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Abstract—The ever increasing complexity and heterogeneity of 

modern System-on-Chip designs demands validation of the 
system performance as early as possible. The on-chip bus 
architectures play an important role to meet the design 
performance.  Today many heterogeneous on-chip bus 
architectures are defined to address the design exploration.  

In this paper we introduce an efficient modeling style of 
heterogeneous bus architectures at high levels of abstraction.  
We capture different bus architectures by using a generic, 
parameterizable bus model, which captures performance issues 
without significant loss of accuracy.   

Our modeling style is based on the SystemC language, a 
special channel library and attached coding style. The 
combination provides the ground layer for the efficient and fast 
simulation, which in turn enables the validation of the 
functionality and performance of the system at high abstraction 
levels.  

The approach has been successfully used from defining the 
Executable Specifications at the functional level to the 
architecture explorations with HW/SW integration for an IPv4 
Router with Quality of Support, design example. 
 

Index Terms—Heterogeneous bus architecture, System level 
design, SoC, SystemC.  

I. INTRODUCTION 

n  the SoC era, with the increased complexity of the systems 
the process of specification, partitioning and the verification 
of the system has a decisive impact on the success of the 

design. Increasing system complexity demands fast validation 
of the concepts and the possible architectures of the design.  

The typical SoC design may contain one or more processors, 
hardware accelerators for the dedicated functions linked 
together with complex on-chip bus architectures. The SoC 
communication architecture determines the way the different 
functional units are synchronizing and exchanging data and has 
a great impact on the system’s performance [1].     

Intellectual Property (IP) re-use of the bus architectures 
creates a framework for the efficient realization of the complex 
SoCs. The dominant communication architectures in the 
industry use shared bus with prioritized arbitration.  The main 
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players are ARM AMBATM and IBM CoreConnectTM.  
The corresponding cycle accurate Transaction Level Model 

(TLM) IP [4, 6] of the respective bus addresses the design 
exploration and system level modeling for this kind of 
homogenous communication architectures 

Other than this, today heterogeneous and application 
domain specific bus architectures are defined to meet complex 
performance requirements. The cycle-level TLM approach fails 
to support exploration across heterogeneous bus architectures, 
since thes e models are bus-specific.  Hence the evaluation of 
the different bus architecture requires tedious re-writing of the 
interfaces. 

Our approach to system level modeling of heterogeneous 
bus architectures is to move to higher abstraction levels and 
use a generic, parameterizable bus model for communication 
architecture exploration. We have conceived a packet -level 
TLM  style, which captures different bus architectures through 
parameterization of a single generic bus template.  

The SoC designs for the considered networking application 
domain [2,3] involve complex algorithms and protocol handling 
in SW as well. The functional models used in the generic 
packet-level bus platform are re-used when the SW 
functionality is integrated with an Instruction Set Simulator 
(ISS) of the target processor. The integration of the ISS calls for 
a cycle accurate bus platform. The functional models are 
interfaced to the cycle accurate TLM of the bus through 
adapters, which are specifically developed for the intended bus 
architecture. 

II. RELATED WORK 
Bus based architectures are very commonly used to facilitate 

the communication between the various functional blocks of 
the design [5]. Many studies and efforts are diverted into the 
communication architectures, as they are the key to high 
performance, low power systems. The ability to re -use the IP 
reduces the design risk and the time to market.  

Many commercial on-chip bus architectures are available 
based on the IP re-use [6, 7]. These popular bus architectures 
are based on the priority arbitration schemes. Along with this 
commercial IPs there are new variants of application domain 
specific communication architectures developed by the 
academic world [8,9]. 

For the bus based architecture exploration and system level 
design many commercial [4, 6] and academic solutions [11,12] 
are available which provides cycle based TLM or component 
based [10] design methodologies and tool environments. 

The unique contribution of this paper is to further raise the 
abstraction level to a packet-level TLM style and create a 
corresponding generic bus template, which enables 
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architectural exploration across heterogeneous bus 
architectures. The case study shows excellent results w.r.t 
simulation speed, modeling efficiency and accuracy.   

III.  HIGH ABSTRACTION MODELING – PACKET-LEVEL TLM 

Predominantly, the approach to the system-level performance 
analysis is based on simulation of the entire system. The 
models and the communication architectures can be modeled at 
different abstraction levels. Generally the use of abstraction is a 
trade-off between simulation speed and accuracy. In this 
section we highlight the abstraction levels enabled by SystemC 
2.0 and then elaborate on the packet-level TLM. 

A. Transaction Level Modeling (TLM) Overview 
One of the primary goals of SystemC 2.0 [13] is to raise the 

communication abstraction and enable system level modeling 
with Transaction Level Modeling [14] style. At this level, the 
communication is modeled using the function calls, thus hiding 
the lower level implementation details.  The resulting 
improvements in simulation speed and modeling efficiency 
enables the system architect to create an executable 
specification of the design. 

The term TLM is somewhat fuzzy and usually refers to 
modeling at the cycle- and byte- accurate level. Raising the 
abstraction w.r.t data and timing accuracy can further extend 
the TLM paradigm.  

This paper introduces a unique packet-level TLM style, for 
the conceptualization and system level performance analysis of 
a large heterogeneous system. Of course the design entry for 
small scale and homogeneous systems is still at Register 
Transfer Level (RTL) and medium scale embedded systems are 
best modeled at cycle accurate TLM. 

B. Functional Modeling 
In packet-level TLM the bit-true data representation of RTL 

is replaced by the Abstract Data Types (ADTs) such that a set 
of functionally associated data is represented as a single token 
(see Figure IV-2). The functional blocks communicate to each 
other through a point-to-point reactive channel. Since the 
system state changes only at the arrival of a new token the 
number of activations on the event-driven SystemC simulation 
kernel is reduced, to provide a high simulation speed.  

C. Architecture Exploration 
At this level the importance is given to the profiling of the 

bus-based communication architecture and its effect on the 
system performance. The point-to-point communication is 
replaced with the address-mapped shared memory data 
exchange as a natural choice. To achieve high simulation speed 
and modeling efficiency, we also model the shared bus channel 
at the packet-level. The functional blocks re-use the ADT 
interface and communicate to each other using a packet-level 
bus channel. The re-use of interface and the modeling 
efficiency decreases the turn -around time. 

 
1) Abstract Bus Channel- Generic Bus 

The more specific implementation details of the shared bus 
are suppressed at this level. The low level details like pin-
accuracy, specific bit-width of the data ports and cycle 
accuracy are suppressed here. Instead of transferring a block of 
data (for e.g. a Packet Descriptor) through 32-bit data port, the 

ADT itself is transferred. 
The shared memory associated with the abstract bus stores 

the ADTs instead of bits/bytes of the data. More than one 
master can be connected to this bus and the arbiter can 
implement the specific arbitration algorithms. Our arbiter 
implements a priority based arbitration scheme.  

This Generic Bus doesn’t model any real-bus specific 
features. Using this abstract model, the system designer gets an 
executable model to carry out a rough profiling of the system. 

 
2)  Near Cycle Accurate Bus Channel- NCA Bus 

After the rough profiling, the abstract bus channel is 
parameterized to model the timing and data transfer properties 
of a cycle-level TLM bus. This makes the profiling of the 
system very close to the realistic profiling at cycle accurate 
level. The parameters can be defined for enabling the pipeline 
and burst transfers of the bus. This takes care of the timing 
annotation for the features that are bus specific. With this 
parameterization the communication exhibits timing accuracy 
close to a cycle accurate bus.  

D. HW/SW Integration 
In today’s SoC designs, a large part of the system 

functionality is realized in SW. To complete the system level 
verification these SW functionalities need to be integrated and 
simulated on an Instruction Set Simulator (ISS) of the targeted 
processor.  

The ISS integration requires a cycle accurate interface with 
the rest of the system. Also, the bus models and the memory 
interfaces should be cycle accurate. To interface the functional 
models with a real cycle accurate bus an adapter need to be 
developed. The adapter takes care of the conversion of the 
ADT to the bytes/words and assembling the ADT from the 
bytes/words at cycle accuracy. Using these adapters the 
abstract functional models can seamlessly interface to any 
cycle accurate bus.  

IV. HIGH LEVEL ARCHITECTURE - ABSTRACT BUS CHANNEL 
In this section we will introduce the internal structure of our 

packet-level bus and then discuss the timing annotation 
capabilities of the generic and NCA bus model. After that we 
show the link to further refinement stages enabled by a adapter 
between the packet-level and cycle-level TLM. 

A. Timing Annotation Principle 
The Figure IV-1 illustrates the basic communication and 

timing annotation principle of the abstract bus channels. 
 

MASTER

ABSTRACT BUS

` ` `

now now+tD

Twrite(prio,addr,T)

SLAVE

write(addr,T)

 

Figure IV-1: Bus channel behavior 

The figure shows that, the master does a write transaction to 
the slave by calling the function write (prio, addr, T), where T 
represents the ADT. The bus channel automatically calculates 
the timing information tD, associated with the data transfer. 
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After the time tD, the bus channel calls the interface method, 
write (addr, T) of the slave and writes the ADT to the specified 
address.  

class PacketDescriptor{
  int version;             -- pragma field 144, 8
  int ihl;                    -- pragma filed 240, 8
  int tos;                    -- pragma field 128, 8
  ...
  long dest_addr;      -- pragma field 64, 32
}

 

Figure IV-2: ADT - Sets of fields 

The ADT’-s are stored in a shared memory and the ADT 
comprises different fields. Each of the fields is mapped to a bit-
level position by specifying the address offset from the start 
address of that token and the bit-length of the field. The master 
flags the fields that will be transferred. The timing is calculated 
depending on the fields, which are flagged to be written/read 
and also depending on the size of the fields. For e.g. in Figure 
IV-2, the field version is located at 144th bit position of the bit-
true ADT and has a length of 8 bits.  

B. Timing Parameters 
1)  Timing calculation – Generic Bus 

In the Generic Bus, the calculation of the timing information, 
tD doesn’t take care for the bus specific features. It helps the 
designer to derive a rough idea about the system level 
performance.  

tD = data transfer size/BW. 
Where the data transfer size defines the total size of the data 

exchanged by the master from the enabled fields of the ADT 
and the BW is the bus bandwidth in bits. 
2) Timing Annotation – NCA Bus   

To model realistic transactions, the NCA bus channel is 
made configurable to mimic real-bus specific features, such as:  

1. Internal Cycles: For e.g. to complete a data transfer 
(read/write), the bus may take one or more bus cycles 
depending on its timing specification. 

2. Pipeline: If the system bus exhibits a pipeline behavior for 
the data transfer, the effect of internal cycles may not be visible 
for all the address & data phases. For e.g. AMBA bus.  

3. Burst Mode: In systems, where we use the AMBA bus, 
the size of the data transfer and the burst length play an 
important role when we calculate the timing. Such effects are 
taken into account in the NCA bus.  
With these configurable parameters the designer can model the 
communication timing without significant loss of accuracy. 

 
In this sub-section we describe the algorithm to calculate the 

timing annotation value, tD for NCA Bus. The bit-true analysis 
of the ADT has the following steps: 

§ Sort the enabled fields by the staring address of the fields  
§ Form blocks of adjacent fields  
§ Break the transactions to single or burst transfers based 

on a ddress alignment.  
During the calculation of tD, for the single transfers the full 

effect of the internal cycles are taken into consideration along 
with the pipeline. For the burst transactions the effect of 
internal cycles are not visible for all the address and data 
phases.  

With this timing annotation we can accurately analyze the 

behaviors such as bus-contention, busload and arbitration 
effects, which will affect the system performance. The 
advantage of this NCA bus channel is that it gives higher 
simulation speed with less loss of accuracy compared to a real 
cycle accurate bus.  

C.  Cycle Accurate TLM Adapter 
To integrate the SW functionality running on an ISS, an 

adapter is needed to seamlessly interface the functional models 
to the cycle accurate bus.  The real cycle accurate bus used in 
our system is AMBA bus. 

A cycle-level TLM bus, like AMBA bus, transfers the data 
(byte/words) at cycle accurate level. The Functional models, 
which exchange the ADTs cannot be directly interfaced to a 
cycle accurate bus. The functional models are connected to the 
cycle accurate bus through an adapter.   

The system with the adapter is shown in the Figure IV-3.  
The functional models are reused without any changes. The 
adapter converts the ADT transactions to cycle-level TLM bus 
transactions (bytes/words) at cycle accurate level.  

The adapter re-uses the NCA bus algorithm to decide the 
transaction features (burst length, single/burst transfer type), 
depending on the fields, which are marked for transfer.  

  

Functional
Models

AMBA AHB

Decoder Arbiter
Descriptor

Memory (Real)

Adapter Functional
Models

 

Figure IV-3: Architecture view with Cycle-level TLM bus  

After the bit-true analysis of the ADT, the adapter breaks the 
data transfer into different AMBA bus transactions by calling 
the AHB bus interface methods with the proper transfer types 
and burst length.  

V. CASE STUDY  

In this section we show the results of the simulation run of 
an OC-48 (2.5Gbps) IP Forwarding design example with Quality 
of Service support (Figure IV-1). In this example the Descriptor 
Bus was replaced with abstract bus model and with the real 
cycle accurate AMBA bus during the different simulation runs. 

This design example and test bench contains about 20,000 
lines of C++ code having 10 modules, 18 point to point 
channels and 1 abstract bus channel. The traffic pattern to the 
test bench contained IP packets of size 40 bytes to 200 bytes. 

The comparison will give the timing annotation inaccuracies 
in the abstract bus model and the simulation speed of the 
systems. 
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Figure V-1: IP Forwarding Chip 

1) Timing Inaccuracy of the Abstract Bus channel  
 The Table V-1 shows the results of the simulation run with 

the different bus models. The table shows the average packet 
latency with respect to the IP Packet size. To minimize the effect 
of scheduling algorithms we use constant size packets into the 
same queue in the simulations. The average packet latency in 
cycles is used as the objective for the timing error calculation.  

IP Packet 
Size 

Generic Bus NCA Bus Cycle-level 
TLM bus 

40 120 173 185 
80 158 213 225 
120 198 253 265 
160 238 293 305 
200 278 333 345 

Table V-1: Average IP Packet forwarding latency 

The NCA bus timing inaccuracy is within 12 cycles as it is 
parameterized to model the realistic bus effects. The generic bus 
shows huge inaccuracy due to unrealistic timing annotations.  

The table shows the basic timing inaccuracy due to the 
specific bus timing annotations. As we simulate long 
sequences of IP packets, the average transactions on the bus 
increases and the effects of bus arbitration come into picture. 
At increased transactions on the bus, it is observed that the 
difference between NCA and cycle-level TLM bus system 
remains at 7% inaccuracy. 

 The relative inaccuracy between the NCA bus and cycle-
level TLM bus system is due to the extra cycles for the 
synchronization between the master and AMBA bus and the 
impact of locked transactions on the AMBA bus. The 
synchronization and the locked transaction are absent in NCA 
bus. 
2) Simulation Speed 

Generic 
Bus 

NCA 
Bus 

Cycle-level 
TLM bus 

Cycle -level TLM bus 
with ISS 

100% 71.78% 43.68% 10.41% 
 

From the simulation performance, it can be noticed that the 
NCA bus channel gives very high simulation performance 
compared to the cycle-level TLM bus system.  

VI. CONCLUSION 
In this paper a high efficient modeling of the bus-based 

communication architecture is introduced.  The outlined 
modeling concept is capable of mo deling realistic performance 

issues of the system without much loss of accuracy. The 
resulting modeling efficiency combined with high simulation 
speed addresses the communication architecture exploration for 
the complex SoC designs. 

The outlined modeling style has been applied to the 
modeling and conceptualization of an IPv4 forwarding chip. The 
system level communication architecture is successfully refined 
from the generic abstract level to the cycle accurate level with 
the help of adapters. The resulting architecture platform is used 
to carry out the HW/SW integration as well, by integrating the 
Classifier functionality on ARM946-ES ISS [15] and also on 
LISATek processor simulators [16]. 
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