

 1

Abstract—The ever increasing complexity and heterogeneity of

modern System-on-Chip designs demands validation of the
system performance as early as possible. The on-chip bus
architectures play an important role to meet the design
performance. Today many heterogeneous on-chip bus
architectures are defined to address the design exploration.

In this paper we introduce an efficient modeling style of
heterogeneous bus architectures at high levels of abstraction.
We capture different bus architectures by using a generic,
parameterizable bus model, which captures performance issues
without significant loss of accuracy.

Our modeling style is based on the SystemC language, a
special channel library and attached coding style. The
combination provides the ground layer for the efficient and fast
simulation, which in turn enables the validation of the
functionality and performance of the system at high abstraction
levels.

The approach has been successfully used from defining the
Executable Specifications at the functional level to the
architecture explorations with HW/SW integration for an IPv4
Router with Quality of Support, design example.

Index Terms—Heterogeneous bus architecture, System level
design, SoC, SystemC.

I. INTRODUCTION

n the SoC era, with the increased complexity of the systems
the process of specification, partitioning and the verification
of the system has a decisive impact on the success of the

design. Increasing system complexity demands fast validation
of the concepts and the possible architectures of the design.

The typical SoC design may contain one or more processors,
hardware accelerators for the dedicated functions linked
together with complex on-chip bus architectures. The SoC
communication architecture determines the way the different
functional units are synchronizing and exchanging data and has
a great impact on the system’s performance [1].

Intellectual Property (IP) re-use of the bus architectures
creates a framework for the efficient realization of the complex
SoCs. The dominant communication architectures in the
industry use shared bus with prioritized arbitration. The main

This work was done in association with Institute for Integrated Signal

processing Systems, Aachen University. The authors are with Synopsys
Inc. (manu, denisb, reinke)@synopsys.com and Aachen University
(kogel, kempf)@iss.rwth-aachen.de

players are ARM AMBATM and IBM CoreConnectTM.
The corresponding cycle accurate Transaction Level Model

(TLM) IP [4, 6] of the respective bus addresses the design
exploration and system level modeling for this kind of
homogenous communication architectures

Other than this, today heterogeneous and application
domain specific bus architectures are defined to meet complex
performance requirements. The cycle-level TLM approach fails
to support exploration across heterogeneous bus architectures,
since thes e models are bus-specific. Hence the evaluation of
the different bus architecture requires tedious re-writing of the
interfaces.

Our approach to system level modeling of heterogeneous
bus architectures is to move to higher abstraction levels and
use a generic, parameterizable bus model for communication
architecture exploration. We have conceived a packet -level
TLM style, which captures different bus architectures through
parameterization of a single generic bus template.

The SoC designs for the considered networking application
domain [2,3] involve complex algorithms and protocol handling
in SW as well. The functional models used in the generic
packet-level bus platform are re-used when the SW
functionality is integrated with an Instruction Set Simulator
(ISS) of the target processor. The integration of the ISS calls for
a cycle accurate bus platform. The functional models are
interfaced to the cycle accurate TLM of the bus through
adapters, which are specifically developed for the intended bus
architecture.

II. RELATED WORK
Bus based architectures are very commonly used to facilitate

the communication between the various functional blocks of
the design [5]. Many studies and efforts are diverted into the
communication architectures, as they are the key to high
performance, low power systems. The ability to re -use the IP
reduces the design risk and the time to market.

Many commercial on-chip bus architectures are available
based on the IP re-use [6, 7]. These popular bus architectures
are based on the priority arbitration schemes. Along with this
commercial IPs there are new variants of application domain
specific communication architectures developed by the
academic world [8,9].

For the bus based architecture exploration and system level
design many commercial [4, 6] and academic solutions [11,12]
are available which provides cycle based TLM or component
based [10] design methodologies and tool environments.

The unique contribution of this paper is to further raise the
abstraction level to a packet-level TLM style and create a
corresponding generic bus template, which enables

Manoj Ariyamparambath, Denis Bussaglia, Bernd Reinkemeier Tim Kogel, Torsten Kempf
 Intellectual Property and Design Services, Integrated Signal Processing Systems
 Synopsys Inc, Germany Aachen University of Technology,

A Highly Efficient Modeling Style for
Heterogeneous Bus Architectures

I

 2

architectural exploration across heterogeneous bus
architectures. The case study shows excellent results w.r.t
simulation speed, modeling efficiency and accuracy.

III. HIGH ABSTRACTION MODELING – PACKET-LEVEL TLM

Predominantly, the approach to the system-level performance
analysis is based on simulation of the entire system. The
models and the communication architectures can be modeled at
different abstraction levels. Generally the use of abstraction is a
trade-off between simulation speed and accuracy. In this
section we highlight the abstraction levels enabled by SystemC
2.0 and then elaborate on the packet-level TLM.

A. Transaction Level Modeling (TLM) Overview
One of the primary goals of SystemC 2.0 [13] is to raise the

communication abstraction and enable system level modeling
with Transaction Level Modeling [14] style. At this level, the
communication is modeled using the function calls, thus hiding
the lower level implementation details. The resulting
improvements in simulation speed and modeling efficiency
enables the system architect to create an executable
specification of the design.

The term TLM is somewhat fuzzy and usually refers to
modeling at the cycle- and byte- accurate level. Raising the
abstraction w.r.t data and timing accuracy can further extend
the TLM paradigm.

This paper introduces a unique packet-level TLM style, for
the conceptualization and system level performance analysis of
a large heterogeneous system. Of course the design entry for
small scale and homogeneous systems is still at Register
Transfer Level (RTL) and medium scale embedded systems are
best modeled at cycle accurate TLM.

B. Functional Modeling
In packet-level TLM the bit-true data representation of RTL

is replaced by the Abstract Data Types (ADTs) such that a set
of functionally associated data is represented as a single token
(see Figure IV-2). The functional blocks communicate to each
other through a point-to-point reactive channel. Since the
system state changes only at the arrival of a new token the
number of activations on the event-driven SystemC simulation
kernel is reduced, to provide a high simulation speed.

C. Architecture Exploration
At this level the importance is given to the profiling of the

bus-based communication architecture and its effect on the
system performance. The point-to-point communication is
replaced with the address-mapped shared memory data
exchange as a natural choice. To achieve high simulation speed
and modeling efficiency, we also model the shared bus channel
at the packet-level. The functional blocks re-use the ADT
interface and communicate to each other using a packet-level
bus channel. The re-use of interface and the modeling
efficiency decreases the turn -around time.

1) Abstract Bus Channel- Generic Bus

The more specific implementation details of the shared bus
are suppressed at this level. The low level details like pin-
accuracy, specific bit-width of the data ports and cycle
accuracy are suppressed here. Instead of transferring a block of
data (for e.g. a Packet Descriptor) through 32-bit data port, the

ADT itself is transferred.
The shared memory associated with the abstract bus stores

the ADTs instead of bits/bytes of the data. More than one
master can be connected to this bus and the arbiter can
implement the specific arbitration algorithms. Our arbiter
implements a priority based arbitration scheme.

This Generic Bus doesn’t model any real-bus specific
features. Using this abstract model, the system designer gets an
executable model to carry out a rough profiling of the system.

2) Near Cycle Accurate Bus Channel- NCA Bus

After the rough profiling, the abstract bus channel is
parameterized to model the timing and data transfer properties
of a cycle-level TLM bus. This makes the profiling of the
system very close to the realistic profiling at cycle accurate
level. The parameters can be defined for enabling the pipeline
and burst transfers of the bus. This takes care of the timing
annotation for the features that are bus specific. With this
parameterization the communication exhibits timing accuracy
close to a cycle accurate bus.

D. HW/SW Integration
In today’s SoC designs, a large part of the system

functionality is realized in SW. To complete the system level
verification these SW functionalities need to be integrated and
simulated on an Instruction Set Simulator (ISS) of the targeted
processor.

The ISS integration requires a cycle accurate interface with
the rest of the system. Also, the bus models and the memory
interfaces should be cycle accurate. To interface the functional
models with a real cycle accurate bus an adapter need to be
developed. The adapter takes care of the conversion of the
ADT to the bytes/words and assembling the ADT from the
bytes/words at cycle accuracy. Using these adapters the
abstract functional models can seamlessly interface to any
cycle accurate bus.

IV. HIGH LEVEL ARCHITECTURE - ABSTRACT BUS CHANNEL
In this section we will introduce the internal structure of our

packet-level bus and then discuss the timing annotation
capabilities of the generic and NCA bus model. After that we
show the link to further refinement stages enabled by a adapter
between the packet-level and cycle-level TLM.

A. Timing Annotation Principle
The Figure IV-1 illustrates the basic communication and

timing annotation principle of the abstract bus channels.

MASTER

ABSTRACT BUS

` ` `

now now+tD

Twrite(prio,addr,T)

SLAVE

write(addr,T)

Figure IV-1: Bus channel behavior

The figure shows that, the master does a write transaction to
the slave by calling the function write (prio, addr, T), where T
represents the ADT. The bus channel automatically calculates
the timing information tD, associated with the data transfer.

 3

After the time tD, the bus channel calls the interface method,
write (addr, T) of the slave and writes the ADT to the specified
address.

class PacketDescriptor{
 int version; -- pragma field 144, 8
 int ihl; -- pragma filed 240, 8
 int tos; -- pragma field 128, 8
 ...
 long dest_addr; -- pragma field 64, 32
}

Figure IV-2: ADT - Sets of fields

The ADT’-s are stored in a shared memory and the ADT
comprises different fields. Each of the fields is mapped to a bit-
level position by specifying the address offset from the start
address of that token and the bit-length of the field. The master
flags the fields that will be transferred. The timing is calculated
depending on the fields, which are flagged to be written/read
and also depending on the size of the fields. For e.g. in Figure
IV-2, the field version is located at 144th bit position of the bit-
true ADT and has a length of 8 bits.

B. Timing Parameters
1) Timing calculation – Generic Bus

In the Generic Bus, the calculation of the timing information,
tD doesn’t take care for the bus specific features. It helps the
designer to derive a rough idea about the system level
performance.

tD = data transfer size/BW.
Where the data transfer size defines the total size of the data

exchanged by the master from the enabled fields of the ADT
and the BW is the bus bandwidth in bits.
2) Timing Annotation – NCA Bus

To model realistic transactions, the NCA bus channel is
made configurable to mimic real-bus specific features, such as:

1. Internal Cycles: For e.g. to complete a data transfer
(read/write), the bus may take one or more bus cycles
depending on its timing specification.

2. Pipeline: If the system bus exhibits a pipeline behavior for
the data transfer, the effect of internal cycles may not be visible
for all the address & data phases. For e.g. AMBA bus.

3. Burst Mode: In systems, where we use the AMBA bus,
the size of the data transfer and the burst length play an
important role when we calculate the timing. Such effects are
taken into account in the NCA bus.
With these configurable parameters the designer can model the
communication timing without significant loss of accuracy.

In this sub-section we describe the algorithm to calculate the

timing annotation value, tD for NCA Bus. The bit-true analysis
of the ADT has the following steps:

§ Sort the enabled fields by the staring address of the fields
§ Form blocks of adjacent fields
§ Break the transactions to single or burst transfers based

on a ddress alignment.
During the calculation of tD, for the single transfers the full

effect of the internal cycles are taken into consideration along
with the pipeline. For the burst transactions the effect of
internal cycles are not visible for all the address and data
phases.

With this timing annotation we can accurately analyze the

behaviors such as bus-contention, busload and arbitration
effects, which will affect the system performance. The
advantage of this NCA bus channel is that it gives higher
simulation speed with less loss of accuracy compared to a real
cycle accurate bus.

C. Cycle Accurate TLM Adapter
To integrate the SW functionality running on an ISS, an

adapter is needed to seamlessly interface the functional models
to the cycle accurate bus. The real cycle accurate bus used in
our system is AMBA bus.

A cycle-level TLM bus, like AMBA bus, transfers the data
(byte/words) at cycle accurate level. The Functional models,
which exchange the ADTs cannot be directly interfaced to a
cycle accurate bus. The functional models are connected to the
cycle accurate bus through an adapter.

The system with the adapter is shown in the Figure IV-3.
The functional models are reused without any changes. The
adapter converts the ADT transactions to cycle-level TLM bus
transactions (bytes/words) at cycle accurate level.

The adapter re-uses the NCA bus algorithm to decide the
transaction features (burst length, single/burst transfer type),
depending on the fields, which are marked for transfer.

Functional
Models

AMBA AHB

Decoder Arbiter
Descriptor

Memory (Real)

Adapter Functional
Models

Figure IV-3: Architecture view with Cycle-level TLM bus

After the bit-true analysis of the ADT, the adapter breaks the
data transfer into different AMBA bus transactions by calling
the AHB bus interface methods with the proper transfer types
and burst length.

V. CASE STUDY

In this section we show the results of the simulation run of
an OC-48 (2.5Gbps) IP Forwarding design example with Quality
of Service support (Figure IV-1). In this example the Descriptor
Bus was replaced with abstract bus model and with the real
cycle accurate AMBA bus during the different simulation runs.

This design example and test bench contains about 20,000
lines of C++ code having 10 modules, 18 point to point
channels and 1 abstract bus channel. The traffic pattern to the
test bench contained IP packets of size 40 bytes to 200 bytes.

The comparison will give the timing annotation inaccuracies
in the abstract bus model and the simulation speed of the
systems.

 4

Figure V-1: IP Forwarding Chip

1) Timing Inaccuracy of the Abstract Bus channel
 The Table V-1 shows the results of the simulation run with

the different bus models. The table shows the average packet
latency with respect to the IP Packet size. To minimize the effect
of scheduling algorithms we use constant size packets into the
same queue in the simulations. The average packet latency in
cycles is used as the objective for the timing error calculation.

IP Packet
Size

Generic Bus NCA Bus Cycle-level
TLM bus

40 120 173 185
80 158 213 225
120 198 253 265
160 238 293 305
200 278 333 345

Table V-1: Average IP Packet forwarding latency

The NCA bus timing inaccuracy is within 12 cycles as it is
parameterized to model the realistic bus effects. The generic bus
shows huge inaccuracy due to unrealistic timing annotations.

The table shows the basic timing inaccuracy due to the
specific bus timing annotations. As we simulate long
sequences of IP packets, the average transactions on the bus
increases and the effects of bus arbitration come into picture.
At increased transactions on the bus, it is observed that the
difference between NCA and cycle-level TLM bus system
remains at 7% inaccuracy.

 The relative inaccuracy between the NCA bus and cycle-
level TLM bus system is due to the extra cycles for the
synchronization between the master and AMBA bus and the
impact of locked transactions on the AMBA bus. The
synchronization and the locked transaction are absent in NCA
bus.
2) Simulation Speed

Generic
Bus

NCA
Bus

Cycle-level
TLM bus

Cycle -level TLM bus
with ISS

100% 71.78% 43.68% 10.41%

From the simulation performance, it can be noticed that the
NCA bus channel gives very high simulation performance
compared to the cycle-level TLM bus system.

VI. CONCLUSION
In this paper a high efficient modeling of the bus-based

communication architecture is introduced. The outlined
modeling concept is capable of mo deling realistic performance

issues of the system without much loss of accuracy. The
resulting modeling efficiency combined with high simulation
speed addresses the communication architecture exploration for
the complex SoC designs.

The outlined modeling style has been applied to the
modeling and conceptualization of an IPv4 forwarding chip. The
system level communication architecture is successfully refined
from the generic abstract level to the cycle accurate level with
the help of adapters. The resulting architecture platform is used
to carry out the HW/SW integration as well, by integrating the
Classifier functionality on ARM946-ES ISS [15] and also on
LISATek processor simulators [16].

REFERENCES

[1] M.Lajolo, et al., “A Case Study on Modeling Shared Memory
Access Effects During Performance Analysis of HW/SW
Systems”, Int. Workshop on Hardware/Software Codesign
(codes/CASHE), 1998.

[2] MESH, “Methodology for Executable Specifications Hierarchy”,
Intellectual Property and Design Services (Wireless &
Broadband Communications), Synopsys Inc.

[3] Tim Kogel et al., “Virtual Architecture Mapping: A SystemC
based methodology for architectural exploration of System-on-
Chip designs”, Int. Workshop on Systems, Architectures,
MOdeling and Simulation 2003.

[4] DesignWareR AMBATM SystemCTM library User Guide,
Synopsys Inc.

[5] VSI Alliance on-chip bus DWG. “On chip bus attributes
specification” version v1.1.0
(http://www.vsi.org/library/specs/summary.htm)

[6] “ARM announces AMBA-SystemC interfaces to enable System
Level Design” http://www.arm.com/

[7] The Core ConnectTM Bus Architecture, http://www-
3.ibm.com/chips/techlib/techlib.nsf/productfamilies/CoreConnect
_Bus_Architecture

[8] Lahiri et al., “Lottery Bus: A new High Performance
communication architecture for System-on-Chip designs”,
Design Automation Conference, 2001.

[9] V. Lahtinen et al., “Interconnection scheme for continuous-media
System-on-a-Chip”, Microprocessors and Microsystems,
Vol.26, Iss.3, April 2002.

[10] W. Cesario et al., "Component-Based Design Approach for
Multicore SoCs", Design Automation Conference, 2002.

[11] S. Kumar et al., “A Network on Chip Architecture and Design
Methodology”, IEEE Computer Society Symposium on VLSI
2002

[12] L. Torres et al., “Bus analysis and performance evaluation on a
SoC platform at the system level design”, 11th IFIP
International Conference on Very Large Scale Integration, 2001

[13] SystemC Initiative, http://www.systemc.org
[14] Thorsten Grotker et al., “System Design with SystemC”, Kluver

Academic Publishers, ISBN 1-4020-7072-1.
[15] DesignWareR ARM R Processors SystemCTM library User Guide,

Synopsys Inc.
[16] LISATek product family, http://www.coware.com/

