[3] algorithms in Tbl. I. Relative to the
LU-decomposition A = LU with lower and upper triangu-
lar matrices L and U respectively, we save about 28% of
the multiplications and 36% of the additions for the matrix
decomposition. The D&C method has a significantly higher

TABLE I. COMPUTATIONAL COMPLEXITY FOR M = 4

Algorithm Operation R× R R+ R 1/R

LDL A = LDL
H 40 28 4

LU A = LU 56 44 4

D&C A 7→ A
−1 94 76 2

LDL + Solve Cy 7→ G 264 124 4

LU + Solve Cy 7→ G 280 140 4

D&C + MM Cy 7→ G 294 284 2

complexity, however directly computes C−1
y . An additional

matrix multiplication (MM) is needed to obtain G = C−1
y H ,

for which we assume to use Strassen’s well-known D&C MM
algorithm [8].

Computing G, denoted as operation Cy 7→ G in Tbl. I,
the LDL-based algorithm slightly outperforms the LU-based
one in terms of operation count. The main difference lies in
the dependencies between operations. This results in different
operation schedules, which favors the LDL as we found out
during the VLSI implementation. Both LDL-based and D&C-
based algorithms exploit the HPD property of A, by storing
only half of the coefficients and reducing the number of
real-valued operations. Nevertheless, the D&C-based algorithm
used to compute G is more complex than the LDL and
LU based algorithms, as indicated in Tbl. I. Clearly, the
comparison is only fair for the computation of G. For M > 4,
we found that the advantage of the LDL decomposition based
MMSE filter matrix computation strengthens. For example
for M = 8, with 2256 multiplications (LDL) over 2480 (LU)
and 2588 (D&C) the LDL based algorithm outperforms the
other two.

IV. RESULTS

This section first describes our simulation setup that we
used for the evaluation. Then we give an overview of our
proposed architecture and its key characteristics. This is fol-
lowed by an analysis of our VLSI implementation results.
Subsequently we compare our results to related work.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
10−2

10−1

100

64-QAM

16-QAM

4-QAM

SNR [dB]

fr
am

e
er
ro
r
ra
te

Ref. ASIC

0. Iter 1. Iter

2. Iter 3. Iter

Fig. 2. Frame Error Rate over SNR. The reference is a max-log MMSE detector with posterior feedback using floating-point arithmetic. ASIC denotes our
bit-accurate fixed-point model. 0. Iter matches soft-output only detection, while for 1. Iter the detector and decoder are both executed twice per symbol vector.

µ
,
σ
2
=

f
(λ

a
)

C
y
-m

at
ri
x

C
y

=
L
D

L
H

L
D

L
H
G

=
H

λa

σ2

H

N0

Cy L

D−1

G

Fig. 3. Overview of the Architecture. The coarse-grained pipeline with four
processing units is shifted every 18th clock cycle. The interface between the
stages uses a simple handshake based protocol. Buffers for H, N0 at the first
three stages (not drawn) forward the values as required.

A. Conditions & Assumptions

A 40 MHz 802.11n-like scenario similar to [6] is con-
sidered assuming a 4 × 4 MIMO system with gray-mapped
4-/16-/64-QAM modulation, max-log demapping, a spatially
uncorrelated Rayleigh channel and perfect channel knowl-
edge. We use a rate-1/2 tail-biting convolutional code with
polynomials [133, 171]8 and a max-log BCJR decoder. A
frame consists of 864 information bits. The average signal-
to-noise ratio (SNR) per receive antenna is defined as SNR =
E[‖Hx‖2]/(NrN0). We determined the required word lengths
to obtain an SNR loss of ≤ 0.1dB compared to the floating-
point model at a frame error rate of 10%. Fig. 2 shows the
frame error rate over SNR for both the reference and our ASIC
model.

B. Architecture Overview

Our architecture computes G from H , N0 and λa. As
depicted in Fig. 3, it is organized into a pipeline of four stages
that take 18 clock cycles per pipeline cycle, similar to [6].
For Nt = 4 antennas, 64-QAM (K = 6), r = 5/6 and a
reasonable clock frequency of fclk = 540Mhz, we achieve
a data rate of Θ = rNtK

18 fclk = 600Mbit/s, which meets
the maximum throughput requirement of the IEEE 802.11n
standard. We use one clock cycle to exchange data between
the stages. The inputs H, N0 are forwarded as required. All
data is kept in registers. We manually allocated the arithmetic
units and devised operation schedules for each pipeline unit.
The design shortens the critical path where possible, e.g. it
uses pipelined arithmetic units. We compute the reciprocal
with a lookup table followed by one Newton-Raphson iteration
to improve the result’s precision. The reciprocal unit input is
shifted to the range [1, 2). The shift is compensated at the
output. Tbl. II summarizes the data path configuration.

TABLE II. DATAPATH CONFIGURATION

Processing Unit Add. Mult. Shift LUT Recip.
Mem Area

[bit] [kGE]

µ, σ2 = f(λa) 9 2 − 2 − 263 6.4

Cy-matrix 8 12 − − − 718 22.4

Decomposition 12 3 2 1 1 787 20.3

Solver 16 16 − − − 1791 69.5

Forwarding H, N0 − − − − − 720 4.0

Total 45 33 2 3 1 4279 122.6

The architecture has been synthesized with Synopsys De-
sign Compiler G-2012.06 in topographical mode using a 90nm
standard-performance CMOS library. The ASIC occupies a
total area of about 122.6 kGE2 and achieves the target clock
frequency of 540 MHz. The per-unit area distribution is given
in Tbl. II. We observe that the solver dominates the design in
terms of area, and that the matrix decomposition only occupies
less than one third of the solver area.

Fig. 4 shows the architecture of the processing unit (PU)
responsible for the matrix decomposition. The three multipliers
each have two pipeline stages, while the reciprocal unit has
three stages. We compute complex-valued products with three
real-valued multiplications and five additions. The interface
between PUs uses a handshake-based protocol. All input values
are transferred to local registers during the first clock cycle.

2.6
kGE

2.6
kGE

3.4
kGE

Multiplexer Network

Adder Network

Cy

L tij temp

1/di

2.8kGE
Recip.

3 Stages

di

D−1

Fig. 4. Architecture of the processing unit performing the LDL decomposi-
tion. The local state machine and interface logic are excluded.

C. Comparison

Tbl. III lists circuits for the matrix inversion alone (rows
4-6), if available, and the computation of G (rows 7-9). Our
efficiency metric is kGE per 106 Inv/s, and kGE per 106G/s
respectively. We treated the compound of decomposition and
solver stages as matrix inversion circuits (this work and [6]).
For the 9-step D&C circuit in [3], we considered the two out
of nine steps that perform the inversion. We also include VLSI
architectures for SO-only MMSE detection, since the proposed
approach is also applicable in that context as stated in Sec. III.

Our architecture has the second best inversion efficiency
of 3.0 kGE per 106 Inv/s, outperformed by [3] with 2.7 kGE
per 106 Inv/s. However, while [3] computes C−1

y , we com-

pute C−1
y H . We investigated this further and found that the

simplification of our solver stage assuming the identity matrix
as input could save slightly less than half of the operations.
Reducing our solver area by only 13%, we would already
achieve a similar efficiency.

Considering the computation of G, our ASIC is the —
to the best of our knowledge — most efficient reported
implementation with about 4.1 kGE per 106G/s. It outper-
forms the second best architecture, the MMSE-PIC [6], by

2One gate equivalent (GE) is the area of one 2-input drive-1 NAND gate.

TABLE III. IMPLEMENTATION RESULTS AND COMPARISON WITH OTHER REPORTED CIRCUITS

Publication This work
Studer Eberli Burg Luethi Luethi Yoshizawa Yoshizawa Yoshizawa

et al. [6] et al. [1] et al. [4] et al. [5] et al. [5] et al. [2] et al. [3] et al. [3]

Inversion algorithm LDL LU D&C Rank-1 GR-QR MGS-QR D&C D&C 9-step D&C 2-step

MMSE algorithm SISO SISO SO SO SO SO SO SO SO

Matrix inversion area [kGE] 89.8 138 − − − − 1320 303 −

Throughput [106 Inv/s] 30 31.5 − − − − 174 112.5 −

Efficiency [kGE/(106 Inv/s)] 3.0 4.4 − − − − 7.6 2.7 −

MMSE filter area [kGE] 122.6 223 383 89 48.7 61.8 2200 303 885

Throughput [106 G/s] 30 31.5 6.0a 4.6a 4.2a 3.1a 174 25 70.2

Efficiency [kGE/(106 G/s)] 4.1 7.1 63.8 19.3 11.6 19.9 12.6 12.1 12.6

CMOS technology [nm] 90 90 180 250 180 180 90 90 90

Clock frequency [MHz] 540 568 250 176 166 162 174 250 160

a Throughput scaled to 90nm CMOS technology assuming: tpd ∼ 1/s.

a factor of 1.7x. It is also clearly more efficient than D&C-
based circuits [1]–[3]. This suggests that the solver-based
approach is more suitable than inversion and subsequent matrix
multiplication in this context.

It is noticeable that only the MMSE-PIC [6] and our
ASIC are designed for SISO MMSE detection. Iterative MIMO
decoding requires one inversion per symbol vector per itera-
tion, because G depends on the decoder feedback. Contrarily,
most SO-only publications assume that G can be precomputed
before detection. They are thus designed for a reduced in-
version throughput. However both SISO ASICs are superior
to the other considered circuits in terms of efficiency, and
additionally achieve a large SNR gain.

Interestingly, Yoshizawa’s three ASICs [2], [3] have a
constant efficiency of ~12 kGE per 106G/s. His iterative
decomposition method to scale the architecture at design-time
is able to maintain the efficiency. However, considering the
matrix inversion alone, the 9-step ASIC [3] outperforms the
completely pipelined ASIC [2] by a factor of ~2.8x. This
suggests that evaluating the matrix inversion independently of
the design context might lead to wrong conclusions.

Eberli’s custom VLIW processor [1] is about one order of
magnitude less efficient than our ASIC. The reason for this is
most likely the offered flexibility of the processor. Depending
on the context, this might be a major advantage, which is
however not measurable with the selected metric.

V. CONCLUSION

We presented the most area-throughput efficient ASIC
reported so far that performs matrix inversion based on the
LDL decomposition to compute the MMSE filter matrix.
The computational complexity of the LDL-based algorithm is
lower than that of the LU-based and D&C-based algorithms.
The literature comparison indicates that a full solver step to
obtainC−1

y H directly is beneficial in terms of area-throughput
efficiency, and that the matrix inversion should not be evaluated
independent of the filter matrix computation.

As future work, we are planning to extend the architecture
to perform all parts of SISO MMSE MIMO detection.

ACKNOWLEDGMENT

This work has been supported by the Ultra High-Speed
Mobile Information and Communication Research Centre,
RWTH Aachen University.

REFERENCES

[1] S. Eberli, D. Cescato, and W. Fichtner, “Divide-and-conquer matrix
inversion for linear MMSE detection in SDR MIMO receivers,” in
NORCHIP, 2008., 2008, pp. 162–167.

[2] S. Yoshizawa, Y. Yamauchi, and Y. Miyanaga, “A complete pipelined
MMSE detection architecture in a 4x4 MIMO-OFDM receiver,” in
Circuits and Systems, 2008. ISCAS 2008. IEEE International Symposium

on, 2008, pp. 2486–2489.

[3] S. Yoshizawa, H. Ikeuchi, and Y. Miyanaga, “VLSI implementation of
a scalable pipeline MMSE MIMO detector for a 4x4 MIMO-OFDM
receiver,” IEICE transactions on fundamentals of electronics, communi-

cations and computer sciences, vol. 94, no. 1, pp. 324–331, 2011.

[4] A. Burg, S. Haene, D. Perels, P. Luethi, N. Felber, and W. Fichtner,
“Algorithm and VLSI architecture for linear MMSE detection in MIMO-
OFDM systems,” in Circuits and Systems, 2006. ISCAS 2006. Proceed-

ings. 2006 IEEE International Symposium on, 2006, pp. 4 pp.–.

[5] P. Luethi, C. Studer, S. Duetsch, E. Zgraggen, H. Kaeslin, N. Felber,
and W. Fichtner, “Gram-schmidt-based QR decomposition for MIMO
detection: VLSI implementation and comparison,” in Circuits and Sys-

tems, 2008. APCCAS 2008. IEEE Asia Pacific Conference on, 2008, pp.
830–833.

[6] C. Studer, S. Fateh, and D. Seethaler, “ASIC implementation of soft-
input soft-output MIMO detection using MMSE parallel interference
cancellation,” Solid-State Circuits, IEEE Journal of, vol. 46, no. 7, pp.
1754–1765, 2011.

[7] M. Senst and G. Ascheid, “How the framework of expectation prop-
agation yields an iterative IC-LMMSE MIMO receiver,” in Global

Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, 2011,
pp. 1–6.

[8] V. Strassen, “Gaussian elimination is not optimal,” Numerische

Mathematik, vol. 13, no. 4, pp. 354–356, 1969. [Online]. Available:
http://dx.doi.org/10.1007/BF02165411

[9] J. Hagenauer, “The turbo principle in mobile communications,” in Proc.

International Symposium on Nonlinear Theory and its Applications, Xian,

China, 2002.

