
Automatic Recognition of Computational Kernels

for Platform-Dependent Code Optimizations

María H. Rodríguez Blanco, Georg Reinke, Gerd Ascheid, and Rainer Leupers

Institute for Communication Technologies and Embedded Systems

RWTH Aachen University

52056 Aachen, Germany

Email: rodriguez@ice.rwth-aachen.de

Abstract—We present a novel approach that assists the task of
porting code to an embedded platform. Our tool automatically
identifies code segments in the input program that can be re-
placed with optimized kernels from a platform-dependent library.
Using a C-function as a model that describes the computational
kernel, the tool identifies equivalent code regardless of syntactic
and computational variations. For a case study using the Texas
Instruments C66x DSP library, our approach identified code
replacement opportunities that resulted in runtime performance
speedups of up to 2.2x.

I. INTRODUCTION

Embedded platforms vendors often provide libraries that

are highly tuned to their target architectures. These libraries

consist of functions implementing computational kernels, often

used in a given domain. A common strategy in the task of

porting an application to a specific platform is to replace

functionally equivalent code segments with optimized kernels

from those libraries. We propose an approach that assists this

task by automatically spotting locations in the input program

where these optimized library routines can be employed. Our

tool performs a recognition that otherwise the programmer

would perform manually, which requires time and a deep

understanding of the algorithm of the input program.

The proposed approach belongs to the algorithmic concept

recognition field. Associated technologies, including ours,

consist of the following elements: i) a set of algorithmic

concepts, which in our case correspond to a set of computa-

tional kernels for which an optimized version is available in a

target-dependent library, ii) their corresponding concept model,

used as reference for the identification of algorithmic concept

instances within an input program. For the concept model

generation, we use a graph representation of a user-defined

sample implementation per computational kernel, namely its

Program Expression Graph. Finally, iii) a recognition system

performs the detection of the concept instances in the source

code, here achieved by means of a pattern matching algorithm.

The problem of concept recognition exposes different chal-

lenges. One of them is the so-called variations [1]. It refers

to differences allowed by the programming language within

functionally equivalent implementations of a given concept.

In this work, we handle two source code variation types:

syntactic and computational variations, which proved to be

significant for our use case. They are considered for the

concept model generation, so that our recognition system can

identify instances in the input source code regardless of the

presence of these variations.

The main contributions of this paper are the following:

1) A novel concept recognition mechanism that identifies

opportunities for replacement of code segments with

highly-optimized kernels (Section IV).

2) An automatic concept model generation that handles

syntactic and computational variations (Section V).

3) A performance evaluation of the proposed recognition

algorithm (Section VI).

4) Results and analysis of a case study using a commercial

embedded platform from Texas Instruments (the Key-

stone I [2]) and the C66x DSP library[3] (Section VII).

II. RELATED WORK

Automatic kernel recognition has been studied for a wide

variety of application domains and objectives. Similar to our

work, the scope of the Automatic Algorithm Recognition and

Replacement approach [4] is to recognize code segments to be

replaced by library calls. It first extracts different subprograms

(sets of statements) from the input program. To minimize

the effect of variations, they preprocess the code through a

set of semantics-preserving transformations performed by an

optimizing compiler. Then, for testing if a subprogram is an

algorithmic instance of a pattern (an algorithmic concept),

they convert both pattern and subprogram to a canonical form

of their intermediate representation (IR). The pattern matching

becomes a trivial pair-by-pair comparison of nodes. Their sub-

program extraction allows to recognize subprograms consist-

ing of non-contiguous (delocalized) statements. However, the

recognition success of this approach relies on the non-trivial

subprogram extraction problem. They need to extract statement

groups that form meaningful algorithms and potentially match

exactly against a pattern. They propose a heuristic, that as

a consequence, restricts the pattern types, e.g. at least one

statement should be a loop.

Our approach uses a subgraph isomorphism algorithm for

pattern matching. Despite its higher complexity, it allows us

to detect simultaneously all algorithmic instances of an input

program, given a database of computational kernels. We have

no further restrictions to our patterns except for their specifica-

tion as a C-function. We also analyze the runtime performance

of our detection process, which performs well in practical

cases. Except for results of the practical complexity of their

heuristics, we did not find any evidence of their succesful

recognition rate for comparison. Another difference is how

we handle variations. We extend the PEG code representation

to encode explicitly possible variations. Unlike the sequential

application of compiler transformations, ordering does not play

any role in our process.

In the scope of automatic parallelization, XARK [5] rec-

ognizes a collection of domain-independent computational

kernels, such as inductions, reductions and array recurrences

usable for a variety of techniques. An example is the re-

placement of an irregular reduction with a platform-optimized

parallel version. There are also domain-specific approaches.

PRT [6] recognizes parallelizable computational patterns that

frequently occur in the DSP domain, mostly loop-based pat-

terns. MPIIMGEN [7] is a code transformer that automatically

transforms sequential image processing codes into parallel

versions. ALCOR [8] refers as Parallelizable Algorithmic

Patterns (PAP) a group of algorithms parallelizable by a

common strategy. All these approaches are rule-based, sharing

a common problem [4]. Rule-based systems require an expert

of the internal workings of the system to add recognition

capability and new patterns.

Earlier work of concept recognition seeks to support other

application areas, mainly software maintainers and software

engineering. A comprehensive survey is provided in [4].

III. BACKGROUND

A. Program Expression Graphs

Program Expressions Graphs (PEG) have been proposed by

Tate et al. [9] to represent intraprocedural imperative code with

branching and looping constructs. Figure 1 (a) shows an exam-

ple of a source code snippet and (b) its PEG representation.

Conceptually, in a PEG each node represents an operation,

outgoing edges represent operands, and the incoming edges

represent uses of the result. In Figure 1, φ is a PEG operator

that selects between the value of the second and the third child

depending on the value of the first operand (y). It represents

the merging of the two possible values of x. The incoming

edge at the top is the return value in the code snippet.

Unlike this code snippet, the PEG representation of a

complete C-function by definition has two return nodes,

one representing the return value of the function, and the

other one representing memory state changes. Additionally,

according to [9], PEGs are referentially transparent, which

means that all PEG operators (even branches and loops) are

mathematical functions with no side effects. This characteristic

enables equality reasoning, meaning we can insert information

of equalities. Equality Saturation was proposed in [9] as a

equality reasoning technique.

B. Equality Saturation

It consists of transforming and augmenting the PEG by

repeatedly applying a set of equality rules. The process stops

when the graph is saturated, i.e., when no rule in the set can be

...
if (y)

x=x+6;
else

x=x−3;
return x ∗ 5;

return value

∗

φ 5

+ −y

6x 3

(b)(a)

Fig. 1. (a) example code, and (b) its PEG representation

return value

∗

φ 5

+ −y

6
x 3

φ

∗y + ∗ −

∗ ∗ ∗5 5

x 56 5 3 5

Ca

Cb Cc

2 3

1

Fig. 2. EPEG example

further applied. The resulting extended graph is called EPEG.

As an example, for the PEG in Figure 1 (b) we can obtain the

EPEG of Figure 2 for the following exemplary rule set:

1) φ(a,b,c)∗m = φ(a,b∗m,c∗m)
2) (a+b)∗m = a∗m+b∗m

3) (a−b)∗m = a∗m−b∗m

EPEGs are PEGs with additional equality information,

captured in clusters. All nodes in a cluster are equivalent, i.e,

represent the same value. Nodes with no equivalent partner

form single-node clusters. For visual purposes in Figure 2,

we do not draw boxes for single-node clusters. Also, nodes

belonging to the same cluster, i.e., equivalent nodes, are

connected with dashed edges. Its label refers to rule number

proofing the equality.

An important characteristic for our approach is that an

EPEG can efficiently encode multiple versions of the original

program in a single representation [9]. Edges in EPEGs

go from nodes to clusters. They represent several possible

parent/children combinations. For example, by selecting one

node from each cluster Ca, Cb and Cc, we can derive alternative

components to build up one of the implicit PEGs. The EPEG

in the figure implicitly represents five different PEGs (i.e., five

distinct implementations of the same code).

IV. PROPOSED APPROACH OVERVIEW

Our objective is to recognize code segments in an input

program that are functionally equivalent to the computational

kernels of a platform-dependent library. The main challenge

is that functionally equivalent implementations can differ due

to the flexibility of the programming language. To solve this

problem, we propose to use a PEG representation of ev-

ery desired computational kernel, comprising the algorithmic

concept set. We apply Equality Saturation using a rule set

encoding typical variations that can prohibit the recognition.

The resulting EPEGs represent the concept models that serve

Concept Model Generation Rule
Set

EPEG Database

Recognition System

Detection Report

C - Input
Program

C.cB.cA.c
C’B’A’

Compiler / Developer

Sample Implementations Platform-Dependent
Kernel

Fig. 3. Automatic recognition tool flow

as reference for the identification of algorithmic instances

within the input program. To this end, we not only need

to determine a proper rule set that can describe possible

variations, but also we need to design a recognition system

that performs the detection based on an EPEG representation.

Figure 3 shows the main components of our approach.

As input it takes a set of sample implementations of the

computational kernels and an input program, both written in

C. The tool flow consists of two main phases: the concept

model generation and the recognition process. The output is

a report with the list of concept instances and their locations

in the input program, where a developer or an external tool

can perform the replacement with its corresponding optimized

kernel. We use a C-function as a description of the functional

behavior of an algorithmic concept. Therefore, inputs of an

algorithmic concept are listed as parameters, and outputs are

the return nodes of its PEG representation. These are sufficient

to prove the functional equivalence of two implementations in

the assumption that their inputs are equivalent.

V. CONCEPT MODEL GENERATION

As described earlier, the concept model is generated using

the Equality Saturation technique with rules explicitly encod-

ing common variations that a programmer could implement.

To be exhaustive in the enumeration of all possible variations

is a hard problem and will impact the recognition performance

of the tool. Part of our contribution is to find a minimum set of

rules, that covers most practical cases. However, the addition

of more rules to cover specific domain features is possible.

The generation consists of two steps. The first step converts

the sample implementations to its PEG representations. An

engine, publicly available in [10], returns the PEG representa-

tion out of the LLVM IR [11] of our sample implementations.

The second step is to sequentially apply Equality Saturation

with the variation-tuned rule set. At the end of the process, we

obtain one EPEG (a concept model) per algorithmic concept,

comprising the EPEGs database. In following subsections, we

describe the variation types handled by our tool, what they

are, and which kind of equality rules are needed.

TABLE I
SET OF RULES FOR COMPUTATIONAL VARIATIONS

C-Operator Rules or Properties # Rules

Commutativity: * , +
Arithmetic Associativity: * , + 5

Distributivity: *

Relational Inverse Operator Pair: 6
(>,<),(!=,==), (>=,<=)

Bitwise Shift-Multiplication:«,» 2

Logical De Morgan’s laws:!,&&,|| 2

if(a<w) a = a∗2; if(w>a) a = a <<1;

(b)(a)

Fig. 4. Exemplary computational variations (a) less than with multiplication

operator, and (b) greater than with shift operator

A. Rule Set for Computational Variations

For us, computational variations are concept instances with

different means to compute the same result, as in Figure 4. In

most high level languages, including C, there is more than one

way to compute the same result. We relate this flexibility of the

language to the language operators’ mathematical properties.

For example, the * operator’s commutative property allows

variations such as c = a * b and c = b * a. This additional

knowledge has been given to the tool by means of equality

rules, e.g., A > B = B < A or !(A == B) = (B != A). We

implemented a total of 15 equality rules, summarized in

Table I, to handle most common computational variations

in our use case. Notice that identity properties of arithmetic

and logical functions, e.g. X * 1 = X, can be added. Since

programmers do not usually write code that needs trivial

simplifications, we left them out.

B. Rule Set for Syntactic Variations

Syntactic variations occur when the same functionality is

implemented using different ways to bind values to names or

a different selection of control constructs [1]. This degree of

freedom is in most cases ruled by the C-grammar itself. As

in the example in Figure 5, we can implement an iteration

element using a for or a while loop. Their corresponding

abstract syntax trees (AST) clearly differ.

Interestingly, not all of these variations need to be handled

by a new equality rule. For example, this for-while variation

actually results in the same PEG representation. Since PEGs

relate to the Static Single Assignment (SSA) form, which has

a higher level of abstraction than the AST, we normalize most

syntactic differences by simply converting into a PEG. Also

the assignment C-operators, e.g. +=, as well as the arithmetic

operators ++ and --, do not reflect a syntactic variation in its

PEG representation, but at the AST level.

However, this is not the case for member and pointer

operators (e.g *a, &a, a[]). They offer a flexibility to express

for(i=0; i<N; i++)
sum += A[i];

Aptr = &A[0];
i = 0;
while (i<N) {

sum += ∗Aptr ++;
i = i+1;

}
(b)(a)

Fig. 5. Vector summation kernel with (a) for-array based, and (b) while-

pointer based variation

MemAccess

GEP

Type[...] Index< BA >

θ

0
(initial offset)

+

1
(stride)

0
1

2

MemAccess

θ

GEP< BA >

Type[...] Index

1
(stride)

0

1
2

(b)(a)

Fig. 6. Vector access PEG representation of an (a) array based, and (b) pointer

based variation. BA:Base Address, GEP:GetElementPointer

memory accesses in different ways, that result in different

PEGs. In C, a pointer can be used as an array and vice

versa, as exemplified by Figure 5. The PEG in Figure 6

represents the memory access performed on each loop iteration

for version (a) and (b) of Figure 5 respectively. The array-

based version (a) represents the access sequence: BA + 0,

BA+ 1...BA+ i, while the pointer version (b) represents the

memory access according to the sequence: BA, (BA) + 1,

((BA)+1)+1,...(((BA)+1)+1)...+1.

To handle this, we distinguish among patterns accessing an

element, a list, and a block, using arrays or pointers. Instead

of specifying the equivalence among the different patterns

variations with equality rules, we abstract the patterns into

new nodes called ElementAccess, VectorAccess and

BlockAccess. In Figure 6, both versions are abstracted to

VectorAccess(<BA>,<Type>,<InitOffset>,<Stride>).

These abstraction rules allow the handling of syntactic

variations due to array and pointer based notations.

VI. RECOGNITION SYSTEM

Every EPEG concept model in the database is a compact

representation of multiple concept instances. The recognition

system’s task is to find one of the many variations encoded im-

plicitly in the EPEG database matching a subgraph in the input

program’s PEG. This problem is called subgraph isomorphism

detection. Our system is built on the decomposition-based

subgraph isomorphism (DSI) approach [12], which solves the

detection and the database organization. It consists of two main

steps: decomposition and detection.

A subgraph isomorphism is detected whenever we can find

a mapping associating an input graph nodes subset to an

EPEG nodes subset, which completely represents a concept

instance, i.e., one of its implicit PEGs. To guide this search,

the detection step uses a representation of the concept model

database, called network (created by the decomposition step).

The network describes how the concept models can be recur-

sively decomposed into smaller subgraphs until reaching single

nodes. In this way, the detection first finds all occurrences of

the individual nodes of the model in the input graph and then,

guided by the network, it recursively merges them into larger

components until a complete model is found.

In the DSI algorithm, input and model graphs are labeled

graphs (i.e., they consist of a node set, an edge set and an

associated function that assigns labels to its nodes). The PEG

input graphs are also labeled graphs. Each node has a label

which specifies the PEG operator being represented by the

node. However, EPEGs are a more complex form of labeled

graphs, due to the additional equivalence relations represented

by the clusters. Therefore, we modified the DSI algorithms to

identify clusters with equalities, so that alternative mappings

can be successfully matched to a concept model.

A. Definitions and Notations

Our recognition algorithms work with two types of graphs:

Program Expression Graphs (PEG) as input graphs, and EPEG

as model graphs. Their definitions are based on the originals

presented in [9].

Definition VI.1. A PEG G is a labeled, ordered, directed

graph, defined as a 4-tuple G = (N,E,λ ,R), where N is the

set of nodes, E : N 7→ N∗ is a function mapping each node

to its ordered list of child nodes, λ : N 7→ F is the node

labeling function, F the set of mathematical functions (PEG

operators) being represented by the node, and R is the set of

nodes marked as return nodes. They are the roots of the PEG.

Definition VI.2. An EPEG is a 5-tuple G = (N,C,E,λ ,R),
where N is the set of nodes, C is a set of clusters that divides

N into equivalence classes, E : N 7→C∗ is a function mapping

each node to its ordered list of child clusters, λ is the node

labeling function, and R is the set of return clusters.

We use CA with a capital subindex or C with no subindex to

denote a set of clusters. Anything else, e.g., Ci or C1, is used to

denote a single cluster, that by definition correspond to a set of

nodes. Therefore, if C = {C1,C2, ...,Ct} is the cluster set of an

EPEG, then we can state that N =
⋃i=t

i=1 Ci and Ci∩C j = /0, for

any i, j ∈ [1, t]∧ i 6= j. Additionally, we introduce the following

distinction between the clusters of an EPEG.

Definition VI.3. Let C = {C1, ...,Ct} be the cluster set of an

EPEG. We define C̃ and Ĉ as disjoint subsets of C such that

• C̃ = {Ci ∈C : |Ci|= 1}, ∀i ∈ [1, t]
• Ĉ = {Ci ∈C : |Ci|> 1}, ∀i ∈ [1, t]

In the previous definition, |Ci| represents the number of

nodes in the cluster Ci. We refer to Ĉ as the set of complex

clusters since they contain more than one node, and C̃ as the

set of basic clusters. As an example, the complex clusters in

Figure 2 are basically those where at least one dashed edge

is present. Complex clusters are of special interest for the

proposed decomposition approach. From each node belonging

to a complex clusters, we can derive alternative components

to build up one of the implicit PEGs.

Definition VI.4. Reached Clusters RG : Given an EPEG G =
(N,C,E,λ ,R), we define CA ←RG(Ci) as the function that

returns the cluster set CA that can be reached traversing only

basic clusters, starting from the cluster Ci.

Algorithm 1: RG(Ci)

1 CA = {Ci};
2 if |Ci|= 1 then
3 Pick the node δ ∈Ci;
4 foreach Cx ∈ E(δ) do
5 CA←CA∪RG(Cx);

6 return CA

Algorithm 1 gives a simplified description of the RG(Ci)
behavior. Notice that the return set CA can contain complex

clusters, but their children are not considered. Based on this

function we define a special kind of EPEG subgraphs, which

is the key element for our EPEG decomposition algorithm.

Definition VI.5. For a given EPEG G = (N,C,E,λ ,R) with

C = {C1, ...,Ct}, we define Sα = (NS,CS,ES,λS,RS) with CS =
{Cs1, ...,Csn} and α ∈ N as the e-subgraph derived from α ,

denoted Sα ⊆e GSα ⊆e GSα ⊆e G. Let Cr = {α} be a basic cluster, then

• CS =RG(Cr)
• NS =

⋃i=n
i=1 Csi

• ES(β) = E(β), if β ∈Csi∧|Csi|= 1,∀i ∈ [1,n]
• λS(β) = λ (β) if β ∈ NS

• RS = {Cr}

By using this definition we can decompose the nodes of a

complex clusters into basic clusters, and derive their corre-

sponding e-subgraph, that represents alternative components

for the constitution of an implicit PEG. By reunifying the

return cluster of every e-subgraph into a complex cluster we

can reestablish our original EPEG. Let α1, α2 be the nodes

belonging to the complex cluster Ca of the EPEG in Figure 2.

Therefore, Ca = {α1,α2}, where λ (α1) = φ and λ (α2) = ∗.
We can decompose Ca into Sα1

and Sα2
. This decomposition

is shown at the top of Figure 7.

B. Decomposition of EPEG Model Graphs

Algorithm 2 describes how a single EPEG is decomposed.

For every EPEG model Gy = (Ny,Cy,Ey,λy,Ry) belonging to

the concept model database, the decomposition sequentially

calls the process DecomposeEPEG(Gy,Ry). Similar to DSI, it

consists of a recursive partition of the model graph into smaller

subgraphs. Every partition decision is recorded as a tuple in a

global and initially empty network N .

Definition VI.6. The decomposition network N is defined as

a finite set of tuples N = {(Si,Si1, ...,Simi
,E) : i∈ [1,q]} where

q is the total number of tuples belonging to the network, and

Ca

DecomposeEPEG

Decompose

<single-node level>

∗

φ 5

+ −y

6x 3

φ

Cb Ccy

φ

y

Cb Cc + −

6x 3

∗

5

φy

Sα1
Sα2

S1

S2 S3

S4 S5 S6

S7 S8

Fig. 7. Decomposition network. Ca decompose into Sα1
and Sα2

. Thick edges
are the E edge set of each network node Si.

Algorithm 2: DecomposeEPEG(G,CX)

1 Let CX = {C1,C2, ...,Cp};
2 N ←N ∪ (CX ,C1, ...,Cp, /0);
3 foreach Ci ∈CX do
4 if Ci ∈N then continue;
5 Let Ci = {α1,α2, ...,αx};
6 N ←N ∪ (Ci,Sα1

, ...,Sαx
, /0), Sα j

⊆e G;

7 foreach α j ∈Ci do
8 Let Sα j

= (NS,CS,ES,λS,RS);

9 if ĈS 6= /0 then

10 Get the PEG G = Sα j
−ĈS;

11 N ←N ∪ (Sα j
,G,ĈS,E), Sα j

= ĈS ∪E G;

12 Decompose(G);

13 DecomposeEPEG(G,ĈS);

14 else
15 Get the PEG G = Sα j

;

16 Decompose(G);

mi is the number of parts in which each network node Si is

decomposed. Finally, E is the set of edges in Si that connect

the parts Sik (with k ∈ [1,mi]) together, denoted Si =
⋃

E Sik.

From the proposed algorithm, we can see that the network

nodes Si can be of different types. The algorithm starts with the

cluster set of Gy, marked as return cluster (Ry). This cluster

set, called CX within DecomposeEPEG, represents a multi-

cluster network node, which is decomposed into its consti-

tuting single-clusters Ci (line 2). Then each of these clusters

constitutes a single-cluster network node, that is decomposed

into the e-subgraphs derived from every node belonging to

each cluster (line 6). As previously annotated, an e-subgraph

can contain complex clusters. If that is the case (line 9), we

decompose the mixed network node into two parts (line 11),

one containing only the set of complex clusters, and the other

containing the remaining graph G, which constitutes a PEG

since all clusters contain only one single node. The PEG G can

be decomposed into basic network nodes, using the routine

called Decompose, proposed in the DSI original algorithm

(line 12). This is also the case when the e-subgraph does not

have any complex cluster (line 16). Finally, the complex cluster

set of the mixed network node is recursively decomposed by

our algorithm DecomposeEPEG (line 13).

The routine Decompose, as proposed in the DSI algorithm,

recursively decomposes G into two smaller subgraphs (i.e.,

N ← N ∪ (G,G′,G′′,E), where E is the set of edges in G

between G′ and G′′). The process continues with the derived

components until individual nodes are reached. This routine

also looks within the already existing basic network nodes for

the maximun common subgraph to G, and uses it as criterion

to perform the graph partition, so that, if a subgraph occurs

multiple times in one model or in multiple models, it is repre-

sented only once. In the same way, if a particular node label

appears multiple times, the decomposition represents this node

only once at the bottom of the network. According to [12],

this property not only leads to a compact representation of

the model set, but is also the key to an efficient matching

procedure at detection time. Figure 7 shows the resulting

network during the first iteration of DecomposeEPEG, when

using the input EPEG in Figure 2.

Notice, this simplified algorithm handles loop-free EPEG.

For considering loops, we extend theRG function to check if a

visited complex cluster is being decomposed. If so, this cluster

is decomposed in its single nodes and not in its e-subgraphs.

This avoids cycles in the decomposition process.

C. PEG Detection

For the detection process, we convert each function of the

input program to its PEG representation to serve as input

graphs, that can be analyzed either sequentially or in parallel.

The procedure first searches for all occurrences of single nodes

of the model graphs in the input graph, and stores them as

a set of mappings in the corresponding network node at the

network bottom-line. Then, it gradually combines them into

larger mappings according to the composition described by

the network until it reaches the level of a complete concept

instance. To combine the mappings of two subgraphs, the

algorithm checks not only that the mappings are disjoint, but

also that the edges joining the two subgraphs within the parent

network node (i.e, E) exist in the input graph.

For a more detailed description, let S be the set of all

network nodes occurring in the network N , i.e., S =
⋃i=n

i=1{Si}.
Every network node has a status property that is initialized as

unsolved. After a network node is processed, its status can be

either dead, i.e., no mappings were found for that network

node, or alive otherwise. Let SC,SS,SM,SB be the network

node set of each type: multi-cluster, single-cluster, mixed and

basic respectively. To detect a subgraph isomorphism of a

concept version to an input graph, one needs to find a mapping

function f that associates the matching nodes pairs of each

graph. Two nodes match, whenever their labels are equal, and

their children are also matching pairs.

Algorithm 3 displays the subgraph isomorphism detection

algorithm of concept instances represented by N to the input

PEG GI . The algorithm consists of three main steps, identified

by the three main loops. In the first step (line 2–4), we iterate

Algorithm 3: Detection(N ,GI)

1 Let GI = (NI ,EI ,λI ,RI);
2 foreach Si = (N,E,λ ,R) ∈ SB with |N|= 1 do
3 FSi

=VertexTest(β ,λ (β),GI) where {β}= N;
4 UpdateStatus(Si,Fs);

5 while ∃Si ∈ SB : Si.status = unsolved do
6 foreach Sx ∈ S do
7 Let NX = (Sx,Sx1, ...,Sxmx

,E) ∈N ;
8 if Sx.status 6= unsolved then continue;
9 if Sxk.status =alive,∀k ∈ [1,mx] then

10 FSx
=CombineBasic(NX ,GI);

11 UpdateStatus(Sx,Fs);

12 while ∃Si ∈ (S−SB) : Si.status = unsolved do
13 foreach Sx ∈ S do
14 Let NX = (Sx,Sx1, ...,Sxmx

,E) ∈N ;
15 if Sx.status = unsolved then continue;
16 if Sxk.status 6=unsolved, ∀k ∈ [1,mx] then
17 if Sx ∈ SS ∧ ∃Sxk : Sxk.status =alive then
18 FSx

=CombineSingleCluster(NX ,GI);

19 if Sx ∈ SC ∧ Sxk.status =alive,∀k then
20 FSx

=CombineMultiCluster(NX ,GI);

21 if Sx ∈ SM ∧ Sxk.status =alive,∀k then
22 FSx

=CombineMixed(NX ,GI);

23 UpdateStatus(Sx,Fs);

over the basic network nodes Si containing a graph with one

single node N = {β}, and execute the following two routines:

• VertexTest: it iterates over all nodes αI of the input graph

and returns the mappings:

FS = { f (β) = αI : λI(αI) = λ (β)}.

• UpdateStatus: this procedure updates the status of a

network node to dead if FS = /0, and to alive otherwise.

Then in the second step (line 5–11), it processes all remain-

inig basic network nodes. For those network nodes Sx whose

components Sxk are all alive, we call:

• CombineBasic: it combines the subgraph isomorphism

of the network nodes Sxk whenever: i) the set of edges

E : Si =
⋃

E Sik also exists in the input graph and ii) the

mappings of the children network nodes are disjoint.

Finally, the third step (line 12–23) iterates over the network

nodes generated by the EPEGDecompose routine, and com-

bines the mappings of their components according to the net-

work node type, by calling CombineSingleCluster, Combine-

MultiCluster and CombineMixed. Notice that, for combining

mappings in a single-cluster network node, at least one of the

components Sxk is alive (line 17). We require only one of the e-

subgraphs derived from a node in a single complex cluster for

the detection of a concept instance. Therefore, the combination

of mappings in this type of network node consists of the

union of the component mappings into a single set. The multi-

cluster combining procedure differs from the CombineBasic

by the fact that the joining edge set is E = /0. Therefore, we

only check that the children mapping sets are disjoint. And

finally, the mixed combining procedure has the peculiarity that

for checking the joining edges we require only the mapping

associated to the node belonging to the single complex cluster

(represented by the single-cluster network node), and not the

complete mapping set associated representing an alternative

component to build an implicit PEG. At the end of this process,

if there is a multi-cluster network node alive that originally

represented the return cluster set Ry of a model EPEG Gy,

then we have found a concept instance in the input graph.

D. Performance Analysis

Subgraph isomorphism detection is NP-complete, so the

detection time is exponential in the worst case. In [12],

it was shown that the computation time of their proposed

decomposition-based approach is also affected by parameters

other than the number of nodes. The worst case arises when

all nodes have the same label and each node is connected to

each other, thus the number of labels and edges also affects

the detection time.

To determine how these parameters affect our algorithm,

we performed few practical experiments with parameterized

randomly generated model and input graphs. The parameters

for generating the EPEG model graphs are:

• |C|: total number of clusters in the graph,

• |Ĉ|/|C|: ratio of complex clusters to total clusters,

• |Ci|: number of nodes per complex cluster,

• |L|: number of unique labels.

The first three of these parameters define the total number

of nodes in the model graph. By specifying them separately,

we can simulate the various aspects of the equality saturation

process, since every application of a rule can modify each of

these three parameters. Since the number of outgoing edges

of an EPEG node depends on its label, for the sake of these

experiments we collected a database of possible labels and

their corresponding number of edges from EPEGs of some

computational kernels of the C66x DSP Library [3] (same

kernels used for the case study in Section VII). The average

outgoing degree of these labels was determined to be 0.56,

with 4 as the maximum degree. When generating a graph, a

specified number of labels |L| is randomly chosen from this

database, and each node is associated with one of these labels.

Then, the respective amount of edges are added to the graph,

and two random clusters are chosen as the return clusters.

We study the behavior of the proposed algorithm by varying

the graph generation parameters. Table II summarizes the

different parameter values used in each specific experiment

for the concept model generation. The constant parameters

correspond to the average value observed in the concept model

set used in the case study of Section VII. As the graphs are

generated randomly, we perform each experiment 20 times and

evaluate the average runtimes. In the first three experiments,

we randomly derive one of the implicit PEG from the model

graph as input graph, to ensure that a match is found.

In the first experiment, we compare the detection algorithm

runtime when given a single model graph and a single input

graph while varying two parameters: the number of clusters in

the original EPEG (10-100), and the ratio of complex clusters

TABLE II
EXPERIMENTS AND THE MODEL GRAPH GENERATION PARAMETERS

No. |C| |L| |Ĉ|/|C| |Ci| # Models

1 10-100 20 10%-100% 2, 2-3, 5 1
2 30 20 20% 2-3 1-15
3 30 3-30 20% 2-3 1
4 30 20 20% 2-3 1

20
40

60
80

100 0.2 0.4 0.6 0.8 1

0

5

10

|C| |Ĉ|/|C|

A
v
g
.

R
u
n
ti

m
e

[s
]

Fig. 8. Experiment 1: average runtime for varying graph sizes and the relative
number of complex clusters. From darkest to lightest, the planes correspond
to 2, 2 or 3, and 5 nodes per complex cluster, respectively.

to the total number of clusters (10-100%). The results are

shown in Figure 8. The experiment was performed for different

number of nodes in a complex cluster: first 2, then—randomly

chosen—2 or 3, and finally 5 nodes per cluster. As it can be

seen, the runtime increases for both larger numbers of total

clusters and larger numbers of complex clusters. Furthermore,

the algorithm performs worse if the complex clusters contain

more nodes, especially for a high amount of complex clusters.

In the detection algorithm, the submatches associated with

a complex cluster are the union of the submatches of the

nodes in the cluster, so if a larger percentage of the clusters

are complex, the number of submatches to be processed per

network node generally rises. Also, increasing this ratio as

well as the number of nodes per complex clusters results in

a larger number of total nodes in the graphs, explaining the

increasing runtimes.

In the second experiment, we examine the effect of the

model database size on the algorithm performance. For that,

we change the database size from 1 to 15 model graphs,

all generated under the same parameters. The input graph

is a random implicit PEG derived from a random model. In

Figure 9, the results of this experiment can be seen. Clearly,

the runtime increases for larger model databases, but the

dependency is less than linear. This can be easily explained

by the fact that our algorithm is based on the decomposition-

based approach presented in [12]. As it was shown there, the

runtime of the detection is sublinearly dependent on the model

database size for practical cases.

For experiment 3, we vary the number of unique labels (3-

30) that can occur in the graphs. Figure 10 shows the outcome

of this experiment. Our first expectation was a rising runtime

for a smaller number of labels, similar to the experimental

0 2 4 6 8 10 12 14 16
0

1

2

3

4

Model database size

A
v
g
.

ru
n
ti

m
e

[s
]

Fig. 9. Experiment 2: average runtime vs. model database size

5 10 15 20 25 30
0

5

10

15

Number of unique labels

A
v
g
.

ru
n
ti

m
e

[s
]

Fig. 10. Experiment 3: average runtime vs. number of unique labels

results in [12]. They varied the number of label graphs (4-

40) in graphs with 50 nodes and 60 edges, and showed a

steadily increase for less than 10 labels. According to [12], a

few labels means that the likelihood of repeating substructures

increases and the number of matches that are found for small

subgraphs of the model graphs is thus usually very large. In our

experiment, aside from the first data point, the average runtime

tends to be constant. This is a result of the outgoing degrees of

the nodes in our graphs generally being comparatively low. In

[12], the average degree of each vertex was kept at 2.5. In our

experiment the average degree depends on the specific label set

chosen in each case. For our outlier case, the 3 labels chosen

had an outgoing degree of 4, 2, and 0, respectively, resulting

in a large number of edges which then leads to the big spike in

computation time. The theoretical worst case of the algorithm

is when all nodes have the same label and are connected to all

other nodes, which leads to an exponential increase in possible

matches. Here, we limit the amount of edges in the graph by

our database of labels and associated outgoing degrees (which

is the case for practical EPEGs), making the average outgoing

degree of a vertex generally lower than the total number of

nodes and prohibiting the exponential growth in matches.

Until now, all previous experiments actually deal with

the problem of graph isomorphism, as the input graph is

always directly derived from the EPEG model. In our fourth

experiment, we run the detection algorithm for input graphs

with more nodes than the model graph, thereby changing the

problem to subgraph isomorphism detection. After deriving a

possible match from the model graph, we add random nodes

and edges to the graph until the input graph contained a

0 100 200 300 400 500 600 700 800 900 1,000
0

0.5

1

1.5

2

Size of input graph

A
v
g
.

ru
n
ti

m
e

[s
]

Fig. 11. Experiment 4: average runtime vs. input graph size

given number of nodes. We then examined the runtime of our

algorithm for varying this input graph size. The results can

be seen in Figure 11. Overall, the runtime increases slightly

for larger input graphs. We also note that for input graph

sizes larger than 500, the variance of our data points seems to

increase. Two outliers at 570 and 930, both corresponding to

an average runtime of 2 seconds, are the most noticable.

We conclude that the parameters that influence the runtime

of our algorithm the most are the number of clusters in the

model graph, the ratio of complex clusters, and the number of

nodes they contain. The computation time is only sublinearly

dependent on the model database size, and mostly independent

of the number of unique labels. Furthermore, we see that our

algorithm performs reasonably well for the problem sizes of

our use case, despite its theoretically exponential complexity.

VII. CASE STUDY

In this section we show the evaluation results of our

approach when used as a support for porting sequential legacy

C code to a given target system. Unlike the previous evaluation

that characterizes the runtime performance with synthetic

EPEGs, the objective is to assess the recognition efficiency

in a practical scenario, using EPEGs derived directly from a

set of computational kernels of a commercial platform library.

A. Experimental Environment

For this experiment, we use the C66x DSP Library from

Texas Instruments [3]. The library contains a collection of

optimized C-callable routines used in computationally inten-

sive real-time applications, which have been tuned for the

DSP processor family C66x. Each kernel includes a natural

C version, an implementation without optimization, and an

optimized C version. This is convenient, since the natural

C versions readily serve as reference for the sample imple-

mentations. Table III shows the kernel selection constituting

our algorithmic concept set. We use the UTDSP [13] and

StreamIT [14] benchmark suites for the evaluation. Both are

collections of applications typically executed on DSPs in

commercial products. In particular, the UTDSP suite provides

several versions written in different coding styles (using either

array or pointer notation). The target system is the KeyStone I

platform [2] that has eight C6678 DSP cores running at 1 GHz.

TABLE III
SET OF ALGORITHMIC CONCEPTS

ID Concept DSP Routine

DOTP Dot Product DSPF_sp_dotprod
MTRAN Matrix Transpose DSPF_sp_mat_trans
VMIN Vector Minimal Value DSPF_sp_minval
VMAX Vector Maximal Value DSPF_sp_maxval
VADD Vector Addition DSPF_sp_vecadd
VMUL Vector Multiplication DSPF_sp_vecmul
MMUL Matrix Multiplication DSPF_sp_mat_mul
FIR Impulse Response Filter DSPF_sp_fir_gen
AUTOC Autocorrelation DSPF_sp_autocor
WSUM Weighted Summation DSPF_sp_w_vec

TABLE IV
HISTOGRAM OF FUNCTION RUNTIMES

Runtime
< 0.5 0.5−1 1−10 10−15 15−60

[mins]

Number of
670 19 36 1 0

Functions

The performance is measured using the C6678 Device Cycle

Approximate Simulator provided by Texas Instruments.

B. Results and Analysis

We run our recognition tool on 27 applications and a total

of 726 functions. A histogram of the per-function runtimes

is given in Table IV. We observe that for more than 90% of

the functions, the tool completes in less than 30 seconds. The

median tool runtime per function is 10.58 seconds.

The recognition results are summarized in Table V. The

runtime column shows the per-application tool runtime, which

is the sum of the per-function runtimes. The manual column

lists the concept instances identified in each application by

looking manually for code parts that could potentially be

replaced with a library routine call. For example, in the

application compress we found two code segments that imple-

ment a matrix multiplication concept. Note that we exclude

applications from the table where no algorithmic concept was

manually found. Our tool successfully recognizes the instances

marked with "X" in the tool column.

The tool reported no false positives, also in the applications

not listed in the table. Except for the concept instances found

in audiobeam, all differ from their respective concept model

due to one or more variations. The UTDSP applications, where

a recognition was successful, were tested for both pointer and

array based version. We analyze the cases where the automatic

recognition is not successful with respect to the manual one.

Our findings are summarized according to known challenges

for concept recognition [1]:

Data Structure Variations: The library kernel and the input

program act on different data layouts. These variations appear

in three cases: FIRs in lpc, MMUL in matrixmult, and DOTPs in

dct_ieee. In the first case, the FIR library kernel assumes that

its input vector (h) of length nh should be given in reverse

TABLE V
RECOGNITION RESULTS

Application
Runtime

Manual Tool
Local

(seconds) Speedup

compress 47 MMUL (2x) X(1x) 31.06
edge_detect 150 DOTP X N/A
lpc 732 VMUL X 5.73

DOTP X 4.00
FIR (2x)
AUTOC (3x)

spectral 280 VMUL
audiobeam 1282 VMIN X N/A

VMAX X N/A
fm 114 DOTP X 10.53
dct_ieee 133 DOTP(4x)
fir 25 FIR
matrixmult 29 MMUL
matmul-block 110 MTRAN X 34.69

DOTP X 4.35
nokia 143 MMUL

DOTP X 1.06

order i.e., {h[nh-1], h[nh-2],..., h[0]}. In the second

case, the matrices used as input and output in matrixmult are

implemented using columns as first and rows as second di-

mension of a two-dimensional array, i.e., A[columns][rows].

The inverse order is assumed by the kernel. In the case of the

dot products in dct_ieee, one of the input vectors is the first

dimension of a two-dimensional array, i.e., sum += A[i][n]

* B[i], where i is the loop induction variable. Even if, from

the algorithmic point of view, this is still a dot product, the

kernel assumes that the vector elements are contiguous in

memory, which is not the case for the implementation in the

application. The direct consequence of these variations is the

way each concept instance performs memory accesses.

Delocalization: The logically related elements of the con-

cept instance are not consecutive in the code. This is the

case in spectral. In the kernel, the execution of the vector

multiplication is performed contiguously without any other

statements in between iterations. In the application, the loop

body contains other statements, creating false dependencies.

Other frameworks (e.g. [6]) have circumvented this problem

by applying loop distribution prior to the recognition.

Optimization: During the implementation, additional

knowledge about the input can lead to variations (optimiza-

tions) of the algorithm. This is the case for AUTOCs in lpc. It

implicitly assumes that the input signal is padded with zeros.

The code segments’ loop boundaries are determined to exclude

the multiplications with those zeros, which is not the case for

the more generic library kernel.

For each detected kernel we manually replaced the identified

code segment with the optimized routine. For the successful

cases in Table V, the last column shows the local speedup

obtained per kernel considering only the execution time of the

transformed code segment. Those concept instances, where

the substitution is not possible, are marked with N/A. As

expected, the replacements result in a significant local perfor-

2.23× 1.04×

matmul-blk nokia
0k

200k

400k

600k

800k
C

P
U

C
y
cl

es

1.24× 1.84× 1.11×

fm compress lpc
0M

5M

10M

15M
Original

Optimized

699589
314169

64414
62016

2210265
1984997

13377196
10794519

11052962
6014678

Original
Optimized

Fig. 12. Original and optimized performance for the applications where the
replacement was successful

mance improvement. The global speedup of the application

performance is analyzed at the end of this section. We could

not insert the library kernel at all detected concept instances.

The main reason is that optimized routines usually have a set

of restrictions. For example, the dot product expects the input

vector’s length to be a multiple of eight.

Finally, Figure 12 shows the global per-application

speedups. We report the CPU cycles for the original and

optimized versions of the applications. Although most of the

local speedups in Table V are significant, not all the replaced

code segments reside in a critical section. Therefore, we obtain

significant global speedups for some replacements like in the

case of matmul-block and compress, while in other cases, the

speedups are small such as for nokia.

C. Discussion

Using C for the computational kernel specification is an

advantage. In rule-based approaches (e.g., [6], [7]), the user

needs to derive new if-then rules, typically written in terms

of the IR used by the detection system [4]. In our case, no

special knowledge on the internals of the system is needed.

Also no special code style is expected from the sample

implementations. Still to write the sample implementations

requires an effort. The developer of optimized library routines

(platform vendor) requires a golden reference to test for func-

tional correctness. Therefore, in principle, kernel functional

specifications already exists. All we need is that the vendors

shares them, as done by Texas Instruments. Nevertheless, to

migrate to a different platform in a similar domain is also

a less-demanding task, since algorithmic kernels can overlap.

Only tuning to the specific routine interface might be required.

The per-function level detection analysis is a well-defined

task that can be parallelized, allowing the tool to scale well for

big programs. For example, mpeg2 consisting of 201 functions,

sequentially analyzed, takes 70 mins. But the maximum per-

function detection time is only 7.35 minutes. However, the per-

function analysis has the limitation that a particular program

structure can prohibit a successful recognition. Inlining can

be applied to overcome this limitation at the cost of bigger

function sizes, potentially impacting also the dectection time.

An additional optimization to the tool flow would be to pre-

process the input program with a profiler, so that we can focus

the analysis only on the hotspots, which can also allow a

guided application of inlining.

VIII. CONCLUSIONS

This paper presented a computational kernel recognition

mechanism as a novel way to assist the task of porting C-

code to an embedded target platform. The first phase generates

a concept model based on an equality reasoning process,

where the applied rules have been tuned to handle common

source code variations for our use case. Then the recognition

system has been implemented by means of a decomposition-

based subgraph isomorphism detection algorithm. The main

conclusions can be summarized as follows. Most source code

variations are implicitly handled due to our intermediate

representation choice. Implicit constraints or assumptions on

the input data are only specified in the library kernel’s doc-

umentation, thus it requires a second validation step. Data

layout differences between the benchmark and the library

prevent the recognition of instances as the same algorithmic

kernel. Identified code segments are not necessarily hot spots,

but for our case study, most of the kernels were found in

critical sections. We plan to investigate how to overcome

delocalization in future work, which will allow the recognition

of corner cases, since the common case is that a meaningful

algorithm is normally placed contiguous in code. Also, our

approach could, for example, be extended to support different

optimization strategies, like code parallelization.

REFERENCES

[1] L. M. Wills, “Automated program recognition by graph parsing,” DTIC
Document, Tech. Rep., 1992.

[2] “SPRS691E:multicore fixed and floating-point digital signal
processor TMS320C6678,” [Online] http://www.ti.com/lit/ds/symlink/
tms320c6678.pdf (accessed 11/2015).

[3] “SPRUEB8B:TMS320C6xx+ DSP little-endian DSP library program-
mers reference,” [Online] http://www.ti.com/lit/ug/sprueb8b/sprueb8b.
pdf (accessed 11/2015).

[4] R. C. Metzger and Z. Wen, Automatic algorithm recognition and

replacement: a new approach to program optimization. MIT Press
Cambridge, 2000.

[5] M. Arenaz, J. Touriño, and R. Doallo, “XARK: An extensible frame-
work for automatic recognition of computational kernels,” ACM Trans.

Program. Lang. Syst., vol. 30, no. 6, pp. 32:1–32:56, Oct. 2008.
[6] A. Shafiee Sarvestani, E. Hansson, and C. Kessler, “Extensible recogni-

tion of algorithmic patterns in DSP programs for automatic paralleliza-
tion,” Int. J. Parallel Program., vol. 41, no. 6, pp. 806–824, Dec. 2013.

[7] U. Vinod and P. K. Baruah, “MPIIMGEN—a code transformer that
parallelizes image processing codes to run on a cluster of workstations,”
in Int. Conf. Cluster Computing. IEEE, 2004.

[8] B. D. Martino, “ALCOR — an algorithmic concept recognition tool
to support high level parallel program development,” in Proc. PARA.
Springer-Verlag, 2002, pp. 150–159.

[9] R. Tate, M. Stepp, Z. Tatlock, and S. Lerner, “Equality saturation: A new
approach to optimization,” SIGPLAN Not., vol. 44, no. 1, pp. 264–276,
Jan. 2009.

[10] “Peggy: A system for equality saturation,” [Online] http://goto.ucsd.edu/
~mstepp/peggy/ (accessed 03/2016).

[11] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proc. CGO. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 75–.

[12] B. T. Messmer and H. Bunke, “Efficient subgraph isomorphism detec-
tion: A decomposition approach,” IEEE Trans. on Knowl. and Data

Eng., vol. 12, no. 2, pp. 307–323, Mar. 2000.
[13] C. Lee, “UTDSP benchmark suite,” [Online] http://www.eecg.toronto.

edu/corinna/DSP/infrastructure (accessed 08/2015).
[14] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A language

for streaming applications,” in Compiler Construction. Springer, 2002,
pp. 179–196.

